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Although bone is an organ that displays potential for self-healing after damage, bone
regeneration does not occur properly in some cases, and it is still a challenge to treat large
bone defects. The development of bone tissue engineering provides a new approach to
the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs)
represent one of the most promising seed cells in bone tissue engineering due to their
functions of osteogenic differentiation, immunomodulation, and secretion of cytokines.
Regulation of osteogenic differentiation of MSCs has become an area of extensive
research over the past few years. This review provides an overview of recent research
progress on enhancement strategies for MSC osteogenesis, including improvement in
methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with
macrophages and endothelial cells, and scaffolds. This is favorable for further
understanding MSC osteogenesis and the development of MSC-based bone tissue
engineering.
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INTRODUCTION

Bone is an important organ that serves a wide range of functions, including preserving vital internal
organs and structures, providing the levers for muscles, maintaining mineral homeostasis, secreting
growth factors and cytokines, and providing the environment for hematopoietic cell development
(Clarke, 2008). It is mainly comprised of osteocytes, osteoblasts, osteoclasts and extracellular matrix
(ECM), which maintains a dynamic balance between bone resorption and bone formation (Yang and
Liu, 2021). Bone is a vascularized organ that can undergo self-healing after less severe damage.
However, it is still a challenge for orthopedists to treat large segmental bone defects (Gage et al.,
2018). In addition, an increasing number of people are suffering osteoporosis as the population ages,
in which bone quality is decreased and adversely affects the treatment of bone injury (Tarantino et al.,
2011). Thus, the development of strategies for bone healing and regeneration represents an area that
is of great significance to improve patients’ function and quality of life (Guda et al., 2014).

Over the past few decades, increasing attention has been given to bone tissue engineering for the
treatment of bone damage. Multiple factors are essential in bone tissue engineering, such as an ideal
microenvironment, appropriate scaffolds, and viable cell populations (Li J. J. et al., 2018; Zhao et al.,
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2020). Mesenchymal stem cells (MSCs) are adult stem cells with
self-renewal, multiple differentiation and immunomodulation
functions and are regarded as promising seed cells for bone
tissue engineering (Seong et al., 2010; Wang et al., 2013).
MSCs reside in a variety of tissues, such as bone marrow,
peripheral blood, adipose tissue, umbilical cord, and placenta
(Hass et al., 2011). MSCs are multipotent cells that are able to
differentiate into a determined mesenchymal lineage under
specific conditions, such as osteoblasts, chondrocytes,
adipocytes, muscle cells, neural cells and keratinocytes (Han
et al., 2019). The cell fate and differentiation direction of
MSCs depend on various factors, including the cell origin and
viability, extracellular environment, and physical stimulation
(Chen et al., 2016; Halim et al., 2020). The identification of
appropriate approaches that support the osteogenic
differentiation of MSCs is important for bone tissue engineering.

Several clinical trials have proven that MSC-based bone tissue
engineering is safe and effective in promoting bone healing and
leading to functional outcomes in patients, but the long-term
therapeutic effect cannot be guaranteed (Giannotti et al., 2013;
Morrison et al., 2018; Garcia de Frutos et al., 2020). It has been
proposed that MSCs contribute to bone healing through three
different approaches: differentiation and replacement (Garg et al.,
2017), secretion of cytokines and extracellular vesicles (Marolt
Presen et al., 2019; Tsiapalis and O’Driscoll, 2020), and
immunomodulatory activity (Medhat et al., 2019; Weiss and
Dahlke, 2019). It is still difficult to judge which is the most
important way for MSCs to improve bone regeneration.
Nevertheless, the regulation of MSC osteogenesis is conducive
to improving the therapeutic effect of MSC-based bone tissue
engineering. How to make MSCs differentiate into osteocytes or
osteoblasts and maintain their physiological function has become
a field of extensive research.

In this review, we overviewed the recent research progress in
enhancement strategies for MSC osteogenesis, including

improvement of methods in cell origin selection, culture
conditions, biophysical stimulation, crosstalk with
macrophages and endothelial cells, and scaffolds (Figure 1).
This will aid the further development of MSC-based bone
tissue engineering.

OSTEOGENICDIFFERENTIATIONOFMSCS

A thorough understanding of the regulation of MSC osteogenesis
requires familiarity with the normal osteogenic differentiation
process ofMSCs. It is indicated thatMSCs are prone to give rise to
preosteoblasts for the first step instead of directly differentiating
into osteocytes. Preosteoblasts develop into mature osteoblasts,
which synthesize bone matrix and then become entombed in the
matrix as osteocytes (James, 2013). The whole process is regulated
by numerous signaling pathways, such as transforming growth
factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling,
Wingless-typeMMTV integration site (Wnt) signaling, and Sonic
Hedgehog (SHH) signaling (Figure 2). As the targets of these
signaling pathways, runt-related transcription factor 2 (Runx2)
and osterix (Osx) are key transcription factors in the process of
MSC osteogenic differentiation (Pokrovskaya et al., 2020). BMPs
are members of the TGF-β superfamily, of which BMP-2 (Hu
et al., 2017), -4 (Querques et al., 2019), -6 (Friedman et al., 2006),
-7 (Kim Y. et al., 2018), and -9 (Wu et al., 2021) are involved in
the promotion of MSC osteogenesis. BMP-2 is the most widely
studied BMP in MSC osteogenic differentiation, and its function
is achieved through the activation of downstream signaling,
including in Drosophila mothers against decapentaplegic
protein (Smad)1/5/8 (Li et al., 2014; Aquino-Martinez et al.,
2017) and mitogen-activated protein kinase (MAPK) (Kong
et al., 2012). Wnt signaling is considered another central
signaling pathway in the regulation of MSC osteogenesis. The
proosteogenic effect of Wnt signaling on MSCs can be achieved

FIGURE 1 | Developed methods for enhancing MSC osteogenic differentiation. Recent research progress on strategies for enhancing MSC osteogenic
differentiation includes improvement of methods in cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and
scaffolds.
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through both β-catenin-dependent and β-catenin-independent
signaling pathways (Fakhry et al., 2013; James, 2013; Li Y. et al.,
2018). It is reported that Wnt/β-catenin activity is involved in the
regulation of bone development and bone remodeling (Little
et al., 2002; Day et al., 2005; Chen and Long, 2013).
Meanwhile, inactivation of Wnt/β-catenin in MSCs in vitro
causes significant inhibition of osteogenic differentiation and
promotion of adipogenic or chondrogenic differentiation,
indicating that Wnt/β-catenin signaling is important in
determining whether MSCs will differentiate toward
osteoblasts (Day et al., 2005; Zhou et al., 2019). The SHH
signaling pathway also has a well-established effect on MSC
osteogenesis at an early stage via the activity of the Gli
transcription factor (James, 2013). The addition of SHH
protein significantly stimulated MSC osteogenic differentiation
and reduced MSC adipogenic differentiation (James et al., 2012).
Interestingly, SHH signaling and BMP-2 signaling can interact
with each other and synergistically promote osteogenic
differentiation by regulating Smad activity in the murine MSC
line C3H10T1/2 (Spinella-Jaegle et al., 2001; Yuasa et al., 2002).

HETEROGENEITY IN MSC OSTEOGENIC
DIFFERENTIATION POTENTIAL

The International Society for Cellular Therapy has provided the
following standard criteria for human MSCs: 1) must be plastic-
adherent in standard culture conditions; 2) must have the
capacity to differentiate into adipocytes, osteoblasts and

chondroblasts; and 3) must express CD105, CD73 and CD90
and lack the expression of CD45, CD34, CD14 or CD11b, CD79α
or CD19 and HLA-DR (Dominici et al., 2006). In recent years,
increasing research has identified that MSCs are heterogeneous
populations. It is well acknowledged that MSCs from different
individual donors and tissue sources have different biological
properties (Wang and Han, 2019). Moreover, MSCs can be
divided into different subpopulations according to their
expression of cell surface markers, which also exhibit unique
characteristics and cellular functions. Thus, the selection and
utilization of superior MSCs is fundamental to improve the
therapeutic effect of bone tissue engineering.

Characteristics of Donors
The osteogenic differentiation potential of MSCs from donors of
different ages has been studied. Gene expression analysis revealed
that bone marrow-derivedMSCs (BMSCs) from 3- and 6-month-
old mice expressed similar levels of osteogenic differentiation-
related genes (Bragdon et al., 2015). Tokalov et al. (2007) isolated
BMSCs from rats of 2–48 weeks of age and reported that MSC
osteogenesis was independent of donor age, as revealed by similar
levels of calcium accumulation after osteogenic induction in vitro.
Lee et al. (2021) demonstrated that the osteogenic differentiation
potential of human BMSCs was not impaired in older donors, as
shown by alizarin red staining. Similar results were found by Ding
and his coworkers, who revealed that the osteogenic
differentiation capacities of human adipose tissue-derived
MSCs (ADSCs) between old age individuals and young age
individuals were the same (Ding et al., 2013). These results

FIGURE 2 | Signaling pathways in the regulation of MSC osteogenic differentiation. BMP signaling, Wnt signaling, and SHH signaling pathways are involved in the
modulation of MSC osteogenesis, and the targets are the transcription factors Runx2 and Osx. MSC, mesenchymal stem cell; BMP, bone morphogenetic protein; Wnt,
wingless-type MMTV integration site; SHH, sonic hedgehog; Runx2, runt-related transcription factor 2; Osx, osterix.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8248123

Zha et al. Strategies for MSC Osteogenic Differentiation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


suggest that MSC osteogenesis is independent of donor age,
indicating that MSCs from elderly donors are eligible for bone
tissue engineering in terms of osteogenic differentiation potential.
However, Yang et al. (2014) analyzed the cellular properties of
ADSCs isolated from 66 human donors (age: 10–70 years).
Although they observed a trend in which the osteogenic
differentiation ability of ADSCs declined as the donor age
rose, it failed to reach statistical significance. Carvalho et al.
(2021) found that the osteogenic differentiation potential of
BMSCs from older fracture patients (60 and 80 years old) was
inferior to that from younger fracture patients (30 and 45 years
old), as evidenced by alkaline phosphatase (ALP) activity, calcium
deposition, and osteogenic gene expression assays after 21 days
under osteogenic differentiation conditions. The conflicting
results obtained by these researchers might be due to the
different cell sources, culture conditions, and evaluation
methods used. The effect of donor age on the osteogenic
differentiation capacity of MSCs remains controversial, and
more related research is still needed.

Since bone formation and development are different between
males and females, it is necessary to determine whether MSC
osteogenesis was also sexually dimorphic. Leonardi et al.
demonstrated that the osteogenic differentiation potential of
human BMSCs was not affected by donor sex after 14 days of
induction culture (Leonardi et al., 2008). Interestingly, Bragdon
et al. (2015) revealed that the expression of bone-related genes in
BMSCs derived from male mice and female mice was similar at 3
and 9 months, while at 6 months, BMSCs from female mice
expressed these genes twofold greater than those from male
mice. This suggests that at certain ages, MSC osteogenesis is
different between males and females.

Tissue Sources
In bone tissue engineering, bone marrow, adipose tissue, dental
pulp, and umbilical cord are widely used as tissue sources of
MSCs (Seong et al., 2010). The osteogenic differentiation abilities
of MSCs from these tissues are heterogeneous. Above all,
comparisons are often made between the osteogenesis of
BMSCs and ADSCs. Lotfy et al. (2014) compared the
characteristics of rat-derived BMSCs and ADSCs and found
that BMSCs were more prone to differentiate into osteocytes
after 2–3 weeks of induction culture than ADSCs. Similarly,
Zaminy et al. (2008) studied the effects of melatonin on the
osteogenic differentiation of rat-derived MSCs and concluded
that BMSCs had greater potential for osteogenic differentiation
than ADSCs, as determined by ALP activity and matrix
mineralization assays. In addition, Lee et al. (2017) seeded
dog-derived BMSCs and ADSCs on three-dimensional (3D)-
printed polycaprolactone/tricalcium phosphate (PCL/TCP)
scaffolds. When the composites were subjected to an in vitro
osteogenic differentiation assay, the expression of genes
associated with ossification was higher in BMSCs. These
results indicate that BMSCs may represent a better candidate
for bone tissue engineering than ADSCs regarding MSC
osteogenesis. Dental pulp-derived MSCs (DPSCs), originating
in the neural crest, are characterized by a fast proliferation rate
and the capacity to differentiate into multiple cell lineages and

have been widely used in the regeneration of periodontal bone
defects (Ferro et al., 2014; Amghar-Maach et al., 2019; Lorusso
et al., 2020). Pettersson et al. (2017) compared the osteogenic
differentiation potential of DPSCs with jawbone-derived MSCs
(JBMSCs) in vitro and reported no significant difference in
osteogenesis between them. In other studies, it was
demonstrated that DPSCs possessed a stronger ability to
differentiate into osteoblasts than BMSCs both in vitro and in
vivo (Ito et al., 2011; Jensen et al., 2016; Kumar et al., 2018).
Wharton’s jelly derived MSCs (WJMSCs) appear to be another
good choice for bone regeneration (Liu et al., 2017; Ansari et al.,
2018; Kosinski et al., 2020). The osteogenic commitment in
WJMSCs has been identified and was reported to be poorer
than that in BMSCs and ADSCs (Zajdel et al., 2017; Cabrera-
Perez et al., 2019). On the other hand, WJMSCs have reached a
more advanced stage of immunomodulation action and
proliferation ability, which deserves to be taken into account
for bone tissue engineering (Kalaszczynska and Ferdyn, 2015;
Vieira Paladino et al., 2019).

Expression of Surface Markers
In recent years, increasing evidence has suggested that MSCs
derived from the same tissue source express different surface
markers, which reflect their different origins, statuses, and
osteogenic differentiation potential (Table 1). CD73 is a well-
known surface marker for MSCs in humans and mice. CD73+

mouse BMSCs were proposed to have increased “stemness”
and greater osteogenic differentiation potential in vitro than
CD73− mouse BMSCs. When used to repair bone fractures in
mice, CD73+ BMSCs also displayed an enhanced ability to
promote fracture healing (Kimura et al., 2021). Gullo and De
Bari (2013) used the combination of CD73 and CD39
(ectonucleoside triphosphate diphosphohydrolase 1,
ENTPD1) to purify human synovial membrane-derived
MSCs (SMSCs) and confirmed that CD73+CD39+ SMSCs
exhibited significantly greater chondro-osteogenic potency
than CD73+CD39− SMSCs. CD200 is another potential new
marker of BMSCs. Kim H. J. et al. (2018) evaluated the effect of
CD200 on the cellular function of human BMSCs and found
that CD200 overexpression significantly enhanced the
osteogenic differentiation potential of BMSCs. In addition,
Kouroupis et al. (2020) revealed that the expression of CD10
was associated with improved differentiation potential of
human ADSCs. Ding et al. (2020) demonstrated that both
CD10+ and CD10− human adventitial cells exhibited
phenotypic features of MSCs. Compared with their CD10−

counterparts, CD10+ adventitial cells showed higher
proliferation ability and osteogenic differentiation potential.
CD271, also known as low-affinity nerve growth factor
receptor (LNGFR), has been regarded as an important
surface protein of MSCs (Zha et al., 2021). Quirici et al.
(2002) investigated the expression and function of CD271
in human BMSCs and demonstrated that CD271+ BMSCs
exhibited greater CFU-F activity and adipogenic and
osteogenic differentiation abilities, indicating that CD271
might be a “stemness” marker of BMSCs. Similar results
were found in mouse and human ADSCs (Yamamoto et al.,
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2007; Barilani et al., 2018). However, it was challenged by
Mikami and his colleagues, who found that the expression of
CD271 could inhibit multipotential differentiation of DPSCs,
including osteogenic differentiation (Mikami et al., 2011).
These findings indicate that the effects of CD271 on
different types of MSCs might be different or even opposite.
In addition, CD271 expression is not consistently detectable in
MSCs from fetal tissues, such as Wharton’s jelly, umbilical
cord blood, and amniotic fluid, indicating that CD271 might
not be an appropriate marker for the identification of
functional subpopulations in fetal tissue-derived MSCs
(Barilani et al., 2018). CD146, also known as melanoma cell
adhesion molecule, is an adhesion molecule belonging to the
immunoglobulin superfamily and is expressed in various types
of MSCs. Ulrich et al. (2015) investigated the effect of CD146
on osteogenic differentiation of human placenta-derived
MSCs (PDSCs) and demonstrated that CD146+ PDSCs had
higher osteogenic differentiation and mineralized extracellular
matrix production abilities than CD146- PDSCs in vitro,
indicating that CD146+ PDSCs might present a PDSC
subpopulation that was predetermined to differentiate into
osteoblasts. However, Paduano et al. (2016) found that
CD146Low human periapical cyst MSCs (PCy-MSCs)
displayed stronger osteogenic differentiation potential than
CD146High PCy-MSCs. This variation might be attributed to
the different types of MSCs they used. The role of CD146 in
MSC osteogenesis requires more comprehensive and accurate
research.

CULTURE CONDITIONS

In general, MSCs isolated from tissues need to be cultured and
expanded in vitro before in vivo transplantation. The
improvement of culture conditions might be an efficient
approach to enhance MSC osteogenesis. It is well recognized
that conventional 2D culture is unable to mimic the in vivo 3D
MSC niche, which is characterized by cell-cell and cell-ECM
interactions. The drawback of 2D culturing methods has
currently promoted the development of 3D MSC culture. In
an effort to more closely recapitulate the in vivo
microenvironment, both cellular properties and functions of
MSCs, such as phenotype, differentiation ability and
immunomodulatory action, can be preserved or enhanced by
3D culturing technologies (Kouroupis and Correa, 2021). Recent
studies have compared the osteogenic differentiation abilities of
MSCs in 2D monolayers and 3D culture systems. It was
demonstrated that MSCs in 3D culture systems (e.g., scaffolds
and microcarriers) exhibited spread morphology and were more
prone to differentiate into osteoblasts than MSCs in 2D cultures,
indicating that 3D cultures might be more suitable for bone tissue
engineering (Brennan et al., 2015; Shekaran et al., 2015). In
addition, flow perfusion culture has been shown to enhance
osteoblastic differentiation and ECM deposition of MSCs
compared to static culture (Holtorf et al., 2005). Mitra et al.
(2017) cultured human BMSCs in macroporous scaffolds in
direct perfusion bioreactors and found that continuous
dynamic culture conditions could significantly promote BMSC

TABLE 1 | Osteogenic differentiation potential different MSC subpopulations.

MSC
subpopulations

Control Species Analysis methods Results References

BMSCs transfected
with CD200

BMSCs transfected
without interposed
gene

human ALP staining and gene expression and
protein production of Runx2

CD200 expression increased the levels of ALP
activity and Runx2 expression in BMSCs

Kim et al.
(2018a)

CD73+ BMSCs CD73− BMSCs mouse Alizarin red staining, bone fracture
repair in vivo

CD73+ BMSCs exhibited enhanced potentials
for osteogenic differentiation in vitro and fracture
repair in vivo

Kimura et al.
(2021)

CD73+ CD39+ CD73+ CD39− SMSCs human Alizarin red staining and expression of
osteoblast genes

CD73+ CD39+ Gullo and De
Bari, (2013)SMSCs SMSCs showed increase in calcium

accumulation and gene expression of Runx2
CD10High ADSCs ADSCs human Alizarin red staining CD10High ADSCs exhibited higher level of

calcium accumulation
Kouroupis et al.
(2020)

CD271+ BMSCs PA BMSCs human Alizarin red S staining CD271+ BMSCs had a larger mineralized area Quirici et al.
(2002)

CD271+ ADSCs CD271- ADSCs mouse Alizarin red S staining CD271+ ADSCs were more prone to form
calcium nodule after osteogenic differentiation

Yamamoto et al.
(2007)

human Barilani et al.
(2018)

CD271+ DPSCs CD271- DPSCs human ALP staining, Ca2+ level, and genes
expression of Runx2, Osterix,
Osteocalcin, and Nestin

ALP activity and Ca2+ levels were lower in
CD271+ DPSCs; no difference in the expression
level of osteogenic genes was detected

Mikami et al.
(2011)

CD146+ PDSCs CD146- PDSCs human von Kossa staining CD146+ PDSCs exhibited a higher level of
spontaneous ossification

Ulrich et al.
(2015)

CD146Low PCy-
MSCs

CD146High PCy-MSCs human Alizarin red staining and expression of
osteoblast genes

calcium accumulation and genes expression of
Runx2 and Osteopontin were greater in the
CD146Low than in CD146High PCy-MSCs

Paduano et al.
(2016)

BMSCs, bone marrow-derived mesenchymal stem cells; ALP, alkaline phosphatase; SMSCs, synovial membrane-derived mesenchymal stem cells; ADSCs, adipose tissue-derived
mesenchymal stem cells, PA, plastic adherent; DPSCs, dental pulp-derived mesenchymal stem cells; PDSCs, placenta-derived mesenchymal stem cells; PCy-MSCs, periapical cyst
mesenchymal stem cells.
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osteogenic differentiation, as shown by enhanced osteogenic gene
expression and ectopic bone formation. In addition, MSC 3D
spheroids have shown increased osteogenic differential potential
compared to monolayer cultured MSCs (Griffin et al., 2017; Kim
et al., 2019). Saleh et al. (2016) revealed that Wnt signaling was
activated in MSC spheroids but not 2D cultured MSCs during
osteogenic differentiation. Interestingly, Sankar et al. (2019) used
a 3D double strategy for osteogenic differentiation of human
ADSC spheroids on patterned poly (lactic-co-glycolic acid)
(PLGA)/collagen/hydroxyapatite (HA) electrospun fiber mats
and found that the osteogenic differentiation of ADSCs was
significantly enhanced even in the absence of osteogenic
induction culture medium.

Several studies have shown that aged MSCs after long-term
in vitro expansion exhibit decreased osteogenic differential
potential (Yu et al., 2014; Bertolo et al., 2016; Yang et al.,
2018). Senescence is associated with the impaired
differentiation ability of late-passage MSCs, which show
decreased colony-forming unit (CFU) activity, reduced
proliferation capacity, and increased senescence-associated β-
galactosidase activity and gene expression (Bertolo et al., 2016;
Grotheer et al., 2021). Thus, it is suggested that MSCs at early
passages are more appropriate candidates for bone tissue
engineering. Oxidative stress is another factor that could
impact the behaviors of MSCs, including their proliferation,
differentiation and immunomodulation functions. Increased
reactive oxygen species (ROS) usually promote MSC
adipogenesis but impair MSC osteogenesis (Denu and
Hematti, 2016). Binder et al. (2015) indicated that reduced
serum (5%) and hypoxic conditions (5%) in culture medium
could enhance osteogenic differentiation in human BMSCs.
Similar effects of hypoxia were also found in human PDSCs
(Gu et al., 2016) and ADSCs (Fotia et al., 2015). However, MSCs
exposed to excessively low oxygen content (1%) demonstrated
decreased osteogenic differentiation capacity, which is associated
with increased expression of hypoxia inducible factors (HIFs) and
Notch1 (Tamama et al., 2011; Yang et al., 2019). In addition, it has
been proposed that MSC osteogenesis is influenced by the glucose
content in the culture medium. Aswamenakul et al. (2020)
confirmed that human BMSC osteogenesis was reduced under
high glucose conditions (10, 25, and 40 mM), as revealed by
Alizarin red S staining and ALP activity assays.

BIOPHYSICAL STIMULATION

Physical stimulation has been proposed to affect MSC fate and
differentiation by initiating or strengthening biochemical
signaling (Wang and Chen, 2013; Huang et al., 2015). The
effects of mechanical stimulation, electric field, and
electromagnetic field on MSC osteogenesis have been widely
investigated over the past few years.

Mechanical Stimulation
Since the promotion of exercise on bone repair and
reconstruction in clinical settings is well recognized, the effect
of mechanical stimulation on MSC osteogenesis is worth

exploring. Hu et al. (2013) conducted a study in which they
delivered noninvasive dynamic hydraulic stimulation (DHS) to
rat mid-tibiae and found that BMSCs in the stimulated tibiae were
induced into osteoblasts in a time-dependent manner. In
addition, Gharibi et al. (2013) seeded human BMSCs onto
calcium phosphate scaffolds and subjected the composite to an
appropriate pulsating compressive force (5.5 ± 4.5 N at a
frequency of 0.1 Hz). Gene expression analysis showed that
Runx2 was significantly upregulated after 22 h of loading.
Kang et al. (2012) examined the impact of mechanical strain
on the osteogenic differentiation of human umbilical cord-
derived MSCs (UCMSCs) and revealed that mechanical strain
(5% or 10% strain magnitude, 5 s of stretch and 15 s of relaxation)
decreased the protein expression of MSC surface antigens, such as
CD73, CD90, and CD105, while increasing the gene expression of
osteogenic markers, such as osteopontin (OPN), osteonectin (ON),
and type I collagen (COL I). Similar results were reported by Li
and his coworkers in rat BMSCs, who demonstrated that the gene
expression of Runx2 and Osx and the production of COL I were
more strongly induced in cells subjected to mechanical strain (5%
strain magnitude, 6 h/day, 10 times/min) compared to those in
unstrained groups (Li et al., 2015). The underlying mechanism by
which mechanical stimulation regulates MSC osteogenesis has
been investigated. It has been proposed that cell–cell and cell-
ECM adhesion is the major structure for MSCs to sense
mechanical stimulation. Integrin is a transmembrane protein
on MSCs and acts as a bridge between the ECM and
intracellular actomyosin cytoskeleton in mechanical
transmission, resulting in the activation of downstream
signaling pathways (Sun et al., 2021). Qi et al. (2008) indicated
that mechanical strain was able to promote BMSC osteogenesis
through upregulation of the transcription factors core binding
factor alpha 1 (Cbfa1) and v-ets erythroblastosis virus E26
oncogene homolog 1 (Ets-1). In addition, Chen et al. (2018)
demonstrated that mechanical stretching could improve MSC
osteogenic differentiation through activation of the AMP-
activated protein kinase (AMPK)-silent information regulator
type 1 (SIRT1) signaling pathway.

Electrical Stimulation
Electrical stimulation has emerged as a useful tool to enhance
MSC osteogenic differentiation and bone healing. It was found
that exposing human BMSCs to an appropriate electrical current
(10 or 40 mA, 10 Hz, sinusoidal waveform, 6 h/day) resulted in
enhanced osteogenic differentiation, as evidenced by significantly
increased expression of the osteogenic marker genes Runx2, Osx,
OPN and osteocalcin (OCN) (Creecy et al., 2013). Similar findings
were achieved by Zhang and his coworkers in human ADSCs
(Zhang et al., 2018). Eischen-Loges et al. (2018) reported that
treatment with electrical stimulation (100 mV/mm, 1 h/day)
significantly promoted rat BMSC osteogenic differentiation,
and this effect lasted a maximum of 7 days after electrical
stimulation was discontinued. Furthermore, Leppik et al.
(2018) combined ADSCs, β-TCP scaffolds and electrical
stimulation (1.2 V, 80 mAh) to treat large bone defects in rats
and found that bone healing was more strongly improved in the
electrically stimulated group than in the control group.
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Interestingly, Hou et al. efficiently initiated the process of MSC
osteogenic differentiation by optimizing electrical stimulation
parameters based on the calcium spike patterns of MSCs (Hou
et al., 2019). The effects of electrical stimulation on cellular
properties and functions are known to be achieved through
induction of conformational changes in voltage-sensitive
proteins, reversible pore formation in plasma membranes,
Ca2+ influx, and activation of various signaling pathways
(Thrivikraman et al., 2018; Ning et al., 2019). It has been
demonstrated that electric fields were able to induce activation
of the wnt/β-catenin signaling pathway and BMP signaling
pathway (Zhang et al., 2014; Kwon et al., 2016). However,
how electrical cues are transferred into intracellular molecular
signals that result in MSC osteogenic differentiation remains
unclear and needs further investigation.

Magnetic Stimulation
Magnetic stimulation is another physical approach to regulate
MSC osteogenic differentiation. Kim et al. (2015) evaluated the
effects of static magnetic field treatment on the osteogenic
differentiation of human BMSCs. Their results demonstrated
that a moderate intensity (15 mT) magnetic field promoted
osteoblastic differentiation in BMSCs, as determined by
increased ALP activity, mineralized nodule formation, calcium
content, and expression of osteogenic markers, such as Run×2,
Osx, OCN, ON, OPN, COL I and bone sialoprotein 2 (BSP2) In
another study, Ceccarelli et al. investigated the effects of pulse
electromagnetic field (PEMF) (magnetic field intensity:
2—0.2 mT, electric tension amplitude: 5—1 mV, 75—2 Hz,
pulse duration: ~1.3 msec) exposure on the osteogenic
differentiation of human BMSCs and ADSCs. Bone-related
ECM deposition was more strongly induced in BMSCs than in
ADSCs, indicating that the promoting effect of PEMFs might be
more efficient in BMSCs (Ceccarelli et al., 2013). It has been
proposed that cells respond to magnetic stimulation with changes
in cytoskeleton remodeling, membrane potential, ion channel
gating, and targeted gene expression (Zablotskii et al., 2018).
However, the underlying mechanism by which magnetic
stimulation promotes MSC osteogenic differentiation has not
been revealed and needs to be studied in the future.

CROSSTALK WITH MACROPHAGES AND
ENDOTHELIAL CELLS

Macrophages, key cells of innate immunity, can be found in
nearly all tissues during inflammation and infection. The
important roles of macrophages in the secretion of anti-
inflammatory factors and the recruitment and regulation of
the differentiation of MSCs during bone healing have been
revealed in recent years (Pajarinen et al., 2019). In response to
environmental signals, macrophages can undergo polarization
into the M1 phenotype (related to the inflammatory response)
and M2 phenotype (related to inflammation resolution and tissue
regeneration) (Sinder et al., 2015; Pajarinen et al., 2019). Gong
et al. utilized cocultures of mouse macrophages and BMSCs to
investigate the effects of macrophages with different phenotypes

on mediating MSC osteogenic differentiation. They found that
osteogenic markers, ALP activity, and bone mineralization were
increased in MSCs cocultured with M2 macrophages but
decreased in MSCs cocultured with M1 macrophages. The
effects might be regulated by M2 macrophage-derived pro-
regenerative cytokines, such as TGF-β, VEGF, and IFG-1, and
M1 macrophage-derived inflammatory cytokines, such as IL-6,
IL-12, and TNF-α (Gong et al., 2016). Similar results were
obtained by Zhang and his coworkers in human ADSCs
(Zhang et al., 2017). It was suggested that the soluble proteins
BMP-2, -6 and oncostatin M (OSM) produced by M2
macrophages and related signaling pathways might be
involved in the promotion of MSC osteogenic differentiation
(Zhang et al., 2017; Wang et al., 2021). In addition, Luo et al.
(2020) indicated that macrophages stimulated BMSC
osteogenesis by reducing intracellular ROS, which was
increased during osteogenic differentiation. However,
researchers found that in a 3D coculture system, both M1 and
M2 macrophages inhibited the osteogenic differentiation of
human ADSCs (Tang et al., 2019). The conflicting conclusions
might be due to the use of different cell ratios, culture times and
means, and polarization methods for macrophages. Therefore,
the role of macrophages in the osteogenic differentiation of MSCs
needs to be investigated more comprehensively and accurately.

It is well recognized that angiogenesis is mandatory for
successful bone repair. The crosstalk between endothelial cells
and MSCs has been studied in the past decade. The coculture of
endothelial progenitor cells and MSCs is proposed to have a
synergistic effect in terms of angiogenesis and bone formation, in
which endothelial progenitor cells promote osteogenesis, and
conversely, MSCs foster angiogenesis (Bouland et al., 2021).
Gershovich et al. (2013) evaluated the effects of coculturing
BMSCs and human umbilical vein endothelial cells on BMSC
osteogenic differentiation and found that ALP activity, collagen
production, and calcium nodule formation were significantly
promoted. Chen et al. cocultured rabbit endothelial progenitor
cells and peripheral blood-derived MSCs (PBSCs) on a 3D
calcium phosphate bioceramic scaffold and found that the
expression of osteogenic- and vascular-related genes was
increased in vitro. When the cell-scaffold construct was used
to repair large bone defects in rabbits, both new bone and
promoted vascularization were observed in vivo (Chen et al.,
2019). Similar results were obtained by Liang et al. (2016), who
utilized cocultures of rat EPCs and BMSCs to treat alveolar bone
defects in rats. The underlying mechanism by which endothelial
cells regulate MSC osteogenic differentiation has been partly
revealed. It has been proposed that endothelial cells directly
interact with MSCs and regulate MSC osteogenesis via gap
and adherence junctions (Bouland et al., 2021). In addition,
endothelial cells can promote MSC osteogenic differentiation
through the secretion of growth factors, such as BMP-2,
endothelin-1 (ET-1), and insulin-like growth factor (IGF),
which interact with specific membrane receptors on MSCs
(Grellier et al., 2009). Xu et al. (2020) indicated that the
MAPK signaling pathway was involved in the regulation of
endothelial progenitor cells on MSC osteogenic differentiation.
They found that silencing the expression of p38 resulted in
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decreased osteogenic gene expression, ALP activity, and calcium
deposition in cocultured MSCs.

SCAFFOLD

The scaffold is an essential component of bone tissue
regeneration, which supports MSC adhesion and survival by
providing a 3D structure and forming the cell niche. In
addition, both the composition and structure of scaffolds can
regulate MSC fate and behaviors, such as cell migration,
proliferation and differentiation (Garcia-Sanchez et al., 2019).
Thus, culturingMSCs onto scaffolds may be an efficient approach
to improve the engraftment of MSCs and the therapeutic effects
of MSC-based bone tissue engineering. Designing an appropriate
scaffold for bone healing has been a focus of research in bone
tissue engineering, in which the stimulatory effect on MSC
osteogenesis is an important aspect (Table 2).

The composition is a key factor that needs to be taken into
account when designing scaffolds to enhance MSC osteogenesis.
Many different materials have been applied to fabricate scaffolds
in bone tissue engineering, including natural and synthetic
materials. Natural materials, such as collagen, ECM, calcium

phosphate, chitosan, hyaluronic acid, silk fibroin and alginate,
are widely used due to their high biocompatibility and
biodegradability (Tang et al., 2021). Of these, collagen, ECM
and calcium phosphate are probably most commonly used
because of their abilities to replicate the properties of the bone
microenvironment and to promote MSC osteogenic
differentiation (Curry et al., 2016; Dong and Lv, 2016). For
example, Salgado et al. (2019) developed an HA/collagen
scaffold that was modified with phosphorylated amino acids.
The results of ectopic bone formation analysis showed that the
scaffold could promote osteogenic differentiation and bone-
related ECM deposition of human BMSCs. In another study,
Caliari and Harley (2014) endowed the collagen/
glycosaminoglycan scaffold with the ability to promote
osteogenic differentiation of human BMSCs by incorporation
of a calcium phosphate mineral phase. However, their
applications in bone tissue engineering are limited by
unsatisfactory mechanical strength and rapid degradation rate.
Thus, they are often used in conjunction with synthetic polymers,
which possess low biocompatibility but sufficient mechanical
strength. For example, Silva et al. (2020) coated human
BMSC-derived ECM on a 3D polycaprolactone (PCL) scaffold
and demonstrated that the composite scaffold was able to

TABLE 2 | The effects of scaffolds on MSC osteogenic differentiation.

Aspects Scaffold features MSCs Effects on MSC
osteogenic differentiation

References

composition nanoHA/collagen scaffold modified with phosphorylated
amino acids

human
BMSCs

BMSCs underwent osteogenic differentiation in vitro in
the absence of osteogenic inductor and ectopic bone
formation in vivo

Salgado et al.
(2019)

collagen/glycosaminoglycan scaffold incorporated with a
calcium phosphate mineral phase

human
BMSCs

the scaffold promoted osteogenic differentiation and
mineral deposition of BMSCs within osteogenic
induction media

Caliari and Harley,
(2014)

PCL scaffold coated with human BMSCs derived ECM human
BMSCs

BMSCs seeded on the scaffold exhibited an increase in
calcium deposition and expression of bone-specific
genes

Silva et al. (2020)

gelatin scaffold incorporated with magnesium calcium
phosphate

rat
BMSCs

BMSCs exhibited enhanced osteogenic differentiation,
as shown by increased ALP activity

Hussain et al.
(2014)

PLGA microspheres with tunable Mg2+ release rat the scaffold promoted BMSC osteogenic differentiation
in vitro and resulted in significant bone regeneration in
rats with critical-sized calvarial defects

Yuan et al. (2019)
BMSCs

structure calcium phosphate scaffolds with hemispherical
concavities of various sizes

human
ADSCs

ADSCs seeded on scaffolds with 440 and 800 μm
concavities, but not with 1800 μm concavities, showed
enhanced osteogenic differentiation

Urquia Edreira
et al. (2016)

3D printed PPF porous scaffolds human
BMSCs

scaffolds with ordered cubic pores were more suitable
for the promotion of BMSC osteogenic differentiation
than that with cylindrical pores

Ferlin et al. (2016)

3D printed PCL/DCM scaffolds with micro/nanosurface
pores

human
BMSCs

BMSCs displayed increased ALP activity and
osteocalcin production in osteogenic medium

Prasopthum et al.
(2019)

barium titanate nanoparticle/alginate scaffold human
DPSCs

DPSCs exhibited higher levels of BMP-2 and ALP
genes expression

Amaral et al.
(2019)

bioactive
molecule delivery

chitosan oligosaccharide/heparin nanoparticles-modified
chitosan-agarose-gelatin scaffold with sustainable BMP-2
release

mouse
BMSCs

the scaffold induced BMSC differentiation towards
osteoblasts in the absence of osteogenic media

Wang et al. (2018)

titanium dioxide scaffold with alginate hydrogel containing
simvastatin

human
ADSCs

ADSCs seeded on the scaffold showed increased
expression of osteogenic genes and proteins

Pullisaar et al.
(2014)

β-TCP scaffold containing human-induced pluripotent
stem cell-derived MSC-derived exosomes

human
BMSCs

the scaffold increased the levels of ALP activity and
calcium deposition of BMSCs in osteogenic media

Zhang et al. (2016)

HA, hydroxyapatite; BMSCs, bone marrow-derived mesenchymal stem cells; PCL, polycaprolactone; ECM, extracellular matrix; ALP, alkaline phosphatase; PLGA, poly (lactic-co-glycolic
acid), ADSCs, adipose tissue-derived mesenchymal stem cells; PPF, Poly Propylene Fumarate), DCM, dichloromethane; DPSCs, dental pulp-derived mesenchymal stem cells; BMP-2,
bone morphogenetic protein-2, β-TCP β-tricalcium phosphate.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8248128

Zha et al. Strategies for MSC Osteogenic Differentiation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


modulate BMSC behavior in favor of differentiation into
osteoblasts. Recently, the application of biodegradable metals
and their alloys has shown broad prospects in bone fracture
healing. Increasing evidence demonstrates that calcium (Ca) and
magnesium (Mg) ions are able to promote the osteogenic
differentiation of MSCs (Park et al., 2019; Hohenbild et al.,
2021). Hussain et al. (2014) found that rat BMSCs seeded on
gelatin scaffolds incorporating magnesium calcium phosphate
exhibited enhanced osteogenic differentiation, as shown by
increased ALP activity. Yuan et al. (2019) developed injectable
PLGA microspheres with tunable Mg2+ release and confirmed
that they were able to promote rat BMSC osteogenic
differentiation in vitro and result in significant bone
regeneration in vivo.

In addition, the microstructure of the scaffold is also proposed
to have an impact on the osteogenic differentiation of MSCs. The
porosity and appropriate pore size of the scaffold were considered
influencing factors for MSC osteogenesis (Kasten et al., 2008).
Urquia Edreira et al. (2016) conducted a study in which they
cultured human ADSCs on calcium phosphate scaffolds with
hemispherical concavities of various sizes (440, 800 or 1800 μm).
They revealed that ADSCs seeded on scaffolds with 440 and
800 μm concavities, but not with 1800 μm concavities, exhibited
enhanced osteogenic differentiation. Ferlin et al. (2016)
investigated the impact of pore geometries on human BMSC
osteogenic differentiation and found that osteogenic marker
expression at early timepoints was increased in BMSCs
cultured on scaffolds with cylindrical pores, while BMSCs
cultured in scaffolds with ordered cubic pores expressed late
osteogenic markers, suggesting that ordered cubic pores might be
more suitable for the promotion of MSC osteogenic
differentiation. However, the underlying mechanism is not
fully understood and needs further investigation. In addition,
based on the advancement of manufacturing technology, 3D
printing technology has been applied to fabricate porous
scaffolds with 3D architecture, good biocompatibility, and
bone induction function (Wang et al., 2020). For example,
Prasopthum et al. fabricated 3D printed polymer scaffolds
with micro/nanosurface pores (0.2–2.4 μm) and found that
they were able to promote human BMSC osteogenic
differentiation in the absence of soluble differentiation factors
(Prasopthum et al., 2019). Recently, the application of
nanomaterial-based scaffolds in bone tissue engineering has
also received much attention, showing improved bone
regeneration effects compared with conventional scaffolds. It
has been proposed that nanomaterials can promote MSC
osteogenic differentiation due to their specific chemical,
physical and mechanical properties (Zhang et al., 2021). The
commonly used nanomaterials in bone tissue engineering include
metals and their derivatives, bioactive ceramics, carbon
nanomaterials and polymers (Ye et al., 2020). For example,
Las Amaral et al. (2019) designed a barium titanate
nanoparticle/alginate scaffold that exhibited highly
interconnected pores and surface nanotopography. The
osteogenic differentiation of human DPSCs seeded on it was
enhanced, as indicated by upregulated gene expression of BMP-2
and ALP.

Another strategy for inducing MSCs into osteoblasts is to
design scaffolds containing spatially graded bioactive molecules.
For example, Wang et al. (2018) constructed a chitosan-agarose-
gelatin scaffold that was modified with chitosan oligosaccharide/
heparin nanoparticles, which could sustainably release BMP-2
and induce mouse BMSC differentiation towards osteoblasts.
Pullisaar et al. (2014) coated a titanium dioxide (TiO2)
scaffold with alginate hydrogel containing simvastatin and
found that human ADSCs seeded on it were more strongly
induced into osteoblasts, as demonstrated by increased
expression of osteogenic genes and proteins, compared with
TiO2 scaffolds without simvastatin. Recently, exosomes have
been introduced into bone tissue engineering, which also
shows an osteogenic induction effect on MSCs (Qi et al., 2016;
Yahao and Xinjia, 2021). Zhang et al. (2016) loaded human-
induced pluripotent stem cell-derived MSC-derived exosomes on
β-TCP scaffolds and confirmed that the composite was able to
efficiently enhance the osteogenic differentiation of human
BMSCs.

CONCLUSION AND PERSPECTIVE

MSCs represent one of the most promising cell types in bone
tissue engineering, in which researchers are always making
efforts to guide MSCs to efficiently differentiate toward
osteoblasts. In the present review, we provide an overview
of recently developed strategies for enhancing osteogenic
differentiation of MSCs, including selection of optimal cell
origin, improvement of culture conditions, application of
biophysical stimulations, crosstalk with M2 macrophages
and endothelial cells, and fabrication of appropriate
scaffolds. Although significant advances in the
development of methods for promotion of MSC osteogenic
differentiation have been achieved, there are still some issues
that need to be resolved. First, numerous strategies display
positive effects in promoting MSC osteogenic differentiation.
However, the efficiency of different methods has not yet been
compared. In addition, the safety and ease of applying these
approaches also need to be considered before making a
choice. Second, the in vivo microenvironment is quite
different from that in vitro. Thus, the efficiency and safety
of these methods should be evaluated in vivo. Third, the
underlying mechanisms by which several methods regulate
MSC osteogenic differentiation, such as how the presence of
macrophages and magnetic fields increase MSC osteogenesis,
remain unclear. Future research should focus on the signaling
pathways leading to the response of MSCs to osteogenic
stimulation.
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