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Synopsis
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and
physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant
metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation
and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming
clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach.
Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung
cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that
EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly
termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs
(MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous
processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and
developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation,
the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes
our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to
understand how CD147 may influence MMP activity.
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DISCOVERY, AND GENE AND PROTEIN
STRUCTURE OF CD147/EMMPRIN/
BASIGIN

Cluster of differentiation 147 (CD147) was initially identified in
various species and tissues as the antigens RET-PE2 [1], CE9
[2] and OX-47 [3] in rats, antigen gp42 [4] and basigin [5] in
mice, antigen HT7 [6], neurothelin [7] and antigen 5A11 [8] in



Abbreviations: AnxA2, Annexin II; Bsg, basigin; CD147, cluster of differentiation 147; CGI, CpG island; CIE, clathrin-independent endocytosis; CspA, cyclosporine A; Cyp60, cyclophilin
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chickens, and human leucocyte activation-associated antigen M6
[9], blood group Oka antigen [10], hepatoma-associated antigen
HAb18G [11] and extracellular matrix metalloproteinase inducer
(EMMPRIN) [12] in humans.

In the mid to late 1980s, the Biswas laboratory characterized a
factor present on lung carcinoma cell membranes that stimulated
MMP-1 production by fibroblasts. By co-culture techniques, they
initially discovered a protein with diverse molecular masses that
was present on the tumour cell surface and in conditioned media,
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Figure 1 Protein domain structure of CD147 variants
(A) Extracellular domains identified in each CD147 variant and their expression/localization patterns. D0: retina-spe-
cific domain; D1: IgC2 domain; D2: IgI domain. N-linked glycosylations are indicated by red lines attached to domains.
(B) Amino acid sequence of human CD147-2. Each domain of CD147 is specified by the following underline colour: signal
sequence (purple), IgC2 domain (orange), linker region (black), IgI domain (green), TM domain (blue) and cytoplasmic
domain (red). The linker, TM and cytoplasmic regions are highly conserved but the Ig domains are variable among species.
Highly conserved cysteine residues, asparagine N-glycosylation sites and TM glutamate residue are indicated by asterisks,
underlined bolded letters and exclamation point respectively. Residue-specific binding sites for cyclophilin-A (CypA) and
Cyp60 are indicated by parentheses.

which functioned as a tumour cell-derived collagenase stimulat-
ory factor, thus named TCSF [13–15]. In addition to MMP-1 stim-
ulation, TCSF was found to promote increased message and pro-
tein levels of MMP-2 and MMP-3 and was renamed EMMPRIN
to denote a more global role in regulating MMPs [12,16]. It has
been demonstrated that the aforementioned proteins are identical
and now are commonly termed CD147/emmprin/Bsg, though
some investigators still employ earlier nomenclature [9,17,18].

CD147, then termed Bsg, was originally cloned from F9 em-
bryonal carcinoma cells as a receptor for Lotus tetragonolobus
agglutinin, which binds sialyl Lewis X [5]. The human gene,
BSG, is located on chromosome 19 at p13.3 [19] and contains
10 exons [20,21], whereas in mice bsg is localized to chromo-
some 10 [22–24]. BSG encodes four variants through alternat-
ive promoters and splicing [20,21], termed CD147/Bsg-1, -2, -3
and -4: a retina-specific variant containing three Ig-like domains
(CD147/Bsg-1) [25,26], two variants containing a single Ig-like
domain (CD147/Bsg-3 and -4) [20,21] and CD147/Bsg-2, the
most abundant and best characterized isoform, which contains
two Ig-like domains ( Figure 1A). Hereafter CD147/Bsg-2 will
be referred to as CD147 unless specified otherwise. Sequence
analysis demonstrated that CD147 is a single-chain type I trans-
membrane (TM) protein and a member of the immunoglobulin

superfamily (IgSF). The human mRNA transcript encodes a 269
amino acid protein composed of a 21 amino acid signal sequence,
a 186 residue-long extracellular portion consisting of two Ig-like
domains at the N-terminus, a 21 amino acid TM domain and a 41
residue cytoplasmic domain at the C-terminus [27] ( Figure 1B).

CD147 has homology to both the MHC II β-chain and Ig vari-
able domain (V); this has led some investigators to speculate that
CD147 may be an evolutionary intermediate between a primor-
dial Ig form and MHC II-β chain-like and V domain-containing
molecules [3–5,17,28]. In line with this, high resolution crys-
tallography revealed that CD147 contains a N-terminal constant
2-set arrangement (IgC2) domain and a membrane proximal in-
termediate set (IgI) domain that are organized in a unique manner,
distinguishing it from other IgSF proteins [29].

The protein sequence shows varying degrees of conservation
across several species, especially in the extracellular domains,
but the linker sequence between the Ig-like domains, the cysteine
residues, asparagine glycosylation sites, TM domain and cyto-
plasmic domain demonstrate strong homology [3,6,23,29,30].
Interestingly, the highly conserved regions of CD147 contain
distinctive structural characteristics, such as a flexible 5-residue
linker domain that has been shown to provide CD147 a great
deal of domain mobility, possibly allowing the IgC2 domain to
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alter its orientation to interact with ligands or adjacent binding
partners [29]. The TM domain contains a uniquely-embedded
glutamic acid residue as well as a leucine zipper motif [18]. Pro-
teins with these characteristics have been shown to oligomerize
into multi-protein complexes and are often involved in cell sig-
nalling events, such as immune cell receptor complexes [31].
Proclivity for homo- or hetero-oligomerization may be due to the
combination of a polyleucine-rich TM domain with an embedded
glutamate residue, which promotes strong interactions between
α-helices, possibly via hydrogen bonding [32].

The predicted molecular mass of CD147 is 27–29 kDa, yet
many investigators found that CD147 migrates between 31 and
65 kDa with western blotting. This variance has been attrib-
uted to differential glycosylation at three conserved asparagine
(N)-glycosylation sites, Asn44, Asn152 and Asn186 [5,28]. Stud-
ies with glycosylation inhibitors and specific lectins revealed
that approximately 50 % of the mass of CD147 is due to car-
bohydrate side groups bearing β1,6-branched, polylactosamine-
type sugars, fucosylations, Lewis X epitopes and sialylations
[33–37]. Furthermore, site-directed mutagenesis at each of the
N-glycosylation sites demonstrated a relatively equal decrease in
the molecular mass, suggesting glycosylation at each attachment
site may be equally proportioned [33].

CD147 glycoforms are characterized as low-glycosylated
(LG) or high-glycosylated (HG), representing ∼32 kDa and
∼45–65 kDa respectively [33]. LG-CD147 contains high-
mannose carbohydrate chains, whereas HG-CD147 contains
branched polylactosamine chains that have been processed
by Golgi-resident N-acetylglucosaminyltransferase V (GnT-V)
[33,37]. Though less characterized, GnT-IV may provide the
branched core structure on CD147 needed for further GnT-V
processing [38].

In further support of a LG- to HG-CD147 precursor–product
relationship, a recent study proposed that LG-CD147 is ineffi-
ciently processed to HG-CD147 in the endoplasmic reticulum
(ER) and that residual unprocessed LG-CD147 is degraded via
ER-associated degradation (ERAD) [39], which is independent
of SEL1, though requires mannose trimming [40]. In contrast,
hepatocellular carcinoma cells exposed to ER stressors, which
induce the unfolded protein response, increased CD147 expres-
sion on the cell surface, thus avoiding ERAD [41]. Why ER
stress increases CD147 surface levels is unclear, but may depend
on the vital role of CD147 in chaperoning nutrient transporters to
the plasma membrane or activating survival pathways by diverse
protein–protein interactions. Site-directed mutagenesis revealed
that N-glycosylation at Asn152 regulates protein quality control,
whereas disruption of other N-glycosylation sites on CD147 had
no effect on surface localization [37]. Thus, some pools of LG-
CD147 may be degraded whereas other efficiently processed
LG-CD147 pools are trafficked to the cell surface to particip-
ate in diverse protein–protein interactions, though to a lesser
extent compared with HG-CD147 [33,42]. Others have demon-
strated that the conversion of LG- to HG-CD147 is regulated by
interactions with caveolin-1 [43], monocarboxylate transporters
(MCTs) [44] or cyclophilin 60 (Cyp60) [45,46]. It is clear that
CD147 is heterogeneously glycosylated across many tissue and

cell types [47] and even shows variations in glycosylation in cell
lines derived from the same tissue of origin [36]. Unraveling the
intricacies of CD147 glycosylation is just beginning and the au-
thors encourage readers to read a recent review by Bai et al. [48]
for further details.

DIVERSE EXPRESSION PATTERNS
AND FUNCTIONS OF CD147 IN
PHYSIOLOGIC AND PATHOLOGIC
CONTEXTS

CD147 is expressed in many epithelial, neuronal, lymphoid and
myeloid cell types [3,9,17,47,49], though as various glycoforms.
Tissue arrays of CD147 expression in normal and cancer tissues
demonstrate that CD147 is mainly restricted to normal tissues of
the reproductive tract, brain, eye and muscle, whereas the major-
ity of malignant cancers have elevated expression [36,50]. It is
clear that CD147 is overexpressed in a variety of cancers [51,52]
and is also widely expressed and diversely functional during
developmental processes, wound healing, nutrient transport, in-
flammation, atherosclerosis, arthritis and microbial pathologies,
as reviewed elsewhere [53–63].

Two of the earliest credited functions of CD147 include MMP
induction [14] and cell recognition during neuronal-glial pattern-
ing and aggregation [8]. Knockout studies in mice revealed that
the majority of CD147-null (bsg− / − ) mice die around the time of
initial blastocyst implantation, though different unknown modi-
fier regions surrounding the CD147 gene may attenuate this death
rate [64,65]. In the rare event that an embryo successfully im-
plants, the offspring are small and usually die before one month
due to difficulty in breathing secondary to interstitial pneumo-
nia. Surviving males are sterile due to defects in spermatogen-
esis [66,67] and null females have problems with fertilization
[65,68]. In addition, CD147-null mice display abnormalities in
spatial learning, memory and sensory perception to painful stim-
uli and noxious odours [69,70], in early retinal function leading
to blindness [71–73], in tooth development [74] and in wound
responses and lymphocyte reactions [55,75].

Evaluation of CD147 function in other model systems
has highlighted additional biological roles. For instance, up-
regulation of CD147 in High Five insect cells induces drastic
changes in the organizational structure of the cytoskeleton, which
is independent of cell–cell contact or exposure to conditioned me-
dia [76]. In Drosophila, depletion of CD147 causes lethality and
specific knockdown in the eye leads to misplaced sub-cellular
organelles in photoreceptor cells [76]. Furthermore, CD147-
depleted flies have misplaced glial cell–photoreceptor interac-
tions and altered synaptic vesicle release [77]; these phenotypes
may be secondary to a conserved YEKRRK sequence in the cyto-
plasmic tail [78]. Thus, data from the knockout models suggest
CD147 has a multitude of functions including regulation of cyto-
skeletal remodelling, assembly of cell–cell interaction modules
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and sub-cellular vesicle distribution that span an array of biologic
functions.

CELLULAR LOCALIZATION AND
VESICULAR TRAFFICKING OF CD147

Although tissue patterns of CD147 expression have been widely
studied, the patterns of expression on a cellular level have not
been described until recently. CD147 was originally identified on
the cell surface with a tendency to localize at cell–cell interfaces
[7,14,79]. As imaging techniques have improved, it is evident
that CD147 also resides in sub-cellular compartments and in ves-
icles released from the cell. A novel study by Eyster et al. [80]
demonstrated that an Arf6-GTPase mutant expressed in HeLa
cells led to enlarged vacuolar-type structures enriched with bulk
membrane clathrin-independent endocytic (CIE) cargo, which in-
cluded CD147, CD44 and CD98. In this study CD147, CD44 and
CD98 rapidly joined recycling tubular endosomes via the juxta-
nuclear endocytic recycling compartment. Additionally, paired
acidic residues in the cytoplasmic tail of CD147 interact with
Hook1, a microtubule-binding protein, which cooperates
with Rab22a in sorting CD147 away from early endosomal an-
tigen 1 (EEA1)-associated vesicles and subsequent transfer to
late endosomes for lysosomal degradation [81]; furthermore,
cell surface expression of CD147 was minimally affected by
up-regulation of membrane-associated RING-CH E3 ubiquitin
ligases, which reduced surface expression of other CIE cargo
members [82]. Rapid intracellular transit of CD147, in contrast
with other CIE cargo, may be due to the dynamic processes this
protein partakes in, such as nutrient flux across the cell membrane
and ECM remodelling. In contrast with these findings, others have
shown that CD147 requires clathrin-dependent sorting to localize
to the basolateral membrane [83,84] and our laboratory showed
that pools of CD147 associate in EEA1-containing vesicles in
breast epithelial cells [85]. It should be noted that the majority of
work describing CD147 trafficking via CIE has been performed
in HeLa cells; thus it is difficult to generalize this process to other
cell types.

Additionally, CD147 can associate with Annexin II (AnxA2), a
multifunctional protein that regulates cytoskeleton organization,
lipid raft dynamics and endo/exocytic trafficking events [86].
This interaction occurs via the extracellular portion of CD147
and may influence AnxA2 phosphorylation, cell motility and
release of CD147 from cells [87–89]. A growing amount of evid-
ence also suggests that CD147–CD147 interactions may lead to
internalization and binding of CD147-3 in uncharacterized cyto-
plasmic vesicles [21,90], though the consequences of these events
are still unknown. Thus, the mechanisms of CD147 sub-cellular
sorting are probably dependent on the tissue type, microenviron-
mental cues and the dynamic cooperation of diverse endocytic
machinery [91].

In addition to plasma membrane and sub-cellular vesicle loc-
alization, CD147 has also been identified in the extracellular mi-

lieu. The initial characterization of CD147 in cancer cells demon-
strated a proportion of CD147 in tumour-conditioned media [14]
and subsequent studies have shown that CD147 is released from
the cell surface in a full length soluble form [92] or a 22-kDa
proteolytic cleavage product not associated with vesicles [93].
Others have provided evidence that CD147 is released in mi-
crovesicles or exosomes, which can interact with distant cells
[94,95]. CD147-associated exosomes have been identified in ma-
lignant ascites from ovarian cancer patients [96] and in bladder
cancer [97], and recent evidence suggests that CD147-containing
extracellular vesicles can be extracted from cancer patient sera as
a biomarker to monitor response to therapy [98]. Clearly, char-
acterization of the released pools of CD147 and the effects of
internalized CD147–CD147 complexes are emerging fields
of discovery.

REGULATION OF CD147 EXPRESSION

Complex regulatory circuits govern transcription, translation and
cell surface presentation of CD147 (Figure 2), and each of these
mechanisms is likely to be cell type dependent. Initial character-
ization of the CD147 promoter region demonstrated a CpG island
(CGI)-rich sequence with a TATA box [24,99]. Over the years
consensus binding sites for multiple transcription factors (TFs),
including specificity protein 1 (Sp1), Sp3, early growth response
protein 2 (EGR2), epithelial–mesenchymal transition (EMT)-
associated factors (e.g. Snail and Slug), a transcriptionally act-
ive fragment of sterol carrier protein 2 (SCP-2) and hypoxia-
inducible factor-1α (HIF-1α), have been identified [24,100–
104]. The majority of evidence suggests that Sp1 is one of
the main TFs regulating CD147 expression [104,105] and a re-
cent paper demonstrated cooperative interactions between c-Myc
and Sp1 in the CD147 promoter region [106]. Due to the fact
that Sp1 binds to CpG motifs present in CGIs, which can be
epigenetically modified by methylation, Sp1-mediated transcrip-
tional initiation may be altered by methylated CpG motifs in
promoters [107]. In support of this, the CD147 promoter was
found to be hypomethylated in cancer tissue compared with nor-
mal tissue, resulting in increased Sp1 binding and consequently
increased CD147 expression [108].

Control of CD147 expression by cis-regulatory elements and
sequence variations/polymorphisms has also been described.
Seed regions of let-7, a tumour-suppressive non-protein coding
miRNA family, were shown to have complementary sequence to
the 3′-UTR of CD147, with let-7b being the most complementary
[109,110]. Other miRNAs found to modulate CD147 expression
include miR-146a [111,112] and miR-22, with the latter being
governed by a complex regulatory loop involving c-Myc and
Sp1 [106]. Additionally, miR-492 decreases CD147 expression,
though the efficiency of suppression appears to be dependent on
a single nt polymorphism (SNP) located at the fourth nt com-
plementary to the miR-492 seed region [113]. It is thought that
∼2–6 contiguous base pairs in the seed region of miRNAs are



4 c© 2016 Authors. This is an open access article published by Portland Press Limited and distributed under the Creative Commons Attribution Licence 3.0.

http://creativecommons.org/licenses/by/3.0/


Regulation of matrix metalloproteinases by CD147

Figure 2 Regulators of CD147 transcription, translation and plasma membrane expression
Various TFs cooperate to regulate CD147 transcription in different biological contexts, which may influence transcrip-
tion initiation at different alternative promoters or influence unknown splicing machinery. Following transcription, CD147
message levels may be further regulated by multiple miRNAs. Prior evidence suggests that newly synthesized CD147
is inefficiently processed in the ER and Golgi and the majority is degraded by the proteasome. It is hypothesized that
constitutive production of CD147 ensures adequate protein pools to respond to dynamic changes in cellular needs [39].
Appropriately processed CD147 is then trafficked to the cell surface to assist in MMP activity, nutrient transport and cell
signalling pathways. Each of these processes is regulated by a diverse cohort of proteins (see text for details), though
how these proteins cooperate in regulating CD147 surface expression is unknown.

needed for effective miRNA–mRNA duplex formation and tar-
get suppression [114]; hence the SNP in the miR-492 binding site
may alter affinity to the CD147 3′-UTR resulting in differential
suppression of CD147.

Many studies have identified factors upstream of the CD147
transcription initiators and repressors mentioned above. Some
of the earliest studies identified an increase in CD147 expres-
sion following lymphocyte activation by granulocyte macrophage
colony-stimulating factor, concanavalin-A or phytohaemagglu-
tinin [9,115]. Additionally, endothelial cells that invade co-
cultured brain tissue demonstrated increased CD147 expression
[116]. These earlier studies set the premise that CD147 is an indu-
cible molecule in both physiological and pathological contexts.

Over the years a litany of soluble mediators, such as growth
factors, cytokines and hormones, has been shown to regulate
CD147 transcription and translation. In breast cancer cells,
epidermal growth factor (EGF) and amphiregulin induced the
expression of CD147 via an EGF receptor (EGFR) pathway
[117,118] and transforming growth factor β (TGF-β) increased
CD147 expression in a phosphatidylinositol 3-kinase (PI3K)-
Akt-dependent manner in hepatocytes [102]. Since CD147 is
known to participate in inflammation, ischemic injury, athero-
sclerosis, rheumatoid arthritis and tissue repair [18,55], it is no
surprise that it is regulated by various inflammatory mediators,
such as tumour necrosis factor α (TNF-α) [119], interleukins

[120], receptor activator of nuclear factor κ-light chain-enhancer
of activated B cells (NF-κβ) ligand (RANKL) [121,122] and
prostaglandins [123]. Sex hormones, such as progesterone and
oestrogen, have been shown to modulate CD147 expression as
well [124–126]. Studies with oestrogen receptor-α or -β null mice
revealed that CD147 is regulated by oestrogen receptor-α in select
tissues, whereas in others it is independent of oestrogen signalling
and regulation occurred at the translation level [127]. Other hor-
mones such as thyroid-stimulating hormone (TSH) [128,129]
and angiotensin II [130,131] peptides, which signal through G-
protein-coupled receptors, have been shown to regulate CD147
expression. Numerous upstream pathways have been implicated
in CD147 expression, which are beyond the scope of this ma-
nuscript, but are discussed further in a recent review [51]. It is
easy to appreciate that diverse signalling mechanisms influence
CD147 expression in a variety of tissues.

In addition to the array of signalling pathways, CD147 expres-
sion and cellular localization are influenced by interactions with
itself and other proteins. CD147 may self-regulate its own expres-
sion in an autocrine manner [90,132] possibly via MT1-MMP-
dependent cleavage of surface bound CD147 [93]. Notably, treat-
ment of cells with soluble CD147 results in concentration and
time-dependent increases in CD147 transcription and surface ex-
pression [90]; hence differing baseline levels of CD147 expres-
sion in interacting cells may influence biological outcomes.
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The best characterized binding partners of CD147 are MCTs,
a family of transporters involved in lactate, pyruvate and ketone
flux across the plasma membrane [60]. MCTs tightly associate
with CD147 and influence post-translational processing in the
Golgi as well as localization to the plasma membrane [44,133].
In the majority of scenarios, both proteins are co-dependent on
each other for appropriate surface expression, though this was
recently shown to be not always the case [134].

Another protein class that regulates CD147 cell surface expres-
sion is the cyclosporine A (CspA)-sensitive cyclophilin protein
family. Cyclophilins contain peptidyl-prolyl cis–trans isomerase
activity, are known to regulate protein trafficking, and act as inter-
cellular mediators during inflammation [59]. Prior studies found
that CD147 cell surface expression was decreased by treatment
with the immunosuppressive drug CspA [46] and that proline
211, located near the CD147 TM domain, facilitates interaction
with Cyp60, which may be involved in escorting CD147 to the
cell surface [45].

It is apparent that CD147 is regulated by complex signalling
networks in different physiological, pathological and tissue-
specific contexts. The regulation of CD147 expression by vari-
ous TFs, soluble mediators and binding partners underscores the
complexity of CD147 function.

POTENTIAL MECHANISMS
REGULATING CD147-MEDIATED MMP
ACTIVITY

Since the discovery of CD147 approximately 30 years ago, many
investigators have demonstrated that CD147 is a major inducer
of proteases in an array of non-tumorigenic and tumorigenic
cell types; the authors encourage readers to see an exhaustive
list of malignancies that have been evaluated for relationships
between CD147 and MMPs [51]. To date, CD147 has been shown
to mediate expression and activity of soluble and MT-MMPs,
including MMP-1, MMP-2, MMP-3, MMP-9, MT1-MMP and
MT2-MMP [18,27,50]. It should be noted that the compilation of
published literature evaluating CD147-mediated MMP activity
has been derived from experiments evaluating MMP message,
protein and enzymatic activity in various models, though not
always on a consistent basis.

CD147 increases MMP production in fibroblasts, endothelial
cells, macrophages, tumour cells and non-immortalized epithelial
cells [135]. In addition to MMP induction, CD147 also parti-
cipates in the activation of the urokinase-type plasminogen ac-
tivator system in breast cancer, oral squamous cancer, tropho-
blasts and endothelial cells [136–138], as well as a disintegrin
and metalloproteinase with thrombospondin motifs (ADAMTS)-
1 and ADAMTS-9 production in cells infected with Kaposi’s
Sarcoma-associated herpes virus [139]. Even though CD147 has
been shown to regulate proteases in a variety of scenarios, the
specific mechanisms regulating this process remain ambiguous.

Overviewed above, CD147 expression and cell surface local-
ization is influenced by a diverse set of cues, which in some
cases are tissue/cell-type specific. As far as the authors are
aware, there has been no report describing intrinsic signalling
motifs in CD147. Thus, the pleiotropic biology of CD147 is
probably due to a combination of glycosylation status, homo-
dimerization/oligomerization and heterophilic protein–protein
interactions (Figures 3 and 4), each of which probably orches-
trates a facet of MMP regulation.

Glycosylation
The contribution of N-glycosylation to CD147-mediated MMP
activity is controversial. The majority of studies describe CD147
as an N-linked glycosylated protein, with the exception of one
study in chicken retinal tissues, which described both N-glycan
and O-glycan attachments [140]. Prior experiments demonstrated
CD147 cDNA expressed in E. coli resulted in a non-glycosylated
form approximately 29 kDa, which had no MMP-inducing activ-
ity when added to fibroblasts. These studies also suggested that
recombinant (rb) LG-CD147 (30–45 kDa) was unable to induce
MMP synthesis [141]. Subsequent studies demonstrated that de-
glycosylated endogenous CD147 had no MMP-inducing activity
and attenuated the ability of HG-CD147 to induce MMPs [142].
A recent study comparing synthesized CD147 in two expression
systems found that only the glycosylated CD147 was able to
induce MMP-2 in fibroblasts efficiently [143]. This compilation
of data strongly suggests that glycosylation was mandatory for
CD147-mediated MMP induction.

Conversely, others have demonstrated that non-glycosylated
CD147 [21,144] or a peptide corresponding to the IgC2 domain
with a single N-acetylglucosamine (GlcNAc) or chitobiose unit
[145] were capable of stimulating MMPs. We recently found that
up-regulation of CD147 expression in non-transformed breast
epithelial cells, which specifically resulted in a higher proportion
of the 38 kDa compared with 52–58 kDa glycoform, led to similar
induction of MMP activity as the previously mentioned effects
of HG-CD147 [85]. Hence, it appears that both LG- and HG-
CD147 contribute to MMP activity, though the efficiency of this
induction may be more pronounced with HG-CD147 glycoforms
[37].

Homo-dimerization/oligomerization
CD147 was first found to homo-oligomerize in avian tissues, in
which the authors proposed that CD147 can potentially interact in
cis and trans fashion forming a macromolecular complex [146].
Later findings suggested CD147 forms homo-oligomers only in
a cis-like manner and that the IgC2 domain was sufficient for this
dimerization whereas N-glycosylation appeared to play no role
[147]. In contrast others have provided evidence that CD147 Ig
domains do not dimerize in solution [90].

Since tumour cell-associated CD147 and soluble CD147 have
been reported to induce MMP synthesis in neighbouring cells,
this implies that a counter-receptor may participate in trans-
interactions between these cells [18]. Studies employing an
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Figure 3 CD147 protein–protein interactions and interacting domains
Protein–protein interactions have been localized to specific CD147 domains. The majority of evidence indicates that the
N-terminal (Domain 1: IgC2) domain is where homophilic interactions occur and influence MMP activity. The membrane
proximal (Domain 2: IgI domain) has been implicated in CD147 associations with caveolin-1, integrins and AnxA2. Ad-
ditionally, cyclophilins are thought to influence inflammatory signalling pathways via this domain [59]. The TM region of
CD147 contains a leucine zipper motif and a unique glutamate residue; these characteristics are thought to increase
the propensity of diverse heterophilic CD147–protein interactions, some of which the exact interacting domain on CD147
is unknown. No signalling motifs have been identified in the cytoplasmic tail and the exact function of this domain is
unknown. CD147 N-glycosylation probably has some role in these protein–protein interactions and its influence is probably
dependent on cell type, extracellular cues and available nutrient substrates for glycan synthesis.

immobilized CD147 fusion protein determined that CD147 can
act as a receptor for itself, similar to other IgSF members,
and that this association was dependent on the IgC2 domain.
Additionally, MMP induction was inhibited by an antibody
that specifically bound multimerized CD147, suggesting CD147
oligomerization facilitates MMP induction [142]. Furthermore,
cross-linking between the Ig-like domains of rbCD147 and fibro-
blasts followed by MALDI-MS/MS sequencing identified CD147
as a receptor for rbCD147 [21] and crystallographic approaches
identified that Ig-like domains in CD147 dimerize in both cis and
trans fashion [29] possibly through β-strand domain swapping
[148]. Also, systematic mutational analysis of the ectodomain of
CD147 revealed that various mutations in the Ig-like domains in-
hibited dimerization/oligomerization and subsequently MMP in-
duction [149]. Thus, in certain contexts CD147 can self-associate,
but there may be differences in this process when comparing sol-
uble with membrane bound CD147.

Oligomerization of surface proteins can occur by extracel-
lular ligands directly interacting with external domains of the
target protein or by binding to neighbouring partners that indir-
ectly influence clustering of the target protein. Galectins are a
large family of lectins that bind β-galactoside moieties and per-
form diverse functions in biology [150,151]. Within this family,
galectin-3 (Gal-3) uniquely has a GlcNAc-binding C-terminal do-
main and an N-terminal domain that facilitates self-association,
thus functioning as an external cross-linking protein lattice [152].
In this respect, proteomic cell surface analysis identified that
Gal-3 promotes integrin β1 and CD147 clustering; the latter in-
teraction is likely secondary to cross-linking of branched glycans
on CD147 [153]. Gal-3–CD147 interactions were also found to
redistribute CD147 to cell–cell contact points, which resulted

in MMP-9-dependent loss of occludin and cell–cell attachment
[154]. Analogous to the direct extracellular interactions of Gal-3
and CD147, binding of hyaluronan, a large extracellular poly-
saccharide, to CD44 can also induce cell surface clustering and
multicomponent complex formation, which can lead to CD147
oligomerization [135].

Other less characterized mechanisms of CD147-mediated
MMP activity have been proposed. There is some evidence that
the membrane-proximal IgI domain of CD147 may also regu-
late MMP activity, though this needs further validation [143]. It
should also be noted that CD147-3 binding to the IgI domain
of CD147 may attenuate induction of MMP synthesis, possibly
functioning as a dominant negative in certain contexts [20]. Addi-
tionally, CD147–CD147 interactions and the biologic effect they
promote may depend on receptor saturation and propensity to
cross-link [90]. Overall, there is strong evidence that in specific
contexts CD147 self-associates either in a homo- or heterotypic
manner, which propagates signals that influence MMP activity.

Heterophilic protein interactions
The protein structure and associated binding characteristics of
CD147 imply a role in modulating protein–protein interactions.
As described previously, CD147 contains a unique glutamate
residue as well as a leucine zipper motif in its TM domain [155];
both of these characteristics are associated with multi-protein
complex assembly and receptor dimerization [31,32,156]. Fur-
thermore, the IgC2 domain may also interact with IgI/V-like do-
mains on other IgSF proteins [29] and CD147 may associate with
proteins with attached oligomannose moieties [157]. In addition
to these characteristics, differential glycoforms of CD147 also
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Figure 4 Homophilic/heterophilic interactions between CD147 and other proteins regulate pleiotropic biology of CD147
(A) CD147 can self-associate in a cis or trans fashion between homophilic and heterophilic cell types; depiction of
N-glycosylation was omitted for simplicity. (B) Various factors influence the propensity of CD147 clustering and multicom-
ponent complex formation. Hyaluronan–CD44 interactions influence various components of tumour biology by cross-linking
CD44 molecules, which can lead to higher order oligomerization of CD147-containing complexes; these complexes have
been shown to regulate MMP activity, nutrient (MCTs) and drug [P-glycoprotein (P-gp), breast cancer resistance protein
(BCRP)] transport across cell membranes as well as various cell signalling pathways [135]. Similar to the stabilizing
pericellular hyaluronan–CD44 interactions, the carbohydrate-binding domain of Gal-3 is thought to interact with glycans on
CD147 and induce clustering with integrins, which can regulate MMP activity. Cyclophilins can also interact with the ex-
ternal domains of CD147, possibly via Syndecan-1 [184]. These interactions can induce CD147 clustering and activation of
downstream inflammatory pathways. Greater proportions of CD147 on the cell surface will lead to more CD147-containing
complexes and as expected enhanced activity of CD147-dependent functions.

provide prodigious advantages to participate in diverse protein–
protein interactions.

Inasmuch, various binding partners have been described to
interact with CD147 in regulating MMP activity. For instance,
CD147 associates with caveolin-1 mostly on the cell surface via
its membrane proximal IgI domain and this complex attenuates
CD147 self-aggregation [43]. Further evaluation of this asso-
ciation revealed that LG-CD147 preferentially associated with
caveolin-1 and this interaction inhibited CD147-induced MMP
induction [33]. These investigators proposed two divergent path-
ways: (1) LG-CD147 associates with caveolin-1, which prevents
further glycan processing by GnT-V, and is escorted to the cell

surface forming caveolin-1-LG-CD147 complexes not involved
in MMP activity or (2) LG-CD147 is modified by GnT-V, forming
HG-CD147, which does not bind caveolin-1 and is subsequently
trafficked to the cell surface to form multimers that increase
MMP activity. Hence, caveolin-1 may influence MMP produc-
tion by diminishing cell-surface clustering and further complex
glycosylations of CD147, though these processes appear to be
independent of each other [33,43]. Conversely, studies evaluat-
ing MMP synthesis in a lung injury model and in hepatocellu-
lar carcinoma progression suggest that an inverse relationship
exists between caveolin-1 and CD147 and actually increases the
proportion of HG-CD147 [158,159].
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As mentioned previously, AnxA2 can interact with the extra-
cellular domains of CD147 and influence cancer cell migration
and invasion by regulating MMP activity [88,89]. This effect
may be secondary to AnxA2 regulation of CD147-associated
microvesicle release, which can be a means of communication
between tumour and stromal cells [87].

CD147 also forms complexes with α3β1 and α6β1 integrins
at cell–cell contacts [160]. Asp179 in the IgI domain of CD147
can interact with the metal ion-dependent adhesion site in the βA
domain of the integrin β1 subunit, which regulates MMP activity
[161]. CD147–integrin interactions promote cancer invasiveness
by inducing MMP synthesis via a focal adhesion kinase (FAK)-
PI3K signalling pathway [162–164]. β1 integrin also forms a het-
erocomplex with CD147 and CD98, in which failure of CD147
to associate with the latter results in decreased MMP activity
[165]. In oral cancer cells CD147 interacts with β6 integrin and
this may cooperate with Fyn, a Src family kinase, in modulating
MT1-MMP activity [166]. As mentioned, CD147 also interacts
with caveolin-1 via the membrane-proximal IgI domain [43],
but whether competing interactions between integrins, caveolin-
1 or RGD-containing ligands influence CD147-mediated MMP
activity is unknown. From this data it can be reasoned that di-
verse CD147–integrin interactions are present in cancer cells and
regulate multiple processes.

Previously we demonstrated that increased expression of
CD147 was associated with invadopodia activity, which was
MT1-MMP dependent [85]; others have also found that CD147
regulates MT1-MMP synthesis and cell surface expression
[90,167–169]. Of note, elevated MT1-MMP expression was ob-
served after up-regulation of CD147 in our study, though the
majority of MT1-MMP remained in the cytoplasm and the pro-
portion that was trafficked to the cell surface probably resided in
CD147-enriched lipid rafts. Also, distinct pools of CD147 were
found to associate with MT1-MMP in vesicular compartments,
which were different from the CD147–MT1-MMP complexes
identified in active invadopodia, possibly representing subsets in
transit to or from the cell surface [85].

MT1-MMP regulation is very stringent, as the increased pres-
ence of a highly proteolytic enzyme on the cell surface could be
detrimental to cells not needing to cleave matrix substrates or cell
surface factors that promote cell motility. Similar to other MMPs,
MT1-MMP is synthesized as a zymogen that needs processing
to the active form and in the case of MT1-MMP this occurs via a
furin-mediated cleavage event in the trans-Golgi network during
trafficking to the cell surface. MT1-MMP may then be endocyt-
osed and recycled back to the cell surface or sent for degradation,
thus active MT1-MMP is the predominant form localized on the
cell surface [170]. Some evidence suggests that CD147 associates
with both pro and active forms of MT1-MMP, which may suggest
that CD147 participates in the regulatory network of MT1-MMP
trafficking and processing [93,171].

As above, CD147 also interacts with CD44, a major re-
ceptor for hyaluronan [172], and these formed complexes have
been shown to regulate diverse aberrant cancer-promoting sig-
nalling pathways and promote stabilization of plasma mem-
brane localized metabolic/drug transporter complexes [135,173–

177]. Additionally, we observed that CD147-mediated MT1-
MMP-dependent invadopodia activity was partially dependent
on CD44–hyaluronan interactions that facilitated CD44–EGFR–
CD147 heterocomplex formation in lipid rafts, which resulted
in Ras-ERK (extracellular signal regulated kinase) signalling.
Furthermore, enrichment of cells with high endogenous surface
expression of CD147 identified distinct cell populations with in-
creased potential to invade as well as enhanced mitogen-activated
protein kinase (MAPK) signalling [42].

CONCLUSIONS AND PERSPECTIVES

MMP regulation is governed by complex and redundant mech-
anisms in physiologic and pathologic cellular processes. CD147
has emerged as a dominant modulator of MMP activity from tran-
scription to cell surface presentation. As CD147 has no identified
intrinsic signalling motif in its protein structure, the regulatory
effects of CD147 are probably dependent on characteristic TM
and glycosylation features that facilitate higher order oligomer-
ization with self or other binding partners. Additionally, pools of
released CD147 may interact with counter receptors on adjacent
or distant cells and influence MMP activity. Multiple hetero-
meric CD147-containing complexes have been identified and in
certain biologic contexts these can influence MMP activity and
other CD147-related processes (Figure 4). Due to the ‘promis-
cuity’ of CD147 interactions on the cell surface, downstream
signalling events may depend on the quantities of CD147 and
known binding partners present on the plasma membrane. It can
be speculated that cells with high CD147 surface expression may
have a higher probability to interact with various binding partners
and thus influence MMP activity in diverse manners. In this re-
gard, it is clear that different functional phenotypes are identified
when comparing cells with high and low surface expression of
CD147 [42,178,179]. The possibility that tumour cells with high
levels of cell surface CD147 exhibit cancer stem-like cell proper-
ties [178], especially with respect to the role of CD147-induced
MMP activities in invasiveness and metastasis, is an important
area of future investigation.

Despite numerous manuscripts identifying CD147-mediated
MMP regulatory networks, there does not appear to be a unifying
mechanism explaining this phenomenon. In fact, some investigat-
ors have demonstrated CD147 independence in MMP-dependent
processes such as mammary gland development [180] and em-
bryo implantation [181]. Recently, the involvement of CD147 in
MMP regulation has been called into question by CD147 knock-
out studies demonstrating no difference in soluble and MT-MMPs
levels/activity; these investigators suggest that all evidence to
date implicating CD147 in MMP regulation is indirect and that
the main role of CD147 is in the regulation of lactate transport via
MCTs [182]. It will be important to resolve the apparent contra-
diction between these studies and the large body of data pointing
towards important roles for CD147 in regulation of MMP expres-
sion.
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CD147 biology is complex and various stimuli from sol-
uble mediators to pericellular matrix scaffolds influence CD147-
dependent processes. Additionally, evidence indicates that the
surface expression level of CD147, not total protein amount,
is a major predictor of CD147-mediated effects [42,178,183].
Though CD147 was originally identified as a tumour-derived
MMP inducer, it is evident that CD147 has pleiotropic functions,
which cannot be encompassed by the acronym EMMPRIN [135].
Therefore, the authors propose employing CD147 in future stud-
ies.
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