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Abstract

Review Article

Introduction

In nonclinical drug safety assessment, large numbers of slides 
are generated from healthy laboratory animals exposed to the test 
item in order to detect toxicity in various tissues mandated to be 
part of the animal studies by regulatory agencies. Toxicologic 
pathologists experience the burden of evaluating all of these 
slides. The majority of the tissues in a routine toxicity study 
are expected to be within normal limits, while the abnormal 
tissues could potentially contain any number of morphological 
changes  (e.g.,  necrosis, hyperplasia, inflammatory infiltrate). 
Given this scenario, using an artificial intelligence (AI) system 
for pathology evaluations could save a substantial amount of time 
in nonclinical toxicity studies leading to accelerated discovery 
and development of safer drugs that can make a real difference 
in patients’ lives.[1]

For pathologists, the fundamental building block of histologic 
assessment is the cell. When viewing tissue on a histology 

slide, the pathologist, based on the years of rigorous training 
and experience, perceives and interprets cellular distribution, 
arrangement, and morphology and rapidly classifies cells into 
types and tissue architectures into processes to arrive at a 
working diagnosis. This working diagnosis is often compared 
against literature expert opinions to arrive at a consensus 
diagnosis or the so‑called “ground truth.” Thus, it is natural 
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for a pathologist to anthropomorphize an AI system and 
assume that it “sees” cells and tissues in the same way that a 
human does to arrive at a segmentation or classification result, 
perhaps even with some level of “memory” of what it has seen 
in other studies. However, there are some key differences in 
the way AI systems function. A computer operates in bits (0s 
and 1s) and fundamentally “sees” an image in pixels. Pixels 
are the smallest addressable picture elements on a computer 
screen. Looking at individual pixels does not provide 
meaningful information. However, with advancements in 
mathematical algorithms and computational power, machines 
can be trained to look at the features in an image at a higher 
level of abstraction like humans do. For example, pixel‑wise 
measurements of shape and texture can be used by AI systems 
to “learn” features like nuclei. Furthermore, a computer learns 
from whatever features exist in its training examples. For 
instance, if a computer is not trained on cytomorphological 
variants and does not have the opportunity to “see” biological 
and preanalytical variability, it will misclassify the cells and/
or processes present in such images. Despite exponential 
progress in developing state‑of‑the‑art AI algorithms in recent 
years, the current paradigm of task‑oriented AI is generally 
considered narrow and is not yet at a level that is on par with 
human intelligence.[2]

In pathology, deep learning  (DL)‑based methods to date 
have been largely developed for tumor identification and 
biomarker‑based characterization in human biopsies. In a 
meta‑review of over  130 articles published between 2013 
and 2019 using various DL methods, nearly all were based 
on human cancer.[3] These applications are highly useful and 
relevant in the practice of clinical oncology or discovery 
biology;[4] however, these methods do not address the unique 
circumstances of toxicologic pathology, and to date, the field 
is largely bereft of such methodologies. Although there are 
detailed and thorough reviews, commentaries, opinions, and 
surveys on different aspects of digital pathology  (DP) with 
most covering clinical diagnostic applications of DL,[2,3,5‑23] 
this is the first in‑depth review of DL methods for toxicologic 
histopathology. This review provides (a) basic information on 
the discipline of toxicologic pathology, (b) a brief description 
of the DL methods in DP with the focus on implementation 
in toxicologic pathology, (c) details on the recent applications 
of DL‑based image analysis in toxicologic pathology, and (d) 
the challenges facing the adoption of a digital workflow 
leveraging DL.

Role of toxicologic pathology in drug discovery and 
development
Drug discovery and development is a complex process [Figure 1] 
that starts from target identification and validation of a chemical 
entity or compound, and the process could take an average of 
10–12 years from bench to bedside.[24] The purpose of this 
approach is to bring safe and effective drugs to the market after 
rigorous testing in nonclinical and clinical areas. A toxicologic 
pathologist works in a highly matrixed, multidisciplinary 
environment supporting the drug development pipeline 

from early discovery until regulatory approvals, and in some 
instances, to postmarketing research.[24]

Toxicologic pathology is the study of the molecular, 
cellular, tissue, organ, and organism-level response to novel 
agents. Toxicologic pathologists play a critical role in the 
characterization of potential unintended effects of new 
drugs to support human trials. As a discipline, toxicologic 
pathology traditionally and most commonly uses hematoxylin 
and eosin (H & E)‑stained tissue sections on glass slides to 
microscopically examine the effects of treatment (e.g., drugs, 
devices, or chemicals) on tissues in laboratory animals.

A toxicologic pathology study has unique challenges 
compared to clinical diagnostic pathology  (CDP). The 
volume of slides created for each study is large, and 
studies typically involve multiple animals. A  standard 
investigational new drug (IND)‑enabling rodent study has 
approximately 60 tissues for each of 80–100 animals.[25] 
Microscopic evaluation of thousands of slides per study 
is labor‑intensive and time‑consuming. Another unique 
challenge with toxicology studies is that the majority 
of tissues are normal, which means they do not display 
any test item‑related findings. Adding time constraints to 
slide review/interpretation is detrimental to performance 
in clinical practice,[26] and toxicologic pathologists face 
similar time pressure under project timelines. Furthermore, 
years of experience and expertise are needed to differentiate 
normal background lesions–those developing spontaneously 
in laboratory animals due to age, sex, diet, or strain–from 
drug‑induced abnormalities.[27]

AI has found its way to many industries, although 
pharmaceutical research and development is still in an early 
phase of integrating AI into their workflow.[28,29] AI‑based 
toxicity predictions have been applied in the field of molecular 
toxicology,[30‑33] but they have not yet emerged as a widely used 
tool in the discipline of toxicologic histopathology.

Digitization of glass slides
To adopt AI in toxicologic pathology, digitization of glass 
slides is the essential first step. Advances in whole slide 
images  (WSI) and significantly improved DP systems 
have paved the path toward a fully digitalized pathology 
workflow.[19] WSI‑based diagnoses have proven concordant 
with traditional glass slide‑based diagnoses in both human and 
veterinary pathology.[34] The digitalized pathology workflow 
has several advantages:  (a) easy and efficient archival of 
WSI,  (b) traceability with effortless and rapid retrieval of 
cases compared to glass slides,  (c) accessibility and the 
possibility to get opinions from experts across the globe in 
a timely fashion, for peer review or diagnostic concordance, 
and (d) comparability of multiple images on the same screen, 
which can avoid diagnostic drift or resolve subtle differences 
between animals. It is notable that in the face of the global 
COVID‑19 pandemic in 2020, minimally adequate peripheral 
instrumentation to conduct remote digital slide reviews has 
accelerated adoption with surprisingly favorable results.[35] 
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These illustrate only the most superficial benefits of a DP 
workflow even without any computational image analysis.

Overview Of Deep Learning Approaches

For more information on basic terms used in AI, we refer to 
publications detailing the subject.[6,16,36] Before introducing some 
key approaches in DL, it is important to understand the terms  
“architecture,” model,” and “algorithm.” and their differences. 
An architecture describes a general approach to a DL task and 
the parameterization of that approach (e.g., the number and size 
of different layers or the type of each layer). For example, an 
artificial neural network is a type of architecture [Figure 2a]. 
A model is one specific instance of a given architecture or 
modular instances of multiple architectures trained on a given 
dataset  [Figure 2b and c]. An algorithm is a set of rules to 
follow to implement architectures [Figure 2b and c].

Early applications of AI in histopathology, dating back 
to 1966, involved extracting quantitative measures from 
microscopy images.[37] Some early works in cytology 
and histopathology were before the invention and 
widespread use of whole slide scanners, and the image 
analysis was performed on a small field of view captured 
by conventional microscopes.[38] Prior to the success of 
DL models, traditional AI/ML models such as decision 
trees and thresholding had already been used in DP. 
However, these conventional models usually rely on the 
data representations and manually selected (hand‑crafted) 
features, which provide high contrast between the desired 
image classes. Hand‑crafted features are preprocessed image 
representations such as color, texture, or shape that are used 
as the input of conventional machine learning models. In 
contrast, DL methods can learn features directly from raw 
images  (i.e.,  no hand‑crafted features required), yielding 
higher performance and generalizability. The DL models 
have consistently outperformed earlier ML techniques in 
various fields such as image classification.[39] In pathology, 
DL‑based approaches usually have four main steps:  (1) 
database creation,  (2) preprocessing,  (3) model selection 
and training, and  (4) postprocessing and evaluation. The 
following subsections explain each step of this process and 
some considerations in the context of DL in toxicologic 
pathology.

Database creation
A DL study starts with creating a diverse collection of 
image data stored electronically in a computer system. 
Although there are multiple publicly available pathology 
databases in human medicine, only a few exist for nonclinical 
studies  [Table 1]. Notably, these nonclinical databases are 
only WSI repositories and do not come with ground truth 
annotations reviewed by pathologists, and they are not 
aimed at DP. Although collecting WSI repositories without 
ground truth annotations is relatively easy, for most AI/
DL applications, these databases would need to come with 
pathologist annotations. Efforts like the Innovative Medicines 
Initiative  (BIGPICTURE project) to develop a central 
repository of digital slides from humans and nonclinical 
species to create AI tools will likely accelerate these efforts 
in toxicologic pathology in the near future.[40]

Figure 1: Drug discovery and development process. This flowchart is a simplified version of the pipeline, and there are overlaps and close collaborations 
between different steps.

Figure 2: (a) An artificial neural network architecture contains input layer, 
hidden layers, and output layer of neurons. (b) The architecture can be 
trained by a training algorithm mapping the data to label. (c) The trained 
model can then be used for inference.

c

a

b
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Preprocessing
The giga‑pixel size of WSIs is too large to be processed by 
present‑day computers using any DL model. Therefore, prior 
to training any model, some preprocessing steps are essential, 
such as data curation, tile extraction, selection, and splitting 
the data into training and test sets. A WSI is stored on a 
computer as a pyramid of tiled images, and these tiles can 
be extracted into smaller, easily manageable patches via grid 
sampling  [Figure 3]. Typically, patches are extracted at the 
desired magnification [Figure 3; and more details in Section 
“image format, size, and magnification”] and can then be 
utilized either for training or inference (run predictions on the 
DL model for validation and test).

Splitting database into training and test 
sets – Considerations
For training a DL model, the data should be split into training, 
validation, and test sets. The biggest proportion of the data is the 
training set, which is used to train the models. The validation set 
is typically preserved for fine‑tuning the models or selecting the 
best model. The performance of the final model is then evaluated 
using images that are not part of either training or validation, 
which is referred to as the test set. Ideally, these data sets should 
not have any overlap, but it must be noted that they should be 
selected from the same distribution that is representative of 
prospective data that the model will be used for. As an example, 
if the initial dataset contains drug‑treated and control groups 
with various normal/abnormal characteristics, the images from 
all groups should be present in the training, validation, and test 
sets to avoid suboptimal performance on future data where the 
model will actually be applied in practice.

Deep learning methods
Supervised learning
Supervised learning, as the name suggests, is a type of machine 
learning model that requires supervision during training. In the 
case of image data, the supervision is provided in the form of 
hand‑labeled annotations by subject matter experts  (SMEs). 
The goal of supervised learning is to develop an appropriate 
mathematical model that can map images to their corresponding 
labels provided by pathologists. Figure 4 illustrates different 
DL tasks in supervised learning with an example of normal/

abnormal histology of a liver WSI. In supervised learning 
architectures, the DL task dictates the granularity of the labels 
in three levels: (a) patch‑level labels in classification tasks, (b) 
object‑level in object detection tasks, and  (c) pixel‑level 
associations to different morphologies in segmentation tasks. 
For a classification task, an image is classified as a binary or 
multi-class outcome, such as predicting a positive/negative class 
or the presence/absence of a region of interest (ROI). Multiple 
convolutional neural network (CNN) architectures have been 
proposed to classify patches in WSIs (e.g. AlexNet for brain 
tumors[41] and deep convolutional features for colorectal 
adenocarcinoma classification[42]).Tile‑based classification 
models are also proposed to consider the context of neighboring 
patches in WSIs  (e.g.,  the use of an architecture with a 
combination of recurrent neural networks and CNN for bladder 
cancer diagnosis[43]). However, a simple classification may 
not always be helpful, and one may require more information, 
such as the type and location of the ROI in the image. Object 
detection is a computer vision technique that allows for the 
identification and localization of objects in an image or video. 

Table 1: Available whole slide image repositories of nonclinical digital pathology slides and some of the largest 
H&E‑stained repositories for clinical applications

Repository Clinical/nonclinical Location (link)
TG‑GATE Nonclinical http://toxico.nibio.go.jp/english/index.html
CEBS Nonclinical https://connect.niehs.nih.gov/cebs3/ui/
VMD Clinical and nonclinical http://www.virtualmicroscopydatabase.org/
TCGA Clinical https://portal.gdc.cancer.gov/repository
GTEx Clinical https://www.gtexportal.org/home/datasets
TMAD Clinical https://tma.im/cgi‑bin/home.pl
KIMIA Clinical https://kimialab.uwaterloo.ca/kimia/index.php/data‑and‑code‑2/
Camelyon Clinical https://camelyon17.grand‑challenge.org/Data/
TUPAC Clinical http://tupac.tue‑image.nl/node/3

Figure 3: Different (a) magnification level and (b) patch pixel‑size in a 
liver whole slide image

a

b
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Object location is usually shown by drawing a bounding box 
around the target object or ROI. In DP, object detection has 
been most commonly utilized in cell/nuclei detection tasks.[15] 
Examples of DL‑based object detection architectures include 
the region‑based convolutional neural network (R-CNN) 
family, you only look once (YOLO)[44] single‑shot detectors 
(SSD),[45] and RetinaNet.[46] Finally, image segmentation takes 
this even a step further by classifying each pixel in the ROI 
that essentially recognizes not only the instance and spatial 
location of an object or ROI but also its precise shape distinct 
from the background. Segmentation architectures that are 
commonly used on WSIs include fully CNNs,[47] U‑NET,[48] 
and DeepLab.[49,50]

Unsupervised Learning
Unsupervised learning aims at finding a mathematical model 
that can describe the patterns of an unlabeled image. Although 
unsupervised learning in DP is at a very early stage of 
development, this learning methodology presents an untapped 
potential ready to be explored by computational scientists.[19] 
Unsupervised learning approaches do not require mapping 
an input image to a predefined annotated label by an expert. 
Instead, the image is transformed into lower‑dimensional 
representations which are also referred to as latent features (a 
simpler representation of data for analysis), and these 
features can be analyzed based on various techniques such 
as clustering to draw a meaningful conclusion (e.g., the use 
of convolutional adversarial autoencoders, an unsupervised 
architecture for prostate cancer detection[51]). In addition, 
the latent features of a DL model can be further reduced to a 
2D map, and the neighboring data points can be grouped to 
provide an informative visualization of heterogeneity in the 
data. UMAP (e.g., for normal histology)[52] and t‑SNE (e.g., for 
showing stain variation)[53] are examples that use dimensionality 
reduction techniques to effectively show how a model identifies 
various morphological features in the data.

Given a slide containing tissue with normal and abnormal 
regions, using unsupervised learning without any ground truth 
annotations, the latent features can be extracted and generate 

clusters that are unique to each tissue region – normal and 
abnormal. Similar work has been done on brain tissue that contains 
lesional (e.g., lymphomas) and nonlesional  (e.g., normal cortical 
gray and white matter) categories where the unsupervised 
model generates multiple clusters representing different 
areas.[54] Furthermore, these lower‑dimensional features in 
unsupervised learning can be used to artificially generate 
new images  (e.g.,  stain normalization[55] and stain transfer). 
Figure 5 shows how these two different tasks use unsupervised 
architectures. Generative adversarial networks (GANs)[55‑57] and 
autoencoders[54,57‑59] are examples of unsupervised architectures. 
In classifying esophageal cancer WSIs, the classifiers have 
the best performance using unsupervised extracted features 
compared to supervised and weakly supervised approaches.[60] 
Cycle‑consistent GAN architecture has been utilized for the 
conversion of H & E slides to a virtual trichrome stain to aid 
in the staging of nonalcoholic steatohepatitis.[61] This type of 
technology could reduce the temporal and financial burdens of 
block retrieval, re‑cutting, and shipping. Since an expert does 
not have to manually annotate/label the tissues, unsupervised 
learning might have a faster turn‑around time and can be 
extremely useful in toxicologic pathology.

Weakly supervised learning
Weakly supervised learning is a derivative of supervised and 
unsupervised learning approaches, which does not require 
intensive labeling as normally required for supervised 
learning and yet can infer slide‑level labels to predict local 
detections. The goal is to train a model using minimal (weak) 
annotations  (slide‑level label) to predict the finer  (pixel/
patch‑level) labels  [Figure  6]. In practice, these slide‑level 
labels are often available as metadata, and labor‑intensive 
pixel‑wise labels are not required. Therefore, weakly supervised 
learning is an ideal approach for tasks such as slide triaging 
that does not require detailed ground truth information. There 
are multiple architectures based on weakly supervised learning, 
such as multiple instance learning (MIL) and weakly supervised 
attention‑based models.[3] In toxicologic pathology, a WSI can 
be labeled as abnormal if any part of the image contains a lesion 
and these slide‑level labels are available as tabular data within 

Figure 4: An overview of supervised deep learning tasks that can be applied on whole slide images. A hypothetical example of a liver is used to illustrate 
the output of different tasks (green: normal; red: abnormal). R-CNN: Region-based CNN, YOLO: You Only Look Once, SSD (Single-Shot Detector), 
FCNN (Fully Connected Neural Networks)
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the pathology report. Therefore, weakly supervised learning 
has a high potential for abnormality triaging in toxicologic 
pathology (this application is discussed thoroughly in Section 
“Computer-assisted abnormality detection”).

Postprocessing and evaluations
Trained DL models need to undergo a rigorous performance 
evaluation before putting them to practical use, especially in the 
case of decision support systems. DL model validation should 
include a comparison of the results from the DL model with the 
ground truth (manually annotated test data set and/or diagnosis 
made by a pathologist).[62,63] Proprietary and inadequately 
documented methods in published literature create barriers to 
determining the reproducibility of these results. It is important 
to be aware that manually annotated ground truth might suffer 
from user‑induced noise and bias due to inter‑ and intra‑observer 
variance, the experience and familiarity of a pathologist 
with the annotation software, and visual and cognitive 
traps that commonly impact the interpretation of histology 
images.[64] Therefore, the ground truth  (consensus diagnosis) 
is best determined by the input of at least two experienced 
pathologists or preferably three in case of disagreement.[26,63]

Model performance assessments can also help discover 
any discrepancies in the data or its distribution among 
training, validation, and test sets. For example, an increased 
false‑negative rate has been reported in treated prostate 
cancers,[65] raising the consideration that additional data from 
treated cancers need to be included in the training set for AI to 
reliably discern the cytologic features that separate tumor from 
benign tissue. Another point worth noting is that DL training 
could extend in perpetuity with diminishing returns. Hence, 
it is important to evaluate the performance during training 
at regular intervals on the validation set and stop training 

when there is no measurable improvement in performance. 
In a proof‑of‑concept study of a DL CNN for use in human 
inflammatory gastric biopsies, the algorithm stopped learning 
once an error rate of <0.01 was achieved.[66]

Understanding the evaluation methods is important for 
pathologists and DL developers so that both parties can 
objectively assess the performance of the models qualitatively 
and quantitatively. While a subjective visual evaluation of 
the performance of the algorithm by a pathologist may be 
acceptable in some applications.[67] A quantitative measure 
of the model performance may be more appropriate for an 
objective assessment. For a classification task, metrics such 
as sensitivity, specificity, and accuracy would be beneficial. 
For a segmentation task, dice coefficient (F1 score = 2*area 
of overlap/(area of prediction  +  area of ground truth) or 
intersection over union  (IoU =  area of overlap/area of the 
union) calculate pixel-level accuracy are frequently used.[68] In 
the case of object detection (e.g., nuclei detection), where the 
boundary of the object (pixel‑level) may not be as important as 
the number of true positive objects, the F1 score is calculated 
per object, which is then considered as true positive when 
it is higher than a threshold.[69] Aggregated Jaccard Index is 
proposed as an evaluation metric to take into account both the 
pixel and object level evaluations.[70] For a multi‑class detection 
model, a confusion matrix table demonstrating a per-class score 
metric can be deduced to rank the performance of each class.

Machine Learning Applications In Toxicologic 
Pathology

In this section, various applications of machine/DL in 
toxicological pathology are presented, as well as a vision for 

Figure 5: An overview of unsupervised deep learning tasks that can be applied on whole slide images. In the output of clustering, each dot represents 
the feature of its corresponding tile (green: normal; red: abnormal). GANs: Generative Adversarial Neural Networks.

Figure 6: An overview of weakly supervised deep learning tasks that can be applied on whole slide images. In this example, the slide level label 
assigned with local detection of abnormal patches (green: normal; red: abnormal). MIL: Multiple Instance Learning.
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how DL can elevate pathology by providing computer‑assisted 
evaluations that uncover previously unrecognized features 
in histopathology images. While DL‑based computational 
pathology is showing great promise to be beneficial in 
clinical practice, its implementation in toxicologic pathology 
practice is still in the early stages. Figure  7 illustrates a 
conceptual AI‑integrated digital system within the routine 
toxicologic pathology workflow. The process starts with the 
generation of WSIs followed by computer‑assisted quality 
control  (QC)  (more details in Section “Computer-assisted 
quality control”) that checks each slide and flags those that are 
of poor quality. The next key step in the pipeline is to adopt a 
flexible and user‑friendly image management system where the 
slides are stored and can be readily accessed. The system needs 
to be flexible, so it can integrate well with other downstream 
and upstream applications, and it needs to be user‑friendly, so 
that it provides a quality viewing experience the pathologists 
are willing to adopt as their method for primary reading in 
routine practice. Another vital point to be noted is that with the 
increase in demand for people wanting to work from virtually 
anywhere, embracing a system that can use cloud‑based 
solutions will improve productivity and is also beneficial for 
remote collaboration. With a flexible image management system 
in place, deploying AI solutions for various use cases [Figure 7] 
will be faster and more efficient for processing large volumes 
of data and visualizing the end results.

Recently, many AI‑assisted analyses in nonclinical research 
and toxicologic pathology have been published  [Table  2]. 
Some these studies are the result of collaboration between 
industry‑based researchers and external vendors such as 
Deciphex, Visiopharm, AIRA matrix, Aiforia, or HALO to 
provide DL‑based solutions for different pathology tasks. The 
following tabulated information suggests that these nonclinical 
applications are on supervised DL (with the exception of Freyre 
et al.)[71] in specific species/tissue/abnormality, and attention to 
DL applications in toxicologic pathology has increased over 
the past year. The following subsections detail four different 
categories of DL applications in toxicological pathology: 

Computer‑assisted QC, research‑driven computational 
image analysis, computer‑assisted abnormality detection, 
and content‑based image retrieval. In some cases, where 
clinical medicine is further progressed, select H & E‑based 
DL applications from CDP are also provided to illustrate its 
successes and draw parallels between DL in CDP and toxicologic 
pathology.

Computer‑assisted quality control
Manual QC of the scanned digital slides typically involves 
multiple steps: (a) reviewing the slide metadata for accuracy 
and discrepancies, (b) comparing the physical tissue on the 
glass slide and digital image for scan quality, and (c) evaluation 
of the tissue to identify digital artifacts such as stitching or 
out‑of‑focus areas. Due to the high quality of slides produced 
in nonclinical pathology labs, standard practices in laboratories 
involve reviewing a predetermined proportion of slides, such 
as 10% of the total slides per animal. Any slides determined 
to be unacceptable are rescanned and rechecked for quality. 
Manual QC of WSI is a time‑consuming and laborious task 
that is prone to fatigue, human error, and inefficiencies in a 
laboratory setting where large volumes of slides are scanned on 
a daily basis. The use of manual QC is common in identifying 
slides that need to be re‑scanned due to missing tissue on the 
digitized slide or out‑of‑focus regions.

The National Society for Histotechnology and College of 
American Pathologists have initiated a program known 
as  (HistoQIP) Whole Slide Image Quality Improvement 
Program) to improve the quali ty of  WSI. [97,98] A 
computer‑assisted QC workflow could significantly improve 
this process by rapidly reviewing the WSIs as they are scanned 
and flagging those that need human intervention [Figure 8]. To 
this end, automated tools are being developed for computerized 
in‑line digital QC. HistoQC[99] is an open‑source tool that 
assesses the heterogeneity of WSI datasets and identifies 
artifacts present on glass or digital slides; it is being evaluated 
in NEPTUNE, CureGN, and Kidney Precision Medicine 
Project.[98] Artifacts induce unwanted noise in AI‑trained 
systems that potentially generate suboptimal results. For 

Figure 7: Artificial intelligence‑integrated digital workflow in toxicologic pathology
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Table 2: Overview of deep learning‑based applications in nonclinical histopathology

Reference Species Tissue Application Method Dataset

Nonclinical basic science research
Bukowy et al., 
2018[72]

Rat Kidney Glomeruli detection Detection: (R‑CNN) 74 kidneys, 
trichrome‑stained

Heinemann et al., 
2019[73]

Mouse
Rat

Liver Pathologist‑like scoring of 
NASH models

Classification: (Inception‑V3) 258 cases, 
trichrome‑stained

Asay et al., 
2020[74]

Mouse Lung Tuberculosis pulmonary 
pathology

Classification: (Modular CNNs) 176 slides, H & E

Yurttakal et al., 
2020[75]

Rat Kidney Diabetic versus 
nondiabetic

Classification: (VGG19) 396 slides, H & E

Kumar et al., 
2020[76]

Dog
Human

Mammary tumor Tumor detection Classification: (VGG‑16) 352 slides, H & E

Aubreville et al., 
2020[77]

Dog Skin tumor Counting mitotic figures Segmentation, detection, and 
regression: (U-Net, RetinaNet, 
customized CNN with ResNet50 
stem)

32 cases, H & E 
(public dataset[33])

Zormpas‑Petridis 
et al., 2020[78]

Human
Mice

Abdominal 
tumor in mice

Mapping tumor 
heterogeneity

Classification: (Super‑resolution 
CNN)

13 specimens, 
H & E

Nonclinical safety and toxicologic pathology
Bigley et al., 
2016[79]

Rat/human Xenograft Counting and classifying 
mitotic figures into 
different types (normal, 
aberrant, and degenerate)

Classification: Image 
analysis (filters and shape 
distinction)*

60 slides, H & E

Horai et al., 
2017[80]

Not 
mentioned

Liver
Adrenal gland
Spleen
Kidney
Intestine
Lung
Adipocyte

Quantifying specific 
histopathological findings 
such as vacuolation, 
hypertrophy, inflammatory 
cell infiltration, and 
necrosis in liver

Segmentation: Image‑pro plus 
image analysis (filters and shape 
distinction)*

Not mentioned

Sonigo et al., 
2018[81]

Mouse Ovary Ovarian follicle counting Classification: (CNN inspired by 
VGG19)

194 slides, H & E

Yu et al., 2018[82] Rat Liver Liver fibrosis staging Classification: (AlexNet) 25 rats, 
collagen‑stained

Horai et al., 
2019[67]

Not 
mentioned

Liver
Kidney
Thymus
Skeletal muscle
Spleen
Adipocyte
Parotid gland
Sublingual gland
Adrenal gland

Quantifying specific 
histopathological findings 
such as vacuolation, 
hypertrophy, bile duct 
proliferation, and necrosis 
in liver

Segmentation: HALO (image 
analysis, such as filters and shape 
distinction and random forest*

Not mentioned

Hu et al., 2020[83] Rat Ovary Ovarian toxicity 
assessment based on 
corpora lutea count

Detection: (Model based on 
RetinaNet)

224 slides, H& E

Hoefling et al., 
2021[52]

Rat 46 different 
tissue types

Normal histology Classification: (VGG‑16, 
Inception-V3, ResNet‑50)

1690 slides, H & E

Rudmann et al., 
2021[84]

Mouse Lung
Thymus
Stomach

Carcinogenicity Segmentation: Deciphex 
(inception, resnet‑50 efficientnet)

170 slides, H & E

Pischon et al., 
2021[86]

Rat Liver Hepatocellular 
hypertrophy quantification

Segmentation: 
visiopharm (U‑Net)

28 slides for 
training, H & E

Mudry et al., 
2021[87]

Rat Eye Retinal atrophy evaluation Segmentation: MATLAB 
(VGG‑16)

112 rats, H & E

Contd...
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instance, in a performance evaluation of an algorithm for the 
detection of metastatic breast cancer within lymph nodes, 
artifacts including poor tissue fixation/processing, floaters/
contaminants (i.e., non-nodal tissue), and out‑of‑focus regions 
led to false positives.[26]

Computational image analysis
Computational image analysis, including AI‑assisted 
objective toxicity scoring and morphological assessments, 
is a bourgeoning field in toxicologic pathology. Inter‑and 
intra‑observer variability and bias have long troubled 
pathologists’ attempts at harmonizing diagnostic thresholds 
across programs and studies.[36,80,100] Semi‑quantitative severity 
scoring is most commonly applied to discern the magnitude 
of a change, with variable and subjective definitions for 
each score between individuals and organizations. Ordinal 
values are assigned to different severities (e.g., 0 = normal, 
1 = minimal, 2 = mild, 3 = moderate, 4 = marked, 5 = severe) 
where the numerical values themselves are not ratio data 
and are therefore not appropriate for parametric statistical 
analysis.[100] In traditional pathology practice, the findings are 
typically not objectively assessed and measured on a regular 
or rolling basis, so drift does occur. DL‑based quantitative 
assessments can potentially bring coherence and objectivity to 
pathology evaluations. ML and DL examples in the literature 
have demonstrated that AI performs with good concordance 
to pathologist assessment, often with improved sensitivity 

and efficiency.[101] In addition, DL models have proven to 
be successful in quantifying morphological assessments of 
ROI or lesions from H & E slides in the heart,[90] testis[91,92] 
ovary,[81,89] eye/retina,[87] and liver.[85,86] In addition, DL‑based 
morphological quantifications are a promising alternative for 
subjective assessments as well as for alleviating the burden 
of manual semi‑quantitative analysis by pathologists. These 
outputs may be used to standardize pathologists’ assessment 
of the nature and severity of lesions present and potentially 
link to biometrics, molecular signatures, drug exposures, 
or clinical outcomes. Use cases of scoring and quantitative 
assessments in toxicologic pathology are briefly presented in 
the following paragraphs.

Discerning background heart findings from potential 
toxicologically relevant changes can be challenging in 
rat toxicity studies. There can be considerable overlap 
between key features of spontaneous rodent progressive 
cardiomyopathy  (PCM) and test item‑related findings, 
including necrosis, inflammatory cell infiltrates, and fibrosis. 
It is critical to distinguish these spontaneous findings from 
those which are toxicity‑related. Although there is no known 
translational equivalent of PCM in humans, there are cases in 
which a test item induces higher severity or incidence of PCM 
within the study. A DL model has been developed to detect, 
classify, and score spontaneous cardiomyopathy in the rat and 
mouse heart.[90] It remains to be shown how the CNN would 

Table 2: Contd...

Reference Species Tissue Application Method Dataset
Hvid et al., 
2021[88]

Rat
Minipig

Mammary gland
Oviduct

Quantification of epithelial 
proliferation

Segmentation: 
HALO (DenseNet, VGG)

31 rats, 
18 minipigs, H & E

Carboni et al., 
2021[89]

Rat Ovary Ovarian follicle counting Detection: (fast R‑CNN) 1450 images, 
H & E

Tokarz et al., 
2020[90]

Rat Heart Cardiomyopathy scoring 
with artifact segmentation

Segmentation: AIRA 
matrix (FCN8s‑ResNet50)

300 slides, H & E

Xu et al., 2021[91] Mouse Testis Spermatogenic staging Segmentation: (U‑Net) 12 slides, H & E
Creasy et al., 
2021[92]

Rat Testis Spermatogenic staging Segmentation: (U‑Net) 33 slides, H & E

Smith et al., 
2021[93]

Monkey Bone Quantification of bone 
marrow cellularity

Segmentation: Aiforia (details 
not mentioned)

6 slides for training, 
H & E

Bédard et al., 
2021[94]

Mouse Colon Quantification of 
DSS‑induced colitis

Segmentation: Aiforia (details 
not mentioned)

65 slides, H & E

Ramot et al., 
2021[95]

Mouse Liver Quantification of liver 
fibrosis

Segmentation: AIRA 
matrix (U‑NET)

140 microscopic 
field images, PSR 
stained

Freyre et al., 
2021[71]

Rat Kidney Biomarker level 
classification with 
localization of renal 
lesions

MIL classification: (HistoNet[52] 
and ImageNet as feature 
extractor)

349 slides, H & E

Kuklyte et al., 
2021[96]

Rat Liver
Kidney
Heart
Lung
Brain

Segmentation of selected 
abnormalities

Segmentation: 
Deciphex (multi‑magnification 
CNN architectures)

1342 slides, H & E

*Are not DL‑based but are relevant image analysis‑based in toxicologic pathology domain. NASH: Nonalcoholic steatohepatitis, R‑CNN: Region‑based 
convolutional neural network, CNN: Convolutional neural network, MIL: Multiple instance learning, DL: Deep learning, DSS: Dextran Sulfate Sodium, 
PSR: Picro-Sirius Red,
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perform when applied across a test set containing both PCM 
and cardiotoxic findings.

In traditional toxicologic pathology, the evaluation of testicular 
tissues in a stage‑aware manner is a regulatory recommendation 
and is currently done manually. The stage‑awareness of testes 
requires broadly categorizing seminiferous tubules into the 
early, mid, or late stage of the spermatogenic cycle, a task that 
is amenable to automation.[92] DL‑based staging assessments 
are being developed for the mouse[91] and rat[92] testes. Beyond 
eliminating the potentially burdensome and specialized 
task of stage‑aware evaluation of the testis, analyzing stage 
frequencies and germ cell quantifications of treated groups 
against a concurrent control group could allow for the detection 
of slight perturbations in spermatogenesis.[92]

Similarly, for the registration of new chemicals, a female 
reproductive assessment for potential toxic effects is 
a regulatory requirement. This assessment entails the 
quantification of primary and growing follicles of the ovaries 
of the offspring, a highly tedious and time‑consuming task for 
which DL has been utilized to count primordial follicles in the 
mouse ovary[81] and follicles in the rat ovary.[89] These solutions 
alleviate the need for time‑consuming manual counting, 
promise to reduce inter‑observer variability, and enable routine 
ovarian corpora lutea enumeration in rat toxicity studies.[83]

In ocular histopathology, quantification of retinal atrophy 
is another example where DL‑based algorithms have the 
potential to reduce labor‑intensive measurement and at 
the same time minimize drawbacks of manual pathology 
evaluation, including diagnostic drift and observational bias. 
VGG16‑based DL models have been applied to detect retinal 
atrophy in H & E stained slides from rats.[87] Briefly, WSIs 
were binarized, and retinas converted to 10,746 patches to 
train a retinal classification model and then a nuclear layer 
classification model. Pathologist‑annotated retinal layer 
measurements were used as ground truth. Using DL to detect 
differences in the thickness of the retina and its inner and outer 
nuclear layers enabled the identification of retinal atrophy, 
which can occur as a test item‑related effect or from other 
causes (e.g., light exposure and rodent strain).[87]

Hepatocellular hypertrophy and vacuolation are very 
common drug or chemical‑induced lesions seen in toxicity 
studies. As compared to quantitative liver weight assessment, 
histopathology is still the best method to diagnose hepatocellular 
alterations, even though it is subject to interobserver variability 
and differences in visual perception. The quantitative 
evaluation of hepatocellular hypertrophy in the rat has recently 
been enabled by DL approaches.[86] In a stepwise manner, the 
hepatocytes were first segmented according to lobular regions. 
These sub‑anatomic locations have important implications 
for drug metabolism and cellular physiology. Next, the 
mean cytoplasmic area was calculated for each of the three 
regions  (centrilobular, midzonal, and periportal). Finally, a 
known inducer of hepatocellular hypertrophy, phenobarbital, 
was administered to rats, and H & E liver slides were analyzed 

against vehicle‑treated controls. This method achieved 
similar results to gold‑standard pathologist grading, as well 
as liver weights and gene expression. In a second approach, 
the DL model was trained to detect hypertrophy without 
any prior zonal segmentation of hepatocytes. This approach 
achieved similar results as those with zonal segmentation.[86] 
In a mouse model of hepatic steatosis, in which hepatocytes 
become distorted by cytoplasmic fatty vacuoles, a DL‑based 
quantitative assessment of hepatocellular vacuolation provided 
a strong, significant correlation between the quantitative 
automated measurement of steatosis and the semi‑quantitative 
pathologist‑assigned score (r = 0.89).[85]

When it comes to the applicability of AI in DP, there are two 
main areas of focus for quantitative scoring: (a) attempting to 
duplicate the pathologist panel approach where a ground truth 
from three or more pathologists is used to develop the training 
set, or (b) true quantification of the morphologies that cannot 
be manually assessed. The use of multiple reviewers improves 
the baseline of the DL models for better reproducibility of 
scoring and provides objective assessments and quantitation. 
Utilizing the pathologist’s feedback regularly during the test 
would reduce the drift.

Computer‑assisted abnormality detection
A final solution for abnormality triaging has not been 
developed, yet it would be the single most impactful ML/
DL‑based application in toxicologic pathology. This solution 
will screen out the normal slides, allowing pathologists more 
time to focus on slides with abnormalities. This workflow 
keeps the human  (pathologist/SME) in the loop for critical 
decision making with regard to the specific nomenclature 
and interpretation applied to a finding, and DL could further 
assist by applying standardized grading across groups once 
an abnormality of toxicologic significance is confirmed. 
Computer‑assisted abnormality detection is not entirely new 
in CDP, with examples applying proprietary algorithms in 
cervical cytology screening surfacing in the 1990s. Two 
FDA‑approved automated imaging systems, the FocalPoint 
GS Imaging System and the ThinPrep Imaging System are 
widely used today for this purpose.[102‑104] Advances in DL have 
made considerable headway in CDP applications, particularly 
regarding assisted cancer diagnostics and immunophenotyping 
in surgical biopsy specimens, which has the potential to 
accelerate workflow and tangibly improve diagnostic accuracy.
[65,105‑107] In human and veterinary diagnostic cytopathology, 
proprietary, neural‑network‑based pre‑classification systems 
are  widely used, particularly for hematology applications.[108,109] 
Most recently, two AI‑based decision support tools in CDP 
have gained FDA Breakthrough Device designation: Paige. AI 
in 2019 for cancer histology[5] and 4D Q‑plasia OncoReader 
Breast in 2020 for breast cancer histology.[110]

An abnormality‑agnostic method based on normal tissue 
identification has been advocated as an alternative approach 
to the detection of specific abnormalities. In this paradigm, the 
model is trained only on normal tissues, and outlier patches 



J Pathol Inform 2021, 1:42	 http://www.jpathinformatics.org/content/12/1/42

Journal of Pathology Informatics 11

would be flagged broadly as abnormalitiesor foci potentially 
containing toxicologically significant findings ‑ for pathologist 
review. Establishing this workflow is predicated on a foundation 
in the features of normal tissues. For human tissues, there have 
been some efforts in this area. A patch library representing up 
to 57 histological tissue types based on a 3‑level hierarchical 
taxonomy of tissue architecture (ranging from least specific, 
e.g.,  epithelial, to most specific, e.g.,  stratified squamous 
epithelial) has been used to train VGG‑16, ResNet18, and 
Inception‑v3 networks on tissue type classification.[111] A 
purported benchmark against which AI model performance can 
be measured may exist in DAPPER,[112] which evaluates the 
accuracy and feature stability of ML classifiers by comparison 
against a GTEx‑derived dataset of normal histology. Similar 
efforts in toxicologic pathology towards abnormality detection 
have largely focused on training neural networks on histologic 
atlases of normal tissues. A rat tissue slide catalog of 1690 
slides comprising 46 different tissue classes was imaged at 
six magnifications, and patches were used to train VGG‑16, 
ResNet50, and Inception‑v3 networks to identify histologically 
distinct tissues.[52] Some important findings included improved 
reliability of tissue prediction with decreasing magnification, 
owing to greater context, except in the case of small 
tissues (e.g., parathyroid gland), where higher magnification 
was required, as well as confusion in less histologically distinct 
tissue regions (e.g., segments of the large intestinal tract).[52] 
Through UMAP visualizations, the investigators also found 
that the networks were learning sub‑structural elements of 
organs that had not been given explicit labels in training.[52] 
Furthermore, these trained models on rats served as the basis 
for transfer learning in nonhuman primate and minipig 
tissues.[52] Finally, representing a middle ground between a 
broadly‑trained CNN that recognizes normal histology across 
multiple studies and one that is trained to recognize a single 
class of abnormalities, Deciphex’s Patholytix AI provides 
computer‑aided diagnosis by developing classifiers based on 
a concurrent control set within the study, then presenting a 
color‑coded output indicating the location and class or severity 
of the detected abnormality. An evaluation of this system in 
carcinogenesis studies using Tg‑RasH2 mice utilized three 
top‑performing CNN models based on U‑Net architecture with 
an F1 score (dice coefficient; details for evaluation metrics in 
Section “Postprocessing and evaluations”) threshold of 0.7 
to determine acceptable performance,[84] based on ground 
truth assessment by pathologists. The selected and trained 
CNN, EfficientNet‑b0, automatically produced masks for 
lung, stomach, and thymus upon scanning, allowing the 
pathologist to simultaneously review the digitized slide and 
AI overlay, which indicated the presence, location, and class 
of proliferative change present.

Recently, a supervised DL model has been developed to detect 
selected lesions (abnormalities) in selected organs.[96] To achieve 
their models, the group prepared a private, thousand‑slide, 
pathologist‑reviewed, exhaustively annotated WSI database. 
Due to the high class imbalance (very low percentage of lesions 

vs. normal tissue), the multi‑class classification for detecting 
multiple lesions concurrently was not successful; however, 
consolidating the data, i.e., considering all lesion types as one 
class, helped the models to be able to classify lesion versus 
no lesion successfully.[96] Another consolidation approach was 
also examined: A selected lesion versus all other lesions in 
the dataset plus normal tissue. The performance of the latter 
classifiers was good on some lesions with higher occurrence 
in the dataset. For example, the one‑versus‑all classification 
approach in kidneys resulted in F1 scores of higher than 0.9 
in mineralization, casts, and infiltration, while F1 score in 
tubule degeneration was only 0.55.[96] The authors noted that 
despite the robust database, the data did not contain all the 
abnormalities that might occur during a toxicologic pathology 
study.

Developing an AI‑enabled DP workflow that could rapidly 
screen out the normal tissues will enable pathologists 
to prioritize the principal task of reviewing only the 
abnormalities – “slides that matter”[36] – allowing for higher 
overall throughput and shorter study timelines. The bulk of 
a toxicologic pathologist’s work is centered around triaging 
normal and abnormal tissues, and although an AI‑based 
solution is conceptually attractive, it remains just out of 
reach in toxicologic pathology. Currently, there might still 
be some challenges in the definitions. First, there is no true 
definition of normal; it is highly context-dependent  because 
“normal” changes with age, gender, diet, strain, etc. Another 
problem is that the changes associated with “abnormal” are 
even more heterogeneous and much broader in their range of 
severity. These vague and subjective definitions will increase 
the discrepancies between pathologists and a DL model. 
In addition, a DL model would be expected to recognize 
abnormality types that it has never seen before. Currently, the 
efforts are mostly in a simplified version (in a specific tissue 
type, species, and abnormality type).[67,80] These will be the 
first steps toward accomplishing a DL‑based system that could 
significantly accelerate the pathologist’s review of normal and 
abnormal tissues.

Content‑based image retrieval (CBIR)
Nowadays, photographs can be indexed and easily mined to 
identify people, objects, and locations – allowing a user to 
search through thousands of digital photos. This technology is 
extremely mature and is now being applied to histopathology.
[113] However, unlike photos, a WSI is gigapixels in size with 
typically about 100,000  ×  100,000 pixels, which makes 
indexing and mining a challenging task. Content‑based image 
retrieval (CBIR) allows to search and retrieve images from a 
digital slide database based on similarity to a query image or 
feature or perhaps natural language query text.

A reliable CBIR system is based on image feature 
extraction, a robust digital image database, and efficient 
similarity metrics.[114] Digital images are high‑dimensional 
data. Therefore, in order to separate noise from signal and 
to achieve a meaningful image query, a similarity metric 
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based on a weighted approach should be employed. Based 
on this approach, the discriminatory features from the 
query image should carry more weight than background 
features such that the images that are relevant to the query 
image have a higher probability to be retrieved  (higher 
precision retrieval). The focus of pathology image analysis 
services like Google Smily[115,116] is to allow the pathologist 
to identify an ROI and search across “like images” that 
have been tagged and validated to help speed up the 
identification and provide consistent semi‑quantitative 
answers. If designed correctly, the system can provide a 
“match” score and assist the pathologists in their decisions. 
CBIR also proves to be useful during annotations to search 
for visually similar annotations in the database, thus 
accelerating the annotation process.[117]

In toxicologic pathology, chemical‑ or drug‑induced lesions 
come in various morphological forms and severity, and 
sometimes these lesions could overlap with or exacerbate 
background or spontaneous findings. Since diagnosis is 
applied to the entire image or set of images, finding the image 
patch that is representative of the diagnosis could be very 
challenging. CBIR can be used to fetch images or regions of 
interest where image metadata alone may not be sufficient. 
CBIR could also be another tool in the pathologist’s toolbox 
to quickly search and discover images from large repositories 
instead of having to rely on their memory for historical cases. 
Therefore, a large‑scale and relatively structured image 
database is the foundation for an efficient and powerful CBIR 
system. Fortunately, most institutions practicing toxicologic 
pathology (CROs and large pharmaceutical industries) generate 
or have archived large number of glass slides which if, 
strategically scanned, can build massive amounts of structured 
digital data that can be used for training and implementing a 
large‑scale CBIR system.

Challenges In Implementation Of Deep 
Learning‑Based Applications In Toxicologic 
Pathology

The analysis of histopathology images poses unique challenges. 
Despite the specific impressive examples and applications of 
AI in DP, there are clear obstacles that limit the employment 
of DL methods in toxicologic pathology.[2] What follows will 
cover recent efforts in response to these challenges.

Regulatory landscape
A significant portion of toxicologic pathology work is conducted 
under a highly regulated good laboratory practice  (GLP) 
environment guided by documents issued by FDA[118] and 
other regulatory bodies (e.g. Environmental Protection Agency 
and Organization for Economic Co‑operation Development). 
The principles of GLP are meant to assure the public that 
sound scientific practices were used during the conduct 
of the nonclinical study and data collection. Like other 
systems currently used in GLP studies, validation would be a 
requirement for DL‑based software. However, deployment of 
DL‑based software in a regulated workflow can be a daunting 
task as not only the DP system used to generate WSI needs to 
be validated but also the AI‑based software. Early on and due to 
lack of substantially equivalent determination, FDA classified 
WSI systems as class  III medical devices  –  the “highest 
risk” category and requiring general controls (quality system 
regulation, good manufacturing procedures) and premarket 
approval.[61] In 2015, FDA published technical performance 
guidelines, which created a roadmap for scanner manufacturers 
to get FDA approval leading to the first approval (under the 
de novo pathway) of a complete WSI system for primary 
diagnosis in surgical pathology in 2017.[19] Importantly, 
with this approval FDA reclassified WSI systems as class II 
medical devices, requiring manufacturers to get approval 
through 510(k) by demonstrating “substantial equivalence” 
to a previously approved device.[119] With this precedent in 
place, many more scanner manufacturers will likely submit 
their devices for FDA approval.

Recently, FDA has approved multiple DL‑based software 
and medical devices for clinical use to support several 
medical specialties, including radiology, cardiology, and 
ophthalmology.[120] Although many DL‑based pathology use 
cases have been published in the literature, so far, there is no 
FDA‑approved software on pathology data. One AI‑based 
pathology company has received FDA’s Breakthrough 
Designation and is promising to bring AI‑products across many 
cancer types to support pathologists.[121] From a regulatory 
perspective, software intended to be used for medical purposes 
without any accompanying hardware is considered software as 
medical device (SaMD), and DL‑based SaMD brings a unique 
challenge owing to its ability to adapt or change after the 
approval process. In 2021, FDA released a discussion paper and 
solicited public feedback on a proposed regulatory framework 
for AI/ML‑based software.[122] Based on the feedback received 

Figure 8: Flowchart for implementation of digital slide quality control
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from a wide array of stakeholders, FDA recently issued an 
action plan for AI/ML‑based SaMD.[123] It is only a matter 
of time before we will start seeing FDA‑approved DL‑based 
software in the pathology domain.

Nonclinical safety and toxicologic pathology are highly 
regulated practices, making it mandatory to audit and verify 
any decisions made by a machine. This will increase the 
importance of model interpretability and the demand for the 
ability to question, understand, and trust DL systems.[63,124] 
In addition, suitable interpretation methods must be devised 
to understand the predicted outcomes and provide evidence 
for explanatory and regulatory purposes. Trained DL models 
have generally been considered “black boxes” due to their 
lack of interpretability while making predictions.[125] Although 
a pathologist does not have to understand all the technical 
details of DL models to determine their performance, 
regulatory agencies might want to know how the models 
work. Thus, it is essential to draw some form of the 
reasoning, either by a pathologist or by the data scientist 
who is part of the team, behind the predictions by exposing 
the black box as much as possible through visualization of 
the DL neural network embeddings to demonstrate how the 
output was reached. One approach is to localize the areas 
in the WSI that contribute significantly to a prediction, 
which would help pathologists interpret the results and 
gain insight into the evidence therein. A few methods have 
been developed to visualize the neural network embeddings 
that substantiate the achieved outcome: (a) visual attention 
maps,[126] (b) heatmaps,[127] (c) saliency maps,[128] and (d) image 
captioning.[43] For instance, Tellez et al.[128] have used saliency 
maps using Gradient‑weighted Class Activation Mapping[129] 
to interpret how their Neural Image Compression model 
captures semantic features at the patch level and identifies 
the areas at the slide level that contributed significantly to the 
tumor prediction. In an AI‑based detection system for nodal 
metastasis of breast cancer, the 5% most important pixels 
with 1 µm dilation were used for heatmap visualization.[25]

Infrastructure
To be able to benefit from DL‑based applications in toxicologic 
pathology, a DP workflow must first be implemented. In 
addition to the lack of guidelines/clarity regarding the nature 
and extent of DP system validation for use in highly regulated 
disciplines like toxicologic pathology, infrastructure is one of 
the biggest hurdles in the implementation of DP workflow in 
toxicologic pathology.[34] For DP to be accepted and adopted 
in a routine nonclinical toxicologic pathology evaluation, 
the process must be equally or more efficient, accurate, and 
user‑friendly than evaluating tissues using a microscope. In 
addition, the implementation of DP must be cost‑effective to 
gain budgetary approval of DP endeavors. The hardware, data 
storage systems, internet speed, speed of loading the WSI, the 
refresh rate of a monitor, and image management software 
must provide a seamless experience with no lag or downtime 
for pathologists.[2]

Currently, the cost of DP workflow implementation is more 
than what it costs to evaluate tissues using a microscope. 
This is one main reason why complete implementation of DP 
workflow has not occurred in many organizations. Until the 
benefit‑cost ratio and the user experience of DP workflow 
are on par with or demonstrate a clear improvement over 
microscopic evaluation, infrastructure will continue to be a 
major challenge.

Image format, size, and magnification
WSIs may come with different image formats depending on 
the scanner. This variation in file format might cause an extra 
step of unifying file format before a DL model development. 
While the DICOM (digital imaging and communications in 
medicine) format offers the benefit of interoperability and 
remote telepathology, this has not yet been adopted as the 
standard at this stage in DP. A conversion‑based approach is 
typically employed using open‑source or commercial programs 
to bring legacy, proprietary files into a unified format in either 
a high‑throughput or in‑line manner.[130]

Digitization of glass slides rapidly generates massive amounts 
of data, necessitating large and thoughtfully designed networks 
of stored and cached data. The choice of scanning magnification 
depends on finding the right balance/tradeoff to best optimize 
resolution and image size  (data storage considerations). 
A  typical  40X (Please standardize magnification format)  
scan with a 0.25 µm pixel resolution and 24‑bit color depth 
contains 384 million bits of information within a single 1 mm2 
area of the slide, resulting in a file size of 48 MB if no further 
steps are taken in data efficiency.[19] Therefore, depending on 
the tissue size, a WSI can have a file size of up to 6 GB. Due 
to the large size of WSIs, before any image analysis, each 
WSI must be broken down into hundreds or thousands of 
smaller tiles. Magnification in digital image analysis can be 
lower than scanning magnification and is defined by closely 
the image needs to be zoomed in for the analysis to be able 
to resolve the level of detail that will discriminate objects 
of interest [Figure 3]. The magnification and the patch pixel 
size will define the number of patches per WSI. Without 
down‑sampling  (resizing), the field of view will have a 
large pixel size, and deep neural networks with larger input 
sizes would need much deeper topology and a much larger 
number neural mappings making them even more difficult and 
perhaps impossible to train. Thanks to advances in accelerated 
computing leveraging graphical processing units (GPUs), a la 
larger input size ( up to 1024x1024) can be trained. However, 
most DL models in DP usually use 256 × 256 or 512 × 512 
patch size to be able to perform on low GPU systems. Still, 
extracting patches from a high‑resolution WSI requires 
down‑sampling prior to feeding them into a deep network.

The next step is to determine which magnification and patch 
size are the best choices for DL WSI analysis. The selection 
of magnification can be variable and dependent upon the 
“intended use” of the AI‑based model. However, there must be 
a balance of magnification along with down‑sampling to get the 
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appropriate patch pixel size. Down‑sampling these tiles may 
result in the loss of crucial information that would justify the use 
of the highest magnification to have the least down‑sampling 
effect. However, the use of a high magnification such as 40X is 
not practical because a deep network that is trained on higher 
magnification will not only be slower to analyze but will 
also lack the contextual information at lower magnification. 
Although the context at low magnification possesses key 
information, higher magnified tiles would determine the details 
that would be needed for a specific task. Therefore, a DL model 
might perform differently at different magnifications. While 
a specific class  (e.g.,  bone tissue) can be detectable at low 
magnification, prediction of another class  (e.g., parathyroid 
tissue, germ cells for spermatogenic staging) can be more 
accurate at higher magnification.[52] To address this challenge, 
instead of training a separate network for each level of 
magnification, multi‑magnification architectures have been 
proposed to integrate information from multiple scales.[131] The 
multi‑scale architectures use multiple encoders and/or multiple 
decoders, offering the dual benefit of context and resolution. 
Another approach is modeling neighboring patch correlation 
that takes the contextual information into account.[43] Due to 
the disjointed/random selection of tiles/patches, loss of visual 
context is inevitable because the order of patches defines the 
textures in a WSI. The optimal magnification and tile size 
depend on the complexity of the task. The best approach is to 
experiment with the training to find a balance of image fidelity 
and computational efficiency for the algorithm.

Amount of annotated images
An important statistic for the success of any DL task is the 
abundance of training data. As described in Section “Deep 
learning methods”, in supervised learning, WSI themselves 
are insufficient for training and must be appropriately 
regionalized and labeled to leverage supervised learning 
techniques successfully. Label information from ordinary 
pictures can be easily accessible, and it does not need any 
special expertise (e.g., anyone can identify objects such as cats 
vs. dogs). However, only an experienced pathologist can label a 
pathology image accurately. Therefore, even if a large repository 
of images is available, there might not be enough labeled data 
(ground truth) for training. Furthermore, public data sets with 
hand‑annotation can only be useful if there is a similar task/
purpose, staining, magnification level, and resolution. The 
quality and extent of the curated data set ensure the robustness 
and functionality of DL models. Segmentation models are very 
sensitive to correctly defining the borders or ROI in WSIs,[132] 
i.e., labeling at pixel/patch‑level. Pixel‑wise annotating an entire 
WSI requires a lot of time and labor. Researchers take four 
approaches to increase the amount of annotated data: (1) using 
data augmentation, (2) increasing the amount of training data 
efficiently, (3) utilizing transfer learning, and (4) implementing 
weakly‑supervised learning approaches.

Data augmentation is the first approach that should be taken 
when there is not enough image data or labeled images 
available for training. Synthetic images (augmented images) 

can be generated based on certain rules in order to augment 
the training data. Image augmentation techniques include 
arbitrary rotation, patch flipping on a vertical or horizontal 
axis, and HSV (hue, saturation, value) variable manipulation 
by random number multipliers.[133] Data augmentation is also 
useful when the training data set does not contain images that 
are diverse enough to reassure the generalizability of the DL 
models. Stain color augmentation has been shown to improve 
the performance of classifiers on almost all experimental 
scenarios.[134] Due to the effects of data augmentation on the 
performance of models, it has become a standard preprocessing  
step in most DL approaches.

Efficient labeling is the approach that can be taken to enhance 
the performance of annotating procedure. For example, QuPath 
is an open‑source easy‑to‑use graphical user interface that 
can automatically refine ROIs around the targeted objects.[135] 
Furthermore, labeling can be sped up by implementing an 
integrated workflow to localize the ROIs during the pathology 
practice by tracking the pathologist’s eye movement[136] or 
mouse cursor positions.[137] In practice, one of the most reliable 
approaches to increase the amount of annotated data needed 
for training is the initiation of the training by a small amount 
of annotated data, refining the predicted label by a pathologist, 
and adding the newly refined annotations to the training data 
set.[138] Refining and reviewing labeled data are much easier 
than hand annotating a WSI from scratch. Active learning is 
another approach that uses machine learning to identify the most 
valuable unlabeled data. In concept, instead of labeling all WSIs 
available, a classifier chooses the images for labeling based 
on their expectancy in the improvement of the classification 
performance which can be defined by the confidence of the 
model in its prediction (i.e., having a low probability). Then, 
a pathologist can annotate and add the data to the training 
data set. In a study investigating DL for assisted detection of 
prostate cancer, the CNN had an increased likelihood of adding 
a patch to the training data if the center pixel of the patch was 
initially classified incorrectly by the network, thus feeding back 
additional training data containing more challenging samples.[106]

Transfer learning is the most widely used approach to 
overcome the need for a large, de novo training data set. A DL 
model developed on a source domain with a huge amount of 
data can be fine‑tuned (used as a pretrained model) to learn 
a target domain with a lesser amount of data. This domain 
adaptation is called transfer learning, and the goal is to extract 
the knowledge from one domain and apply it to another. For 
example, a transfer learning model based on AlexNet has 
been able to score liver fibrosis stages using only 25 rat liver 
WSIs.[82] Transfer learning is also overcoming the limitation 
of DL models to the specific tasks for which they have been 
designed. For example, a model developed for the detection 
of metastatic breast cancer in lymph nodes will not be able 
to correctly identify other pathology that may be present in 
the slide, such as lymphoma or an infection,[107] much less 
the presence of two or more concurrent pathologies. Specific 
to toxicologic pathology, transferring the domain between 
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species or organs is challenging. Unlike human pathology, 
multiple species (rodent and nonrodent) are commonly used 
in toxicologic pathology. For example, a liver in mouse and 
monkey might have similar basic histology, but a model in a 
mouse liver may not have the same performance on monkeys 
without transfer learning. When the direct cross‑species 
prediction was not performing well for normal histology, 
transfer learning, retraining on a new domain, proved to be 
effective in cross‑species domain adaptation.[52]

Weakly supervised‑based models are another approach that 
incorporates weak labels and does not need exhaustively 
annotated data. The slide‑level label is more likely available 
in most pathology studies, including toxicologic pathology. 
Avoiding pixel‑wise annotations and focusing on the slide‑level 
label, Campanella et al. have been able to scale their database to 
44,732 WSIs.[105] Details in weakly supervised learning models 
can be found in Section “Deep learning methods”.

While there are some shared data sets in CDP, and many 
efforts are underway to facilitate this process,[40] such 
shared, pathologist‑annotated datasets are not available in 
toxicologic pathology  [Table  1]. Each organization trying 
to implement AI in its workflow can develop its private, 
time‑consuming, and expensive dataset. However, it will 
benefit the entire toxicologic pathology community and speed 
up the implementation process if shared datasets of common 
pathology abnormalities in animal species can be created.

Class imbalance
In biomedical image applications such as DP, imbalanced 
datasets are a common problem since some classes are rarely 
occurring. In toxicologic pathology, this issue is even more 
pronounced specifically for abnormality detection because 
most of the tissues are normal, and abnormalities can be highly 
variable and infrequent. Balancing the dataset by expanding 
under‑represented classes may alleviate the imbalance, but 
this could be challenging and sometimes impossible. Other 
techniques that can be used to overcome this challenge are 
loss weighting (the loss computed for different samples will 
be weighted differently based on whether they belong to 
the majority or the minority classes). Under‑sampling the 
majority classes or oversampling the minority classes can 
also be effective. In a systematic review of different scenarios 
in multi‑class classification, oversampling has been shown to 
be the most effective approach.[139] In DP, oversampling might 
increase the likelihood of overfitting, which might affect the 
performance of the models during testing.

Stain variations and artifacts
During tissue processing, microtomy, and staining procedures, 
various artifacts can inadvertently be induced to an image 
that can add unintended noise and affect the AI models’ 
performance.[2] These artifacts can also interfere with glass 
slide microscopy assessments.[140] This challenge is present 
in both CDP and toxicological pathology, but toxicologic 
pathology samples have generally higher quality. CDP 
samples suffer from being very small in size collected 

using various instruments, or they might be collected after 
an extended postmortem interval. On the other hand, the 
toxicologic pathology samples represent full‑thickness tissue 
sections obtained immediately following euthanasia that are 
batch‑processed in the histology laboratory, which ensures 
higher quality slides and images. Examples of common glass 
slide preparation artifacts are stain fade, overstaining, tissue 
tear, folds, debris, mounting bubbles, autolysis, and uneven 
cut.[140] Having experienced histology staff and high‑quality 
laboratory equipment can help decrease the occurrence of these 
artifacts. Some other artifacts only occur in WSIs and relate 
to poor scanning, for example, stitching artifact, out‑of‑focus 
areas, and missing tissue (i.e., the scanner misses some parts of 
the tissue that are actually present on the glass slide). In these 
cases, rescanning might help to to improve the quality of WSI.

The staining intensity may have variability due to differences 
in protocol design, reagent quality, and section composition 
during glass slide preparation.[141] H & E staining variability 
is a well‑recognized preanalytical confounder,[141] and 
different techniques have been employed to either augment 
the training dataset to accommodate fluctuations or normalize 
the test set through color transformations that approximate 
the training set.[142] One technique investigated in a study of 
CNN‑based detection of nodal metastatic breast cancer was 
transforming colors into a hue‑saturation‑density space to 
account for the nonlinear relationship between the stain and 
pixel intensity values. This transformation was applied to 
change color statistics into a reference slide, with the median 
color statistics across the training set used as a reference to 
perform normalization.[26] Another insight into the value that 
color information brings to a deep CNN was demonstrated in a 
study of computer‑aided Mycobacterium tuberculosis bacillus 
detection in WSI, wherein the accuracy in Ziehl–Neelsen acid 
fast‑stained slides was 95.3% but decreased to 73.8% in the 
same decolorized/binarized images.[143] Decreases in the area 
under the curve (AUC, an aggregate measure of performance) 
have been observed when there is a perceived difference 
in brightness, contrast, and sharpness due to the use of a 
different scanner.[105] As a result, training on a mixed dataset, 
including scans from multiple instruments or fine‑tuning a 
DL model using images from a different scanner, may be 
necessary to ensure consistent performance.[105] Illustrative 
of this point, when the CAMELYON16‑trained model for 
nodal breast cancer metastasis detection was applied to a 
test set from Memorial Sloan Kettering, there was a 20% 
drop in AUC.[105] In fact, it has been shown that without 
compensation for variation among images sourced from 
different laboratories, nonmorphological differences such as 
color variations are more prominent in t‑SNE plots feature 
representations, more details in Section “Deep learning 
methods” of the feature space than in real morphological 
differences between specimens of the same diagnostic class.[53] 
The presence of stain variations and artifacts demonstrates the 
need to focus on manual or digital QC to adjust the current 
methodology for slide preparation and scanning. Automated 
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digital QC methods presented in Section “Computer-assisted 
quality control”) for artifacts detection can not only benefit 
in delivering high‑quality glass slides for pathologists’ daily 
practice but can also assist in creating quality data with a high 
signal‑to‑noise ratio for the downstream AI models.

Summary And Outlook

Nonclinical toxicity studies are an essential step in evaluating 
the safety of INDs or chemicals before they can be approved 
for human use. While a toxicologic pathologist’s evaluation is 
currently the gold standard in assessing target organ toxicities 
and microscopic alterations related to drugs and dosages, 
manually reviewing thousands of tissue slides is extremely 
tedious and time‑consuming. Thus, the field is ripe for 
technological modernization.

Our outlook is a fully digitized toxicologic pathology workflow. 
If toxicologic pathologists want to experience and benefit 
from the renaissance of digitized workflow transformation, 
substantial investments in training and equipment must be 
made toward digitalization.[34] The adoption might be slower 
initially, but after adequate training and acclimatization, overall 
pathologist performance (speed, accuracy) increases.[98] Owing 
to the need for a massive investment of time and infrastructure 
required on the front end, fully integrated DL‑based workflows 
for digital toxicologic pathology are not likely to be 
implemented at this time outside of industry (pharmaceutical 
companies, contract research organizations) or large diagnostic 
and medical research centers. Those well‑resourced disciplines 
have an opportunity to develop and deploy such systems that 
may in the future become widely accessible in the scientific 
community.

This paper provided a review and discussion of applications 
of AI/DL in toxicological pathology, which is transforming 
the traditional pathology practice into a computer‑assisted 
digitized workflow. The first application of AI/DL in a DP 
workflow would be the digital slide QC to help prepare 
high‑quality WSIs for both virtual microscopy and image 
analysis. Next, AI/DL can be used for computational 
image analysis. Recent publications have demonstrated 
the potential of computational image analysis in assisting 
toxicologic pathologists by automating labor‑intensive 
measurements and at the same time minimizing diagnostic 
drift and observational bias originating from subjective 
evaluation. Most importantly, AI systems that could 
rapidly indicate the presence of abnormalities in a tissue 
potentially related to test‑item administration is of utmost 
value to toxicologic pathologists. Rather than having 
specific DL models to recognize each possible categorical 
change  (e.g.,  cancer, as is being applied in the clinic), 
learning and screening out the normal tissue and flagging 
the abnormalities will significantly cut down the time spent 
by toxicologic pathologists reviewing thousands of tissue 
samples thereby shortening the study timeline.[36] CBIR 
is also presented as a potential tool to assist toxicologic 

pathologists for data discovery and rapid retrieval of relevant 
images from archives.

Recent advances in response to the challenges in developing 
DL algorithms were also covered in this paper. Even with 
all the early success in supervised learning in pathology, 
the response of the pathology community in general to DL 
methods is mixed. One main criticism for current DL is 
the narrow nature of these algorithms and their inability 
to mimic diverse complements of skills and capabilities 
demonstrated by pathologists. Unsupervised learning may 
present the opportunity to broaden the scope of DL‑based 
models and free pathologists from annotating the images. 
In the context of toxicologic pathology, the conceptual idea 
of unsupervised/weakly supervised learning seems highly 
enticing as toxicologic pathologists deal with a variety of 
tissues in multiple species with unlimited lesion representation. 
We also discussed some of the challenges in validating the DL 
models and getting regulatory approval of such software before 
its use in a GLP environment.

While there will be many challenges to overcome in bringing 
a remarkable change to toxicological pathology both 
technologically and culturally. culturally, keeping pathologists 
at the center in collaboration with AI scientists and engineers 
will be instrumental to the formation of multifaceted approaches 
that can deliver safer drugs to the patients faster.[2] On this note, 
we see tangible near‑term successes and a bright future for 
AI/DL in toxicologic pathology, in which interdisciplinary 
teams have an opportunity to continue to build and strengthen 
explainable and adaptable AI to advance drug development.
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