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Abstract 

Background:  Immunotherapy is a revolutionary strategy in cancer therapy, but the resistance of which is one of the 
important challenges. Detecting the regulation of immune cells and biomarkers concerning immune checkpoint 
blockade (ICB) therapy is of great significance.

Methods:  Here, we firstly constructed regulation networks for 11 immune cell clusters by integrating biological path-
way data and single cell sequencing data in metastatic melanoma with or without ICB therapy. We then dissected 
these regulation networks and identified differently expressed genes between responders and non-responders. 
Finally, we trained and validated a logistic regression model based on ligands and receptors in the regulation network 
to predict ICB therapy response.

Results:  We discovered the regulation of genes across eleven immune cell stats. Functional analysis indicated that 
these stat-specific networks consensually enriched in immune response corrected pathways and highlighted antigen 
processing and presentation as a core pathway in immune cell regulation. Furthermore, some famous ligands like 
SIRPA, ITGAM, CD247and receptors like CD14, IL2 and HLA-G were differently expressed between cells of responders 
and non-responders. A predictive model of gene sets containing ligands and receptors performed accuracy predic-
tion with AUCs above 0.7 in a validation dataset suggesting that they may be server as biomarkers for predicting 
immunotherapy response.

Conclusions:  In summary, our study presented the gene–gene regulation landscape across 11 immune cell clusters 
and analysis of these networks revealed several important aspects and immunotherapy response biomarkers, which 
may provide novel insights into immune related mechanisms and immunotherapy response prediction.
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Background
The majority of skin cancer-relevant deaths are accounted 
by melanoma [1, 2]. Only 23% of metastatic (stage IV) 
melanoma patients survived over 5  years after diagno-
sis [1]. Immunotherapy raised a revolutionary weapon 

against cancer [3–5]. Notably, anti-CTLA4 and anti-PD-1 
inhibitors, ipilimumab and nivolumab, have achieved 
great increase in clinical benefit for carcinomas like met-
astatic melanoma [6–8]. Even though oncology is being 
revolved by the remarkable success of ICB therapies, the 
majority of patients received immune checkpoint block-
ade (ICB) therapies unfortunately do not benefit from the 
treatment [9–12]. Primary and acquired resistance also 
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obstruct long-term curative-effect in patients with meta-
static melanoma [9].

ICB therapy provided a great sense to investigate 
immune cell interactions of melanoma [13]. It is an 
urgent need to practice regulation analysis and data min-
ing among immune cells under context of on- or post-
therapy in melanomas. By profiling of single immune 
cells in baseline and on- or post-therapy samples in 
melanoma patients treated with checkpoint therapy, 
Hacohen et al. has defined 11 CD45+ immune cell stats 
which were associated with response to ICB therapy in 
metastatic melanoma [14]. These ICB therapy related 
CD45+ immune cell stats enable construction of regula-
tion networks for different immune cell stats.

Currently, primary biomarkers of ICB therapies such 
as tumor mutational burden (TMB) and programmed 
death ligand 1 (PD-L1) expression [7, 15] have performed 
rough immunotherapy selection, and new biomark-
ers (e.g., eosinophilic count) show associations toward 
poor or longer survival [16]. For predicting of response 
to therapy, there are several studies attempt to inquire 
into alterations in expression of the PD-1/PD-L1 immune 
inhibitory axis or tumor microenvironment in patients 
with melanoma [8, 15]. Also, some studies focused on 
heterogeneities of individual cells by single-cell RNA 
sequencing [14, 17]. However, these researches have thus 
far provided only a limited understanding for immuno-
therapy response. Novel potential biomarkers and pre-
diction models are still urgently needed.

Here, we constructed regulation networks based on 
specific immune cell stat, dissected transcriptome fea-
tures of multiple single-cell cluster binding pathways and 
investigated predictive capability of single-cell-based net-
work model. Our observation showed that ligands and 
receptors in immune cell related regulation networks 
have selective power of therapy response in patients 
receiving ICB inhibitors.

Materials and methods
Materials
CD45+ single cell sequencing Immune cell high through-
put sequencing matrix of melanoma we used in this study 
was accessible in GEO database (GSE120575) which pro-
filed 16,291 CD45+ immune cells from 48 tumor samples 
[14].

Pathways As reference pathways of our networks, Bio-
PAX [18] level 3 integrated pathways were downloaded 
from https://​www.​pathw​aycom​mons.​org/​archi​ves/​PC2/​
v10/. The common pathways contain 2,374,707 interac-
tions of 32,875 participants integrated as 13 types (e.g., 
controls-expression-of, in-complex-with).

mRNA sequencing of bulk tumor samples mRNA 
expression of 56 MAGE-A3 checkpoint inhibitor treated 

melanomas was downloaded from GEO database 
(GSE35640). And twenty-two of these patients had com-
plete or partial response to immunotherapy [19].

Others Homo species transcription factors (TF) were 
downloaded from AnimalTFDB [20] (http://​bioin​fo.​life.​
hust.​edu.​cn/​Anima​lTFDB/#​!/). Paired ligands and recep-
tors were obtained from FANTOM [21] (http://​fantom.​gsc.​
riken.​jp/5/​suppl/​Ramil​owski_​et_​al_​2015/) database.

Methods
Integrating networks of melanoma immune cells
Each of the 16,291 immune cells was previously assigned 
into one of 11 unsupervised clusters according to the study 
of Sade-Feldman et al. [14]. Sade-Feldman M et al. applied 
the k-means algorithm to classify CD45+ immune cells. 
They used all genes with variance > 6 (about 4000 genes) 
to identify the unsupervised clustering of immune cells. 
They applied the k-means algorithm testing k = 3…15, and 
when k = 11, the clusters are most robust based on the 100 
iterations in which they removed 10% of the cells randomly. 
Among those 11 clusters, C1 and C2 tend to be enriched 
by B cells, C3 and C4 are myeloid clusters and C6 and C9 
are T cell clusters [14]. For each cluster, we constructed an 
immune cell cluster specific network considering three fol-
lowing aspects, in other words, two genes are considered to 
have an interaction relationship in our network and need 
to meet the following three conditions, a) each of the two 
genes must transcript in more than 1% immunity cells; 
b) there must be an interaction type in BioPAX pathways 
between them; c) co-expressed p-value (spearman correla-
tion test) of these two genes must under 0.05 (Additional 
file 9: Figure S1).

We combined 11 immunity cell cluster specific net-
works  (Additional file  8) into regulation networks and 
annotated them with TFs, ligands and receptors (Fig.  1, 
Additional file 9: Figure S1).

Topological properties evaluation of cell cluster specific 
networks and regulation networks
According to Barabási et al. [22, 23] and Zhang et al. [24], 
real biological gene interaction lies in scale-free networks, 
and degree distributions of genes in the network should 
comply with power law distribution (Eq.  1). We fit liner 
model for logarithm transformed gene degrees(X) and 
their distributions(Y) in a derived formula (Eq. 2) where a 
and b are coefficients to fit.

(1)Y = aX
−b

(2)log
10
Y = −blog

10
X + log

10
a
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Fig. 1  Global pathways of immunity single cell clusters under melanoma. Magnified nodes are TF, ligands and receptors; Bold edges are interaction 
among them. Float circle charts over nodes are colored by the 11 immuno-networks
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Identifying differently expressed genes
We divided cells into four groups: (1) cells from pre-
treatment responders; (2) cells from pre-treatment non-
responders; (3) cells from on-treatment responders; 
(4) cells from on-treatment non-responders. Then we 
calculated two measurements for responder and non-
responder groups to access different expression—fold 
changes and Wilcox test p values. Finally, we used two-
fold and 0.05 significance as thresholds to define differ-
ently expressed genes.

Immunotherapy decision classification based on regulation 
networks
We investigated the predictive power of regulation net-
works in immunotherapy resistance by following steps:

(1)	 fit logistic models—ligands and receptors in regu-
lation networks were used as origin variables for 
model fitting in train data sets (half of GSE120575 
samples selected randomly). We used “glm” func-
tion in R package “stats” to fit logistic models;

(2)	 choose variables—formula-based model auto-selec-
tion were applied to select a subset of ligands and 
receptors along with their coefficients that can opti-
mally guide therapy outcomes. We used “step” func-
tion to auto-select the logistic models and “predict” 
function to access prediction power of selected 
model;

(3)	 test precision—variable sets we chosen in step 3 
were tested in another half of GSE120575 samples. 
The “predict” function was used to calculate AUC 
in test data sets;

(4)	 repeat circulation—step 1 to 3 were repeated 10,000 
times.

Finally, the AUCs in above steps were used as standards 
to access prediction power of ligands and receptors in 
regulation networks.

Results
Regulation networks of immunity cell stats in melanoma
Tumor cell-intrinsic heterogeneity shapes the immune 
cell infiltration and influences the outcome of immuno-
therapy [25], and various metabolic pathways orches-
trate the behavior of tumor-infiltrating immune cells, 
which are related to enhancing of antitumor immunity 
and immunotherapy [26]. Moreover, distinct CD45+ cell 
clusters revealed by single-cell RNA-seq were associated 
with clinical outcome of ICB therapies and reflected by 
different identifiers [14]. Thus, co-expression of pathway 
genes in multiple cell stats could offer cellular immu-
nity regulation. Herein, we constructed immunity net-
works based on BioPAX pathways for previously defined 

CD45+ cell clusters [14] and combined them into regula-
tion networks (Fig. 1, Additional file 9: Figure S2, Method 
Details). We fitted power law models for degree distri-
butions of cell cluster specific networks and regulation 
networks (Additional file  9: Figure S3, Method Details), 
and the R squares greater than 0.88 all over these models. 
Immune networks and regulation networks constructed 
by our pipeline are scale free and similar to the real bio-
logical networks.

In sum, seven hundred and ninety genes, including 
26 receptors, 26 ligands, and 47 TFs, and 3048 interac-
tions were recognized by the regulation networks. Nota-
bly, IL-2 receptor is a T cell stimulating cytokine [27], 
and it not only drives the expansion of T cells and the 
contraction phase of immune response [28], but also has 
an effect on cancer stem cells [29, 30]. Most importantly, 
low dose IL2 combined with other immunotherapy dem-
onstrated benefit in patients with metastatic melanoma 
[31]. In C10, a memory T cell cluster, IL2 controls expres-
sion of KLRK1 which controls state change of ITGAM 
through CD247 (in complex with HLA-C, HLA-E and 
HLA-G in all 11 cell clusters). IL2 controlling ITGAM, 
which in complex with CD14 (IL2, ITGAM, CD14 are cell 
surface markers) [32], indicted that our framework effi-
ciently highlighted regulation flows of immunity system 
in distinct and common immune cell stats. Construction 
of immune cell stat specific pathways could offer contri-
butions for immunology and ontology, including immune 
therapy response related researches.

Divergence regulation of overlap genes was revealed 
by network comparative analysis among multiple 
networks
Since our study highlighted different interaction flows 
of cluster specific networks, we accessed expression of 
genes and interaction pairs in distinct immune cell stats. 
There are several genes (86) such as major histocom-
patibility complex (HLA-C, HLA-DMA, HLA-DMB, 
HLA-DRA, HLA-E, HLA-G and HLA-H), CD247, cyclin 
dependent kinase (CDK11B), casein kinase 2 (CSNK2A1 
and CSNK2B), FGFR1 oncogene partner (FGFR1OP) 
etc. that were activated in all 11 predefined T cell stats 
(Fig.  2a). However, consensus interactions among those 
common genes were partly observed. On the contrary, 
obvious inconsistent interaction pattern among common 
genes were discovered in B cell clusters (C1, C2), myeloid 
clusters (C3, C4) and CD8 T cell clusters (C6, C9) ([14], 
Fig.  2b, Additional file  9: Figure S4). Even though iden-
tifiers of distinct immune cell stat differ from the oth-
ers, there are common genes, which exercise functions 
through different flows, that were activated in multi-
networks. For instance, mechanistic target of rapamycin 
kinase (MTOR) state change was controlled by HLA-G 
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Fig. 2  Cross-talk among 11 networks. a Heatmap showed genes(left) and interactions(right) that were contained by 11 immuno-networks and 
gaped by degree and interaction types. The middle of two plots showed association between genes and interactions among networks. b, c Overlap 
of edges and nodes among 11 networks. Intersection nodes and edges among networks and percentage of intersection in each network (b); 
Intersection regulation of networks constructed by cell cluster C6 and C9 (c)
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in C9 but not in C6, and MTOR controls state change of 
HSPA1B in C9, TOP1 and PRNP in C6 (Fig. 2c). STAT2 
interacts with different genes in C6 (HLA-G) and C9 
(MTOR, PIK3CD). Moreover, a specific duplex interac-
tion was observed in C9 (TRAC controls state change of 
CD247, CD247 in-complex-with TRAC, Fig.  2c). These 
results provide further evidence for our explanation that 
common genes from different cell stats can activate in 
variety ways in these cells.

Interleukin-2 (IL-2) antigen stimulates memory 
CD8(+) T cells production, and high relative IL-2 pro-
duction in T cells of melanoma tend to perform memory 
CD8(+) T cells phenotype and superior proliferative 
capacity compared to cells with low IL-2 production 
[33]. In our research, IL2 and LIME1 specifically acti-
vated in a memory T cell cluster (C10). We also calcu-
lated different expression of IL2 in C10. The expression 
levels of IL2 gene is significantly expressed higher in cells 
from responders than cells from non-responders of on-
treatment patients. Furthermore, several genes activated 
distinctly in different networks. For instance, PVRIG spe-
cialized in lymphocytes (C5), AGER, BHLHB9, CDK3, 
GNG8, IL11RA, PKIA, USP50 in regulatory T cells (C7). 
ARHGAP19, FNIP1 in exhausted/HS CD8 T cells (C9) 
and DECR2, SESTD1, ZNF775 in exhausted CD8 T cells 
(C6) etc. Our framework discovered different perfor-
mance of immune related genes in cell cluster specific 
networks, which may lead to a functional nuance.

Consensus functions across immune cell regulation 
networks
To investigate functional relevance of cell cluster spe-
cific networks, we employed online pipeline metascape 
(http://​metas​cape.​org/​gp/​index.​html) for enrichment 
analysis. We found that gene sets from plural networks 
enriched in consensus functions, for example, metabo-
lism of RNA, antigen processing and presentation, cell 
cycle and herpes simplex infection, regardless of the 
different activation flows they presented (Fig.  3). Sig-
nificantly, all networks partly enriched in several sub-
terms of vital functions like T cell activation, cell cycle, 
cellular responses to stress, apoptotic signaling path-
way, cytokine-mediate signaling pathway, herpes sim-
plex infection, metabolism of RNA [34–38]. As for some 
functions, such as negative regulation of immune system 
process, were enriched by all networks but in different 
sub-terms. In addition, exhausted CD8 T cell cluster 
(C6) and lymphocytes exhausted/cell-cycle (C11) cluster 
significantly enriched in regulation of complement acti-
vation overall situation, yet regulation of complement 
activation was not enriched by monocytes/macrophage 
cluster(C3), cytotoxicity (lymphocytes) cluster (C8) and 
exhausted/HS CD8 T cell cluster (C9). Several sub-terms 

of negative regulation of immune system process were 
enriched by different networks despite all eleven net-
works were enriched in negative regulation of immune 
system process by a significant level. Computation of 
enriched function in immune cells could perform a sys-
temic insight to understand mechanism of immune cell 
interaction.

A core pathway: antigen processing and presentation
We discovered that shared topology of 11 networks cov-
ered two major histocompatibility complex unions (HLA-
C, HLA-E, HLA-G; HLA-DMA, HLA-DRA, HLA-DMB), 
one ribosomal protein union (RPL10A, RPL9P7, RPL39, 
RPL12, RPL36A, RPS29, RPS9), one mitochondrially 
encoded NADH: ubiquinone oxidoreductase core subu-
nit (MT-ND2, MT-ND4L, MT-ND5), one NME/NM23 
nucleoside diphosphate kinase union (NME1, NME1-
NME2) and one proteasome and proteasome activator 
subunit (PSME1, PSMB8, PSMB9) (Fig. 4a). Enrichment 
analysis of these shared topologic structures showed 
concurrent functions like regulation of expression of 
SLITs and ROBOs, antigen processing and presentation 
of exogenous peptide antigen, antigen processing and 
presentation peptide antigen assembly with MHC class 
II protein complex and neutrophil deregulation (Fig. 4b, 
c). Especially, subunits of the shared structures lie in two 
flows of antigen processing and presentation, MHC I and 
II pathways ([39], Fig. 4d), which play upstream roles of 
CD8 T cell killing target cells, regulation of NK cell activ-
ity (MHC I) and CD4 T cell cytokine production and 
activation of other immune cells (MHC II). According 
to Gene Ontology [40] enrichment analysis executed by 
metascape, three antigen related functions are intercon-
nected among them, and the most significant enrichment 
is antigen processing and presentation.

Key genes from networks were related 
with immunotherapy response at single cell level
Prior knowledge showed that a large number of genes 
appeared relevance with not only cancer occurrence but 
also treatment response, and these appearances came up 
in the single cell level as well [14, 19, 41–43]. Expectably, 
there were a batch of genes in our regulation networks 
which were differently expressed between respond-
ers and non-responders in both periods of treatment 
(pre- and on-treatment) regardless of immune cell stats 
(Fig. 5a). Functional analysis showed that genes expressed 
higher in non-responders from on-treatment samples 
were enriched in cytokine-mediated singling pathway, 
transmembrane receptor protein tyrosine kinase signal-
ing pathway and so on, yet differently expressed genes 
from pre-treatment samples were enriched in immune 
response-activating signal transduction, response to 

http://metascape.org/gp/index.html
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Fig. 3  Gene sets functional enrichment of 11 networks. a Function enrichment of 11 networks and enriched p-values. b–d Enriched GO-terms 
colored by p-value (b), cluster (c) and counts (d). Gene sets enrichment analysis are performed by metascape online (http://​metas​cape.​org/)

http://metascape.org/
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Fig. 4  Shared sub-networks of 11 networks. a Shared interactions of 11 networks. b and c Function enrichment of shared genes. Gene sets 
enrichment analysis are performed by metascape online (http://​metas​cape.​org/). d A core pathway: Antigen Processing and Presentation. Colored 
nodes are enriched proteins

http://metascape.org/
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Fig. 5  DEGs in global and local networks. a From the inside out: expression average (pre-treatment NR higher 3–0, pre-treatment R higher 0–1, 
on-treatment NR higher 1.5–0, and on-treatment R higher 0–1) and p-values (0.05–0) of DEGs. Gene sets function enrichment. on-treatment and 
pre-treatment DEGs. b and c SIRPA and CD14 expression in melanoma immunity single cells. d DEGs in 11 networks within cell clusters
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toxic substance etc. Interestingly, several ligands and 
receptors differently expressed between responders and 
non-responders in pre- or (and) on-treatment samples, 
especially for a higher-in-non-responder set (CCL7, 
CCL18, MRC2, FPR2, LILRA3, SIRPA and CD14). More-
over, we detected a ligand, SIRPA, significantly expressed 
higher in non-responders and in pre-treatment sam-
ples. Consequently, SIRPA may play a resistance role in 
immunotherapy [44–46], and CAV1, SIRPA, CD14 were 
expressed higher in non-responders, may potentially sup-
port drug antagonism ([44–49], Fig. 5b, c).

Although we detected dysregulated genes in the sin-
gle cell level, it still needs further inspection to uncover 
transcriptome changes in immune cell stats. Therefore, 
we next assessed differently expressed genes from clus-
ter specific networks in corresponding CD45+ immune 
cell stats (Fig.  5d, Additional file  9: Figure S5-6). Our 
research suggested that ligand integrin subunit alpha 
M (ITGAM) was significantly upregulated in C3 from 
non-responders of on-treatment patients, in C1 and 
C10 from non-responders of pre-treatment patients, as 
well as in C8 from responders of pre-treatment patients. 
Regulating cell fate, ITGAM was dysregulated in multi-
ple cell types (T cells, B cells et.), which may contribute 
to tumor cell survival in immunotherapy [50]. Ligand 
NTRK1, which expressed higher in pre-treatment non-
responders, was dysregulated in C10, and IL2, a type I 
cytokine which can be associated with durable regression 
in metastatic melanoma and renal cell carcinoma [51], 
also was dysregulated in and only in C10 but expressed 
higher in on-treatment responders. Two major histo-
compatibility complexes, HLA-G and HLA-H, expressed 
higher in C2 from pre-treatment non-responders. 
Another major histocompatibility complex, HLA-DMB, 
expressed higher in both C2 and C10 in non-responders 
from on-treatment samples. Other famous genes, such 
as tumor necrosis factor receptor superfamily member 
9 (TNFRSF9) and CD247 ligands, were also upregulated 
in C3 from (non-)responders of on-treatment patients, 
and another tumor necrosis factor receptor superfamily 
member (TNFRSF12A) was dysregulated in both C3 and 
C9. Thus, we have reason to suppose that some ligands 
and receptors may propose a new insight to understand 
drug sensitivity and resistance, as well as immunotherapy 
response.

Ligands and receptors of regulation networks showed 
robust selective power in immunotherapy response
Some receptors can mediate functions of immune cells 
through distinct signaling pathways [52]. Changing of 
these receptors and corresponding ligands may lead 
unexpected immunotherapy outcomes. Our research 
also observed massive changes of gene expression of 

these proteins. Hence, we applied logistic regression 
model to select contribution features from ligands and 
receptors of regulation networks and access immuno-
therapy precision of featured gene sets. In the test data 
sets, medium AUC of 10,000 random is 0.7143, and 
most of the test AUCs are among 0.65 and 0.8 (Fig. 6a). 
Eventually, we identified 17 gene sets that associated 
with immunotherapy response. In an independent 
validation, GSE35640, all 17 gene sets performed AUC 
greater than 0.7 (Fig. 6b), which suggests robust selec-
tive power of ligands and receptors of regulation net-
works for immunotherapy response. This completed 
key gene analysis by providing gene sets and their 
scores which were able to construct classification of 
therapy response.

Several TNF receptor superfamily members were inte-
gral to the immune-response regulation by enhancing 
T-cell growth and dendritic-cell function. These pro-
teins related to modulation of cellular functions, prolif-
eration, survival or deaths [53]. Moreover, TNF receptors 
controlling TNF receptor signaling, which plays its role 
in inflammation and cell death, could determine the 
cellular fate [54]. Especially, TNFRSF12A (also known 
as TWEAK receptor, Fn14, or CD266) correlated with 
integrin β3 expression, which drives Glut3 expression, is 
associated with clinical outcome and tend to be respon-
sible for inducing cachexia in tumors [55, 56]. We iden-
tified one TNF receptor leaded gene set, consisting of 
TNF receptor superfamily member 9/25/12A (TNFRSF9, 
TNFRSF25 and TNFRSF12A), sphingosine-1-phosphate 
receptor 1 (S1PR1), C–C motif chemokine ligand 3 
(CCL3), caveolin 1 (CAV1) and major histocompatibility 
complex, class I, G (HLA-G), that predicted immuno-
therapy response with AUC up to 0.7433 in independ-
ent validation and 0.8824 in GSE12575 (Fig. 6c). Besides, 
CAV1 catalysis preceding of resistance related gene 
CD14 [49, 57], as well as supported a firm set predicting 
immunotherapy response (0.7045 in GSE35640, 0.871 
in GSE120575) with CD247, HLA-C, HLA-E, ITGAM 
and CD14. Thus, TNFRSF12A, which works for 11 of 
17 selected gene sets, cooperating with CAV1 and other 
ligands and receptors are key factors in immunity regula-
tion and flexible immunotherapy response (Fig. 6d).

Additionally, other gene sets with major histocom-
patibility complexes (HLA-C, HLA-E, HLA-G), TNF 
receptors, ITGAM, CD247 and CD14 performed accept-
able precision with AUC around 0.72 in the independent 
datasets and above 0.85 in GSE12575 as well. Further-
more, ITGAM, which regulates cell fate [50], also works 
11 of 17 selected genes sets and HLA-C works in 9 genes 
sets (Fig.  6e). These genes not only activate in major-
ity immune cells but also have a quality for prediction of 
immunotherapy response.
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Fig. 6  Immunotherapy resistance accuracy of immuno-networks. a AUCs in test data sets during model construction are showed in form of 1) 
Boxplot—0.25, 0.5, and 0.75 quantile; 2) cumulative distribution; and 3) Barplot—counts of AUC values. b ROCs of 17 promising immunotherapy 
predictors under independent validation. c AUCs of test data sets during model construction and independent data sets of 17 promising 
immunotherapy predictors. d 17 predictors activate in 11 networks. e Gene counts of 17 predictors
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Discussion
Great progress has been achieved in ICB therapy, yet 
therapy resistance must be considered in an actual treat-
ment process. Consequently, it is important to investigate 
biomarkers of immunotherapy especially in single cell 
level. In this study, we constructed regulation networks 
across immune single cell types and established that dif-
ferently expressed genes between cells from responders 
and non-responders. Some differently expressed genes 
coincided with ligands and receptors in immune cell spe-
cific pathways. Further analysis of ligands and receptors 
in regulation networks proposed prediction biomarkers 
for inhibitor response classifier in metastatic melanoma 
with ICB therapy. We trained logistics regression mod-
els to test prediction accuracy of biomarkers for immu-
notherapy response. Our results suggested 17 gene sets 
which could be useful for prediction of ICB therapy.

We found out that metabolism of RNA, antigen pro-
cessing and presentation, cell cycle and herpes sim-
plex infection networks were generally activated in all 
immune cell clusters but with different interaction flows. 
We also found that different sub-terms of negative regu-
lation of immune system process were enriched by vari-
ety cell cluster specific networks even all the cell stats 
activated negative regulation of immune system process. 
Notably, we discovered a common topologic structure 
of all immune cell specific networks performing antigen 
processing and presentation function, which connected 
with antigen processing and presentation of exogenous 
peptide antigen and peptide antigen assembly with MHC 
class II protein complex. These three terms were essen-
tial for endogenous simulated immunity defense with 
cell surface MHC molecular carry and display viral pep-
tides [58]. It requires an army of genes to coordinate for 
immune response and raise a weapon against tumor. 
MHC class I and class II molecules played a global rela-
tive role in presentation and processing of the anti-
gen with its high polymorphic [59]. For MHC class I, 
we detected that HLA-C respectively interacted with 
HLA-G and HLA-E. And for MHC class II, we found a 
triple complex relationship among HLA-DMA, HLA-
DMB and HLA-DRA. These results indicated that anti-
gen processing and presentation may be a core functional 
region in immune cell regulation and proposed further 
explanation of immune response in ICB therapy.

We further revealed some key factors such as SIRPA, 
CD14, IL2, ITGAM and CD247 (differentially expressed 
between cells of responders and non-responders). These 
ligands and receptors tend to be associated with drug 
sensitivity and resistance, as well as immunotherapy 
response. Especially, IL2 controls expression of KLRK1 
which controls state change of ITGAM through CD247. 
IL2 controlling ITGAM, which in complex with CD14 

(both are cell surface markers, [32]), are specific in C10 
and this type I cytokine can be associated with durable 
regression in metastatic melanoma and renal cell carci-
noma [51]. In this study, biomarker gene sets detected 
by CD45+ immune single cells showed robust perspec-
tive power in ICB therapy response. Our results sug-
gested that TNF receptors, MHC molecules, ITGAM, 
CD247 or CD14 leading gene sets can preciously dis-
tinguish the responders for non-responders in patients 
with melanoma that received ICB therapies. The accu-
racy of immune cell regulation network-based model 
may provide helpful guidance for precision medicine, as 
well as new understanding of immunotherapy response. 
Specifically, SIRPA and CD14 were upregulated in non-
responders of both pre- and on-treatment patients. They 
both regulate TRIM27, and CD14 which contribute as a 
member of prediction gene sets in the logistics models. 
CD14, ITGAM, CD247 and MHC molecules not only 
significantly dysregulated between the responders and 
non-responders of patients with melanoma but also pre-
sented accuracy prediction of immunotherapy response. 
Several famous genes like MHC molecules (HLA-C/E/G), 
TNF receptor superfamily members (TNFRSF9/12A/25), 
ITGAM, CD14, CCL3 and CAV1 all performed dysregu-
lation between responders and non-responders in the 
global or immune cell stat specific context, and they also 
provided great independent cooperation in prediction of 
immunotherapy response.

We identified 17 gene sets that associated with immu-
notherapy response. In an independent validation, 
GSE35640, all 17 gene sets performed AUC greater than 
0.7. We compared 17 predictors identified by our analy-
sis to ICB response biomarkers (PD-L1 and IFNG) which 
were widely used by clinical trials [60–63]. Our results 
showed that AUC of PD-L1 expression is 0.69 and AUC 
of IFNG expression is 0.75 (Additional file 9: Figure S7). 
Our results indicated that using ligands and receptors in 
the regulation networks to train decision models could 
provide a brand-new view for immunotherapy response, 
and these models could be potential guidance for preci-
sion medicine. We also tried to compare our predictor 
with TIDE [64]. However, the TIDE claimed no therapy 
responders for our independent data sets (Additional 
file 1: Table S1). In summary, our research could provide 
a new view for immune cell regulation mechanism and 
immunotherapy response prediction, and these mod-
els could be potential guidance for translational medi-
cine and precision medicine. Moreover, we calculated 
different expression of biomarkers, which we claimed, 
between cell clusters (Additional file  9: Figure S8a). We 
found that these biomarkers different between single-
cell types. We used CIBERSORT (https://​ciber​sort.​stanf​
ord.​edu/) to perform deconvolution of cell types in bulk 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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data GSE35640, and accessed immune score difference of 
CIRBERSORT cell type. We found that the cell difference 
of biomarkers in single cell level are connected with bulk 
data GSE35640, indicating a promising prospection of 
biomarkers we performed in precision medicine (Addi-
tional files 2, 3, 4, 5, 6, 7, 8).

Conclusion
We constructed regulation networks across immune sin-
gle cell types and established that differently expressed 
genes between cells from responders and non-respond-
ers. In sum, 790 genes and 3048 interactions, including 26 
receptors, 26 ligands, and 47 TFs were recognized by the 
regulation networks. Some differently expressed genes 
coincided with ligands and receptors in immune cell spe-
cific pathways. Further analysis of ligands and receptors 
in regulation networks proposed prediction biomarkers 
for inhibitor response classifier in metastatic melanoma 
with ICB therapy. We trained logistics regression models 
to test prediction accuracy of biomarkers for immuno-
therapy response. In summary, our study provided single 
cell-based regulation networks in context of melanoma 
model with or without ICB therapy and revealed several 
gene sets consist of therapy response biomarkers which is 
efficient for construction of ICB therapy response classi-
fier. These results could provide a new view for immuno-
therapy response prediction, and these models could be 
potential guidance for translational medicine and preci-
sion medicine.
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