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Abstract: Dibutyl phthalate (DBP) is one of the most abundantly produced and used plasticizers and is incorporated into plastic to
make it more flexible and malleable. DBP has been found to be an environmental contaminant and reported as an endocrine disruptor.
Therefore, it is crucial to develop ecofriendly alternatives to eliminate phthalate pollution. In the present research, the growth of F.
culmorum and F. oxysporum in the presence of DBP was studied in liquid fermentation. The esterase activity, specific growth rate, and
growth and enzymatic yield parameters were determined in DBP-supplemented media (1,500 or 2,000 mg/L) and in control medium
(lacking DBP). These results show that in general, for both Fusarium species, the highest esterase activities, specific growth rates, and
yield parameters were observed in media supplemented with DBP. It was observed that 1,500 and 2,000 mg of DBP/L did not inhibit
F. culmorum or F. oxysporum growth and that DBP induced esterase production in both fungi. These organisms have much to offer
in the mitigation of environmental pollution caused by the endocrine disruptor DBP. This study reports, for the first time, esterase

production during the degradation of high concentrations (i.e., 1,500 and 2,000 mg/L) of DBP by F. culmorum F. oxysporum.
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Introduction

Plastic additives (e.g., plasticizers) are incorporated into plastic to
change polymer properties and make plastic functional. Among
plasticizers, phthalates are the largest group of additives incor-
porated into plastics to provide softness and flexibility and are
added at concentrations between 10% and 70% of the total plastic
weight (Sanchez, 2021). Esters of phthalic acid or phthalates are
omnipresent organic compounds since they are released into the
environment during manufacture, use, and disposal, and also dur-
ing evaporation or leakage from landfill sites or containers (Boll
et al., 2020; Gao & Wen, 2016; Hahladakis et al., 2018; Lesser et al.,
2018; Sanchez, 2021). These substances are likely to accumulate
in the food chain and contribute to health concerns such as to
chronic health effects, cancer risks, and endocrine disruption
(Groh et al., 2019; Hahladakis et al., 2018; Hermabessiere et al,,
2017; Stojanoska et al., 2017). In particular, dibutyl phthalate
(DBP) is one of the most widely produced and used phthalates.
DBP is used in adhesives, personal care products, printing inks,
nail polish, and paper coatings (Pérez-Andrés et al., 2017). This
phthalate is listed as a priority pollutant by the U.S. Environmen-
tal Protection Agency (USEPA, 2019). Therefore, there is a need to
develop ecofriendly alternatives to eliminate phthalate pollution.
In nature, some microorganisms are able to use these organopol-
lutants as carbon sources for growth, due to their enzyme
production. This biodegradation process constitutes an effective,
low-cost technology and an environment friendly method for the
elimination of contaminants. Therefore, it is crucial to increase
our understanding of enzyme production by organisms able to de-

grade phthalates. These microorganisms may enhance pollutant
degradation in phthalate-contaminated environments. Several
investigations have revealed that fungal species such as Polyporus
brumalis, Ganoderma lucidum, Trametes versicolor, Phlebia tremellosa,
Neurospora sithopila, P. ostreatus, Phoma sp., Stropharia rugosoan-
nulata, Ascocoryne sp., Puccinia arenariae are phthalate-degrading
organisms (Hwang et al., 2008; Kim et al., 2008; Lee et al., 2007;
Kim & Song, 2009; Ahuactzin-Pérez et al., 2018a, 2018b; Carstens
et al,, 2020; Gonzalez-Marquez et al., 2019; Gonzalez-Marquez
et al., 2020; Hwang et al., 2012; Liao et al.,, 2012; Luo et al., 2012;
Sanchez, 2021; Sanchez-Sanchez & Sanchez, 2019). In particular,
fungi such as Fusarium species have been reported to degrade
phthalates due to their esterase production. Fusarium oxysporum
was able to degrade DBP (Kim & Lee, 2005), dipentyl phthalate
(Ahn et al., 2006), dipropyl phthalate (Kim et al., 2005), di(2-ethyl
hexyl) phthalate (DEHP) (Kim et al., 2003), and butyl benzyl ph-
thalate (Kim et al., 2002). In addition, Fusarium culmorum was able
to metabolize DEHP and DBP as previously reported by our group
(Ahuactzin-Pérez et al., 2016; Ahuactzin-Pérez et al., 2018c; Rios-
Gonzalez et al., 2019). The proposed DBP biodegradation pathway
shows that F culmorum was able to metabolize this phthalate to
malic and fumaric acids, which can be transformed into carbon
dioxide and water (Ahuactzin-Pérez et al., 2018c¢). This fungus had
a DBP removal efficiency of 99% (Ahuactzin-Pérez et al., 2018c).
In the present research, the esterase activity, biomass (Xmax),
specific growth rate (u), maximum biomass yield (Yy/s), and en-
zymatic yleld parameters were determined in DBP-supplemented
media (1,500 or 2,000 mg/L) and in control medium (lacking DBP).
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This study reports, for the first time, esterase production during
the degradation of 1,500 and 2,000 mg of DBP/L by F. oxysporum
and F culmorum.

Materials and Methods
Strains

F oxysporum and F. culmorum from the microbial collection of the
Research Centre for Biological Sciences (CICB) at the Autonomous
University of Tlaxcala (UAT) (Tlaxcala, Mexico) were used in this
work. F. culmorum (GenBank accession number, HF947520) was iso-
lated from an industrial facility for recycling paper, where phtha-
lates can be found as additives in paper dyes, inks and adhesives
for paper envelopes (Aguilar-Alvarado et al., 2015). This strain is
deposited at the Collection of the Mexico’s National Center for
Genetic Resources (CNRG-INIFAP) (Jalisco, Mexico). Stock cultures
were grown on malt extract agar at 25°C in Petri dishes for 7 days
and then stored at 4°C. Cultures were periodically transferred to
fresh culture medium.

Culture Media Preparation and Culture Growth
Conditions

Two culture media, containing different concentrations of DBP,
were prepared with the following components (in g/L): DBP (1.5 or
2.0; with 99% purity; Sigma), glucose, 10; KH, POy, 0.6; ZnS04.7H, 0,
0.001; KoHPOy, 0.4; FeSO4-7H,0, 0.05; MgS0O,4-7H,0, 0.5; MnSO4-
H,0, 0.05; CuSOq4, 0.25 and yeast extract, 5. Medium prepared
as described above but lacking DBP was used as a control. DBP-
supplemented media also contained 100 L of Tiween 80 per liter.
The pH was adjusted to 6.5 using either 0.1 M NaOH or 0.1 M
HCl, and the media were autoclaved for 15 min at 121°C. Erlen-
meyer flasks (125 mL) supplemented with 50 mL of sterile cul-
ture medium were inoculated using three mycelial fragments
of 10 mm diameter, which were obtained from the periphery of
colonies of F. culmorum or F. oxysporum grown for 7 days on malt ex-
tract agar (DIFCO). Fungal cultures were incubated on an orbital
shaker at 25°C for 7 days with shaking at 120 rpm, and samples
were taken for analysis every 12 hr.

Fungal Biomass Production and Growth
Parameter Calculation

Fungal biomass (X) was separated from the liquid cultures by
vacuum filtration using filter paper of 20-25-um pore size and
then dried at 60°C. The specific growth rate (u) was calculated
by measuring the changes in biomass production (in dry weight)
through fermentation time by using the logistic equation as
follows:

where p (h™) = specific growth rate,

Xmax (g/L) = maximal biomass level obtained when dX/dt = 0
for X > 0.

This equation is solved and expressed as follows;

Xmax

X=——
1+ Ceut

where C = (Xmax — X0)/Xo, X = Xo, the initial biomass value.

The parameters from these equations were calculated using a
nonlinear least squares fitting program (Solver; Excel, Microsoft)
as previously reported by us (Ahuactzin-Pérez et al., 2016).

Esterase Activity and Enzymatic Yield Parameters

The esterase activity of the supernatants of F. culmorum and F. oxys-
porum was evaluated from changes in the absorbance at 405 nm
using a UNICO spectrophotometer (S-2150 series DAYTON, NJ,
USA) with p-nitrophenyl butyrate (pNPB) as substrate. The re-
action mixture contained 100 uL of supernatant and 900 uL of
reagent prepared with the following components: 1.76% (vol/vol)
pNPB, 1.1% (vol/vol) acetonitrile, 0.04% (vol/vol) Triton X-100, and
11.1% (vol/vol) distilled water, dissolved in 0.01 M phosphate
buffer at pH 7.5 and was incubated at 37 °C for 5 min (Davis et
al., 2000). A p-nitrophenol standard curve using the same reaction
conditions was made by measuring the absorbance of known con-
centrations of p-nitrophenol solutions. Linear regression analysis
of the standard curve was carried out to determine the concentra-
tion (ug/mL) of p-nitrophenol produced in each sample and then
the volumetric activity (U/L) was obtained. One unit of esterase
activity (U) was defined as the amount of the enzyme required
to release 1 micromole of p-nitrophenol per minute from pNPB
under the assay conditions. Volumetric activity was reported in
U/L. The enzymatic yield parameters maximal enzymatic activity
(Emax), yield of esterase per unit of biomass (Yg/x), specific rate of
enzyme production () and esterase productivity (P) were deter-
mined for E culmorum and F oxysporum as previously reported by
us (Ahuactzin-Pérez et al., 2016).

Statistical Analysis

All experiments were performed in three independently re-
peated experiments. Statistical analyses were carried out us-
ing one-way analysis of variance followed by Tukey’s post hoc
test using SigmaPlot version 12.0 (Systat Software Inc, San Jose,
CA, USA).

Results and Discussion

Fungal Growth Kinetic and Yield Parameters

Fig. 1 shows the biomass production by Fusarium species in media
containing DBP (1,500 or 2,000 mg/L) and in the control medium.
E culmorum attained the stationary growth phase after approxi-
mately 96 hr and 132 hr in DBP-supplemented media and in the
control medium, respectively (Fig. 1a). F. oxysporum reached the
stationary growth phase after approximately 60 hr and 72 hr in
DBP-supplemented media and in the control medium, respec-
tively (Fig. 1b). Ahuactzin-Perez et al. (2018c) studied the growth
of F culmorum in media supplemented with lower concentrations
of DBP (500 and 1,000 mg/L) than those studied in the present
research. It was observed that F culmorum attained the station-
ary phase after 84 hr and 72 hr of cultivation in media supple-
mented with 500 mg of DBP/L and 1,000 mg of DBP/L, respectively
(Ahuactzin-Pérez et al., 2018c). Furthermore, we observed that the
fungus P. ostreatus attained the stationary phase of growth after
408 hr and 456 hr in media containing 500 and 1,000 mg of DBP/L,
respectively (Ahuactzin-Pérez et al., 2018b). Lee et al. (2007) re-
ported that the mycelial growth of the fungus P. brumalis was in-
hibited as the DBP concentration was increased to 250, 750, and
1,250 uM.

E. culmorum showed the greatest p value in the medium con-
taining 2,000 mg of DBP/L, followed by the medium supple-
mented with 1,500 mg of DBP/L and then the control medium.
The Xmax value for F culmorum was higher in the media sup-
plemented with DBP than in the control medium. The Yy
values did not show significant differences between the cul-
ture media (Table 1). F oxysporum had the highest n value in
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Fig. 1 Biomass production of F. culmorum (a) and F oxysporum (b) grown in medium lacking DBP (diamond) and in media supplemented with 1,500
(square) and 2,000 (triangle) mg of DBP/L. Biomass curves were fitted (—) using the logistic equation.

Table 1. Growth Parameters of F. culmorum and F. oxysporum Grown
in Glucose Medium and in DBP-Supplemented Media in Liquid Fer-
mentation Conditions

Culture media

Parameters Control DBP (1,500 mg/L) DBP (2,000 mg/L)

F. culmorum

wmh) 0.04° 0.06° 0.082
(0.001) (0.004) (0.006)

Xmax (8/L) 5.7b 7.18 8.12
(0.04) (0.03) (0.23)

Yyx/s (gX/gS) 0.6 0.72 0.82
(0.001) (0.001) (0.001)

F. oxysporum

() 0.112 0.09° 0.112
(0.001) (0.001) (0.001)

Xmax (g/L) 4.4b 4.8° 5.72
(0.05) (0.01) (0.7)

Yyx/s (gX/gS) 0.4° 0.52 0.6
(0.001) (0.02) (0.04)

Note: Values are expressed as mean (standard deviation in parentheses) (n = 3).
Means within the same column not sharing common superscript letters differ
significantly at 5% level.

both the medium supplemented with 2,000 mg of DBP/L and
the control medium. The lowest u was observed in medium
containing 1,500 mg of DBP/L. The greatest Xmax value for
F oxysporum was in medium containing 2,000 mg of DBP/L,
followed by the medium containing 1,500 mg of DBP/L and the
control medium. The Yy values did not show a significant dif-
ference between the DBP-supplemented media and the control
medium (Table 1). Kumar & Maitra (2016) reported that Methy-
lobacillus sp. was able to grow on DBP-supplemented medium,
and had a u value of 0.07 h™!, which was similar to the val-
ues shown by F culmorum in media supplemented with DBP (0.06
h and 0.08 h™* for 1,500 and 2,000 mg of DBP/L, respectively)
(Table 1). Furthermore, P. ostreatus showed wu, Xmax, and Yy val-
ues of 0.015h™1, 7.3 g/L, and 0.67 gX/gS, respectively, when grown
in medium containing 1,000 mg of DBP/L (Ahuactzin-Pérez et al.,
2018b). Ahuactzin-Pérez et al. (2018c) found that F culmorum had
1, Xmax, and Yy values of 0.01 h™*, 5 g/L, and 0.49 gX/gS, respec-
tively, when grown in DBP-supplemented medium (1,000 mg/L).
In the present research, F culmorum showed p, Xmax, and Yy
values of 0.08 h™', 8.1 g/L, and 0.8 gX/gS, respectively, in me-
dia supplemented with 2,000 mg of DBP/L. These results show

that F culmorum was able to use high concentrations of DBP
and reach the stationary phase in a shorter period of time
compared to our previous studies in which lower concentra-
tions of DBP were used (1,000 mg/L) (Ahuactzin-Pérez et al,,
2018c).

Esterase Activity and Esterase Yield Parameters

In general, F culmorum had higher esterase activity in the medium
containing 2,000 mg of DBP/L than in the medium supplemented
with 1,500 mg of DBP/L or in the control medium (Fig. 2a). In the
medium supplemented with 2,000 mg of DBP/L, esterase activity
increased during the first 48 hr, at which time the maximum activ-
ity (208.5 U/L) was observed. It is suggested that the high esterase
activity detected at 48 hr could be due to the de-esterification pro-
cesses in DBP molecules at the beginning of its biodegradation.
Esterase activity then decreased after 60 hr but showed slight in-
creases after 72 hr and 120 hr of growth. In general, the medium
containing 1,500 mg of DBP/L and the control medium had es-
terase activity that increased gradually during the course of fer-
mentation and showed the maximum activity at the end of cul-
tivation. F. oxysporum showed high enzymatic activity during the
first 108 hr of cultivation in medium supplemented with 2,000 mg
of DBP/L. Similar enzymatic activity was observed during the first
108 hr in the medium supplemented with 1,500 mg of DBP/L and
in the control medium; however, enzymatic activity increased,
reaching a maximum value (292.5 U/L) after 168 hr in the medium
containing 1,500 mg of DBP/L, which was the highest esterase ac-
tivity demonstrated by F. oxysporum (Fig. 2b).

From all the media tested, F culmorum had the greatest Emay,
Ygss, Pro and qp in the medium containing 2,000 mg of DBP/L.
In fact, Emax, Ygs, Pro, and gy were approximately threefold,
twofold, sixfold, and fourfold higher, respectively, in medium sup-
plemented with 2,000 mg of DBP/L than in the control medium.
The lowest Emax and gy for F. culmorum were observed in the con-
trol medium (Table 2). As shown in Table 2, F oxysporum had the
highest Emax and Y in medium supplemented with 1,500 mg
of DBP/L, and this fungus showed the lowest Ep,y in the control
medium. The highest Pro and g, for E oxysporum were observed
in the medium containing 2,000 and 1,500 mg of DBP/L, respec-
tively. F culmorum and F. oxysporum showed similar Emay; however,
F. culmorum had an approximately twofold higher Ppo than that of
F. oxysporum in medium supplemented with 2,000 mg of DBP/L.

Numerous studies have demonstrated that esterase is respon-
sible for phthalate degradation (Hernandez-Sanchez et al., 2019;
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Fig. 2 Esterase activity of F. culmorum (a) and F. oxysporum (b) grown in medium lacking DBP (diamond) and in media supplemented with 1,500 (square)

and 2,000 (triangle) mg of DBP/L.

Table 2. Enzymatic Yield Parameters of E culmorum and F. oxyspo-
rum Grown in Glucose Medium and in DBP-Supplemented Media
in Liquid Fermentation Conditions

Culture media

Parameters Control DBP (1,500 mg/L) DBP (2,000 mg/L)
F. culmorum
Emax (U/L) 70.5¢ 124.2° 208.5%
(45) (24) (19)
Yix (U/gX) 12.40 17.5° 25.72
(0.5) (0.24) (0.8)
Pro (U/L/h) 0.7° 0.7° 4.3
(0.003) (0.002) (0.001)
qp (U/h/gX) 0.5¢ 1.1° 212
(0.001) (0.002) (0.001)
F. oxysporum
Emax (U/L) 197.9 292.52 221.3°
(29 (12) (18)
Yix (U/gX) 45.0° 61.0% 39.0°
(1.4) (2.5) (2.2)
Pro (U/L/h) 1.5b 1.7° 2.32
(0.05) (0.05) (0.2)
qp (U/h/gX) 4.9° 5.52 430
(0.6) (0.02) (0.05)

Note: Values are expressed as mean (standard deviation in parentheses) (n = 3).
Means within the same column not sharing common superscript letters differ
significantly at 5% level.

Sanchez, 2021). In particular, the involvement of esterase as a key
enzyme in DBP biodegradation has been reported in bacteria such
as Delftia sp. (Patil et al., 2006), Sphingobium (Sungkeeree et al.,
2016), Acinetobacter sp. (Fang et al., 2017), Bacillus megaterium (Feng

4 +—rTTTTTTTTTTTT T

0 12 24 36 48 60 72 84 96 108120132144156168
Time (h)

et al.,, 2018), Bacillus (Huang et al., 2020; Xu et al., 2020), Halomonas
sp. (Wright et al., 2020), and Mycobacterium sp. (Lu et al., 2020)
among others (Hu et al.,, 2021); in fungi such as F oxysporum (Kim
& Lee, 2005), F. culmorum (Ferrer-Parra et al., 2018), and P. ostreatus
(Cérdoba-Sosa et al., 2014); and the yeast Candida cylindracea (Kim
& Lee, 2005). In particular, F culmorum was able to degrade DBP to
fumaric and malic acids (Ahuactzin-Pérez et al., 2018c), and P. os-
treatus was also able to degrade DBP to acetyl acetate and benzene
(Ahuactzin-Pérez et al., 2018b); however, very little is known about
esterase production by fungi during the course of DBP biodegra-
dation.

pH of the Cultures During Fermentation

Fig. 3a shows the pH profile of the cultures of F culmorum dur-
ing growth. The pH dropped during the first 36 hr of growth to a
minimum of 4.9, 5.5, and 5.8 for the media supplemented with
2,000 mg of DBP/L, 1,500 mg of DBP/L, and the control medium,
respectively. The pH of F culmorum cultures increased, reach-
ing 7, 7.4, and 7.8 in the control medium and in media supple-
mented with 2,000 mg of DBP/L and 1,500 mg of DBP/L, respec-
tively, at the end of fermentation. The pH profile of the cultures
of F oxysporum during fermentation is shown in Fig. 3b. The pH
decreased to a minimum of 4.9 after 24 hr of cultivation in all
the tested media and then increased to 7.8, 8, and 8.2 in the con-
trol medium and in the media supplemented with 1,500 mg of
DBP/L and 2,000 mg of DBP/L, respectively, at the end of cultiva-
tion. The pH profile of the cultures showed a similar pattern dur-
ing fermentation for both fungi. An acidic pH was observed at the
beginning of fermentation, indicating organic acid production as
a result of the DBP degradation process, as previously reported by
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Fig. 3 pH profile of F culmorum (a) and F. oxysporum (b) grown in medium lacking DBP (diamond) and in media supplemented with 1,500 (square) and

2,000 (triangle) mg of DBP/L.



us (Ahuactzin-Pérez et al., 2018c). In general, for both fungi, the
pH increased after 48 hr, reaching a range of approximately 7-8.2,
which is within the pH range reported for optimal esterase activ-
ity (7.5-8.9) in DBP biodegradation (Akita et al., 2001; Huang et al.,
2019; Huang et al.,, 2020; Lu et al., 2020; Sarkar et al., 2020; Zhang
etal., 2014).

These results show that in general, for both Fusarium species,
the highest esterase activities, specific growth rates, and growth
kinetic and enzymatic yield parameters were observed in media
supplemented with DBP. It was observed that 1,500 and 2,000 mg
of DBP/L did not inhibit F. culmorum or F. oxysporum growth and that
DBP induced esterase production in both fungi. These organisms
have much to offer in the mitigation of environmental pollution
caused by the endocrine disruptor DBP.
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