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Abstract: The avascular structure and lack of regenerative cells make the repair of osteochondral
defects in the temporomandibular joint (TMJ) highly challenging in the clinic. To provide a viable
treatment option, we developed a methacrylated gelatin (Gel-MA) hydrogel functionalized with
human salivary histatin-1 (Hst1). Gel-MA is highly biocompatible, biodegradable, and cost-effective.
Hst1 is capable of activating a series of cell activities, such as adhesion, migration, differentiation,
and angiogenesis. To evaluate the efficacy of Hst1/Gel-MA, critical-size osteochondral defects
(3 mm in diameter and 3 mm in depth) of TMJ in New Zealand white rabbits were surgically
created and randomly assigned to one of the three treatment groups: (1) control (no filling material);
(2) Gel-MA hydrogel; (3) Hst1/Gel-MA hydrogel. Samples were retrieved 1, 2, and 4 weeks post-
surgery and subjected to gross examination and a series of histomorphometric and immunological
analyses. In comparison with the control and Gel-MA alone groups, Hst1/Gel-MA hydrogel was
associated with significantly higher International Cartilage Repair Society score, modified O’Driscoll
score, area percentages of newly formed bone, cartilage, collagen fiber, and glycosaminoglycan,
and expression of collagen II and aggrecan. In conclusion, Hst1/Gel-MA hydrogels significantly
enhance bone and cartilage regeneration, thus bearing promising application potential for repairing
osteochondral defects.

Keywords: histatin-1; Gel-MA hydrogels; cartilage repair; tissue engineering; temporomandibu-
lar joint

1. Introduction

Osteochondral defects in temporomandibular joints (TMJs) can result from acute
injury, overloading, or abnormal immune response [1,2]. Osteochondral defects may lead
to a lifetime of pain and restricted jaw motion for patients, even in daily activities such as
talking, eating, and yawning [3].

In TMJs, the repair of osteochondral defects is highly challenging due to their limited
self-regenerative potential [1]. Firstly, the avascular property of condyle cartilage tissue
leads to the lack of a classic healing cascade, such as coagulation, inflammation, blood
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invasion, and accumulation of pluripotent mesenchymal stem cells (MSCs) [4]. Secondly,
the chondrocytes in the surrounding cartilage tissue show poor migration and prolifera-
tion [4,5]. All these properties result in nearly no healing of TMJ cartilage. Thirdly, when
defects further enlarge to affect subchondral bone tissues, the blood supply from bone
tissues may, to some extent, trigger the classic healing pattern and enhance MSC migra-
tion [6]. However, such a blood supply and migration of MSCs are too limited to facilitate
the complete repair of osteochondral defects [7]. Meanwhile, the reduced TMJ area will
result in mechanical overloading on the remaining TMJ tissue, which may cause secondary
mechanical damage to the TMJ [1]. In the clinic, osteochondral defects are managed mainly
using various autografts, such as autologous chondrocyte implantation [8] and mosaic-
plasty [9,10]. These treatments show beneficial effects in the healing of osteochondral
defects by providing chondrocytes. However, their usage is highly limited due to the
limited availability of autografts and donor-site pain and morbidity [11]. Consequently,
continuous efforts have been attempted to repair osteochondral defects.

Cartilage tissue engineering (TE) is a promising technique that elaborately involves
various combinations of biomaterial scaffolds, bioactive agents, and stem cells to facilitate
tissue reconstruction [12]. Scaffolds are an essential part of TE, for they provide a scaffolding
matrix for cell migration and neo-tissue generation in the repair site. One of the most
commonly used TE scaffolds is methacrylated gelatin (Gel-MA) that is a hydrolyzed form
of and has the same chemical composition as collagen, thus bearing good biocompatibility
without the risk of pathogen transmission as with collagen [13]. Gelatin contains many
adhesive ligands, such as arginine–glycine–aspartic acid sequences so as to promote cell
adhesion and migration [14]. Its excellent fluidity before crosslinking enables Gel-MA to
flexibly fit into the complicated forms of defects [15]. Right after a short photo-crosslinking
time, Gel-MA can transit from liquid to hydrogel and reach 50–60 kPa stiffness, which
is favorable for cartilage and bone tissue formation [16]. Albeit so, Gel-MA still lacks
intrinsic capacities of inducing angiogenesis and MSC homing, thus being unable to
facilitate sufficient repair of osteochondral defects [17]. This limitation of Gel-MA may be
approached by encapsulating MSCs [18] or bioactive agents [19]. In contrast to MSC-based
TE, bioactive agent-based TE technique bears a series of advantages, such as low cost, wide
sources, and low regulatory barriers in clinical translation [20,21]. An ideal bioactive agent
should be able to induce both angiogenesis and MSC migration from the bone defect area
to cartilage lesion site so as to facilitate the repair of osteochondral defects.

One of such bioactive agents is histatin-1 (Hst1) that belongs to a cationic and his-
tidine-rich peptide family originally found in the saliva of higher primates [22]. Hst1
bears a potent capacity to stimulate the adhesion and migration of epithelial cells [23–26],
fibroblasts [27], and osteoblasts [28,29]. Meanwhile, it can promote cell metabolic activ-
ity [26] and maintains cell viability in various adverse conditions [28,29]. Furthermore,
Hst1 shows very strong angiogenetic properties [30]. Recently, in an in vivo ectopic bone
induction model, we show that Hst1 significantly promotes bone morphogenetic protein 2
(BMP2)-induced angiogenesis and osteogenesis [31]. However, the effect of Hst1 on the
repair of osteochondral defects remains unexplored. In this study, we hypothesized that
Hst1-functionalized Gel-MA hydrogels could sufficiently promote the repair of critical-size
osteochondral defects in TMJ.

2. Results
2.1. Postoperative Course

All animals recovered well postoperatively and had adequate food intake to maintain
baseline body weight. There were no significant postoperative complications within the
4-week monitoring span.

2.2. Selection of Hst1 Dosage

To determine the optimal dosage of Hst1 to promote osteochondral repair, a pre-
liminary study was carried out to explore the repair effects of Gel-MA with 3 different
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doses of Hst1: 50, 500, and 1000 µg per defect. At 2 weeks, only mild new bone forma-
tion but not cartilage formation was detected in the defects with 50 µg Hst1/Gel-MA
(Figure 1A–A1, D–D1). In contrast, much more new bone formation and several islands
of new cartilage could be observed in the defects treated with 500 µg Hst1/Gel-MA
(Figure 1B–B1, E–E1). Interestingly, the defects treated with 1000 µg Hst1/Gel-MA were
almost fulfilled with a tremendous amount of new bone tissue (Figure 1C–C1, F–F1), while
newly formed cartilage tissue was rarely detected. Thus, we chose 500 µg Hst1 per defect
in the following experiments.

Figure 1. Light micrographs of H&E-stained (A–C) and toluidine blue-stained (D–F) tissue sections of rabbit condyles with
critical-size (3 mm in diameter and 3 mm in depth) osteochondral defects that were treated using Gel-MA with 3 different
doses of Hst1 (A,D) 50, (B,E) 500, and (C,F) 1000 µg per defect. The tissues were retrieved at 2 weeks postoperation
and then subjected to histologic processing and sectioning. The dotted square area indicates the original defect area.
Black star: immature cartilage cells; black arrow: newly formed subchondral bone; white arrow: Hst1/Gel-MA materials.
Scale bar = 500 µm in A–F; Scale bar = 50 µm in A1–F1.

2.3. Macroscopic Evaluation

At 1 week, the defects were still hollow and showed distinct edges from the surround-
ing cartilage in the control group (Figure 2A). In Gel-MA group, the defects were filled
with white rough tissue with a clear border. The surface of the defects remained concave
(Figure 2B). Moreover, the defects of Hst1/Gel-MA group were filled with pale pinkish
tissue. There was little depression in the defects and the margin with normal cartilage was
indistinct (Figure 2C). The International Cartilage Repair Society (ICRS) macroscopic scores
of Hst1/Gel-MA group were significantly higher than the scores of Gel-MA group and
control group (p < 0.05) (Figure 2J).

At 2 weeks, the tissues in the vicinity of the original defect further collapsed, result-
ing in pronounced extension of the defect order and the enlargement of the defect area
(Figure 2D). The defect surfaces of Gel-MA group showed a red, irregular, depressed
morphology without visible collapse of the surrounding tissues (Figure 2E). The defect
border was still sharply defined. In comparison, cartilage defects were filled with pale
red tissue with obscure demarcation from surrounding cartilage in Hst1/Gel-MA group
(Figure 2F). The ICRS macroscopic scores of Hst1/Gel-MA group were significantly higher
than those of Gel-MA group and control group. Statistically significant differences could
be found between the two groups at this time point (p < 0.05) (Figure 2K).
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Figure 2. Photographs and macroscopic evaluation of rabbit condyle osteochondral defects of TMJ, which were treated
as control group (A,D,G), Gel-MA group (B,E,H) and Hst1/Gel-MA group (C,F,I). The tissues were retrieved at 1, 2,
and 4 weeks post operation and then photographed and scored using ICRS macroscopic scores (J–L). The red circle area
represents the original defect area, and the blue irregular area represents the enlarged absorption area (n = 6, * p < 0.05;
** p < 0.01; *** p < 0.001 and NS = not significant).

At 4 weeks, further enlargement of the defect border could be observed in the control
group. Irregular fibrous-like tissue formation was found in the defects (Figure 2G). In
comparison, the defects of Gel-MA group were filled with reddish tissue, and the surface
remained depressed (Figure 2H). In contrast, in the Hst1/Gel-MA group, there was firm,
smooth, cartilage-like tissue filled in the defects. Additionally, the color and morphology
of the newly regenerated tissue were similar to the adjacent normal cartilage (Figure 2I).
The ICRS macroscopic scores of Hst1/Gel-MA group were significantly higher than those
of the Gel-MA group (p < 0.05) and control group (p < 0.001). Notably, the mean score of
Hst1/Gel-MA group was about three times that of the control group (Figure 2L).

2.4. Histologic Observation and Histomorphometric Analysis on HE-Stained Tissue Sections

At 1 week, in the control group, nearly no newly regenerated tissue could be detected
in the defects of the control group with the bone surface uncovered. There was still a
large amount of porous Gel-MA material in both the Gel-MA and Hst1/Gel-MA groups.
However, only in the Hst1/Gel-MA group, some immature chondrocytes and other cells
infiltrated into the porous structures of Gel-MA. The area percentages of the newly formed
subchondral bone tissue and cartilage in the Hst1/Gel-MA group were significantly higher
than Gel-MA group (p < 0.05) and control group (p < 0.01). However, there were no
significant differences between the Gel-MA and control groups (Figure 3A,B). Meanwhile,
the modified O’Driscoll score (MODS) in the groups of Hst1/Gel-MA and Gel-MA were
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significantly higher than that MODS in the control group, whereas no significant difference
in MODS could be detected between Hst1/Gel-MA group and Gel-MA group (Figure 3C).

Figure 3. Quantitative analysis of newly formed cartilage (A) and subchondral bone area (B), and the MODS evaluation for
repaired osteochondral defects at 1, 2, and 4 weeks postimplantation (C–E). (n = 6, * p < 0.05, ** p < 0.01, *** p < 0.001 and
NS = not significant).

At 2 weeks, the defects in the control group still showed absence of tissue repair with
the subchondral bone surface still exposed. In the Gel-MA group, few cells infiltrated into
the porous Gel-MA material. In comparison, new cartilage and bone tissue formed and
replaced the Gel-MA material gradually in Hst1/Gel-MA group. The area percentages of
the newly formed cartilage in the Hst1/Gel-MA and Gel-MA groups were significantly
higher than for the control group (p < 0.01) (Figure 3A), whereas no significant difference in
the area percentages of the newly formed cartilage could be detected between the Hst1/Gel-
MA and Gel-MA groups (Figure 3A). Meanwhile, the area percentages of the newly formed
subchondral bone tissue in the Hst1/Gel-MA group were significantly higher than Gel-MA
group (p < 0.01) and control group (p < 0.001) (Figure 3B), whereas there were no significant
difference between the Gel-MA and control groups (Figure 3B). In addition, the Hst1/Gel-
MA and Gel-MA groups had significantly higher MODS than the control group (p < 0.01)
(Figure 3D). However, no significant difference in MODS could be detected between the
Hst1/Gel-MA and Gel-MA groups (Figure 3D).

At 4 weeks, the defect area in control group was significantly enlarged and remained
hollow with a layer of fibrous tissue on its surface (Figure 4A–A1). In the Gel-MA group,
only a few cells could be detected within the remaining Gel-MA material. There was mainly
fibrous tissue along with Gel-MA material in the defects (Figure 4B–B1). Meanwhile, the
new subchondral bone formation could be detected (Figure 4B–B2). In comparison, large
areas of newly formed cartilage were detected in the Hst1/Gel-MA group (Figure 4C). No-
tably, chondrocytes exhibited a typical lacunae structure with columnar alignment (Figure
4C1). Moreover, right above the newly formed chondrocyte layer, there appeared to be a fi-
brous layer—similar to that found in the native mandibular condylar cartilage (Figure 4C1).
At the bottom of the defect, improved subchondral bone remodeling with a large number of
infiltrated osteoblasts and osteoclasts was observed (Figure 4C2). Evidence of neovascular-
ization was detected in the junction between subchondral bone and hydrogel (Figure 4C2).
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Additionally, the mean area percentage of newly formed cartilage in Hst1/Gel-MA group
was almost two times that of the Gel-MA group (p < 0.01), and they were both significantly
higher than that of the control group (p < 0.001) (Figure 3A). The area percentages of the
newly formed subchondral bone tissue in Hst1/Gel-MA group were significantly higher
than for the Gel-MA group (p < 0.05) and control group (p < 0.001) (Figure 3B). Meanwhile,
the Hst1/Gel-MA group had significantly higher MODS compared to the Gel-MA group
(p < 0.01) and control group (p < 0.001). Gel-MA group had significantly higher MODS
than the control group (p < 0.01) (Figure 3E). All the light micrographs of the HE-stained
tissue sections for all samples at 4 weeks for this quantification are available in Figure S1.

Figure 4. Light micrographs of H&E-stained tissue sections of rabbit condyles with critical-size (3 mm in diameter and 3 mm
in depth) osteochondral defects that were treated as control group (A,A1,A2), Gel-MA group (B,B1,B2) and Hst1/Gel-MA
group (C,C1,C2). The tissues were retrieved at 4 weeks and then subjected to histologic processing and sectioning. The
dotted square area is the original defect area (3 mm × 3 mm). The newly formed cartilage is delineated by the red dotted
line, and the new subchondral bone is delineated by the blue dotted line. Solid arrow: osteoclasts; hollow arrow: osteoblasts;
black star: immature cartilage cells; triangle: neovascularization. Scale bar = 500 µm in A–C; Scale bar = 50 µm in A1–C2.
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2.5. Histologic Observation and Histomorphometric Analysis on Sections with Alcian Blue
Staining or Masson’s Trichrome Staining

At 2 weeks, Masson’s trichrome staining exhibited very little blue staining in the
Gel-MA materials, which revealed that nearly no collagen fibers especially collagen type II
formation (Figure 5A–A1). Alcian blue staining also showed little to no glycosaminoglycan
(GAG) production with staining almost absent in the defects (Figure 5C–C1). In comparison,
the existence of collagen fibers, especially collagen type II, in the newly formed cartilage was
demonstrated by Masson’s trichrome staining in the Hst1/Gel-MA group (Figure 5B–B1).
The Alcian blue staining also revealed the GAG content of the extracellular matrices (ECM)
in the cartilage islands in the defects (Figure 5D–D1). Histomorphometric analysis revealed
that the Hst1/Gel-MA group had significantly higher GAG and collagen fiber content than
the Gel-MA and control groups (p < 0.001) (Figure 6A,C,E).

Figure 5. Light micrographs of Alcian blue-stained and Masson’s trichrome-stained tissue sections of repaired osteochondral
defects in the Gel-MA and Hst1/Gel-MA groups. Masson’s trichrome staining at 2 weeks (A,B) and 4 weeks (E,F); Alcian
blue staining at 2 weeks (C,D) and 4 weeks (G,H). The dotted square area indicates the original defect area (3 mm × 3 mm).
Scale bar = 1 mm in A–H; Scale bar = 100 µm in A1–H1.

At 4 weeks, in the Gel-MA group, little collagen deposition, as stained blue by Mas-
son’s trichrome, was found in the Gel-MA material (Figure 5E–E1). Alcian blue staining
exhibited rare GAG formation in the defects (Figure 5G–G1). In the Hst1/Gel-MA group,
Masson’s trichrome staining showed strongly blue staining in the newly formed cartilage,
indicating collagen fibers were produced in the ECM in the repair tissues (Figure 5F–F1).
Meanwhile, Alcian blue staining confirmed the presence of GAG in the ECM in the newly
formed cartilage (Figure 5H–H1). Histomorphometric analysis showed Hst1/Gel-MA
group had significantly higher GAG and collagen fiber content than the Gel-MA and
control groups (p < 0.001) (Figure 6B,D,F).
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Figure 6. Quantitative analysis of the formation of GAG and collagen fiber in new cartilage and subchondral bone in the
defect area at 2 and 4 weeks. Percentage of GAG area in defect area at 2 (A) and 4 weeks (B). Percentage of collagen fiber
area in new cartilage in defect area at 2 (C) and 4 weeks (D). Percentage of collagen fiber area in subchondral bone in defect
area at 2 (E) and 4 weeks (F) (n = 6, ** p < 0.01, *** p < 0.001 and NS = not significant).
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2.6. Immunohistochemical Evaluation

In the Hst1/Gel-MA group, the expression of collagen II and aggrecan increased
gradually over time, approaching that of normal cartilage by 4 weeks after implantation
(Figure 7C,D). However, in Gel-MA group, there was almost no presentation of collagen
II and aggrecan in the repaired tissue at 1 and 2 weeks, while slight staining of collagen
II and aggrecan is visible in the Gel-MA group at 4 weeks (Figure 7A,B). No positive
immunostaining for collagen II and aggrecan was observed in the control group at any
time point. The Hst1/Gel-MA group has significantly higher collagen II and aggrecan
expression compared to the Gel-MA and control groups at 4 weeks (p < 0.001) (Figure 7E,F).

Figure 7. Light micrographs of immunohistochemically stained tissue sections of collagen II (A,C) and aggrecan (B,D) in the
Gel-MA group (A,B) and Hst1/Gel-MA group (C,D). The tissues were retrieved at 4 weeks postoperation and then subjected
to immunohistochemical processing and sectioning. Quantitative analysis of collagen II (E) and aggrecan (F) expression at
4 weeks. Scale bar = 100 µm in A–D. (n = 6, *** p < 0.001).
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3. Discussion

The main difficulty in the repair of critical-size osteochondral defects in TMJs mainly
lies in insufficient self-regenerative cells in lesion areas [32]. Most of the current clinical
therapies try to approach this problem by auto-transplanting chondrocytes or cartilage,
which is restricted by their very limited availability and donor site morbidity [11]. In
this study, to provide a viable treatment option, we developed a Hst1-functionalized Gel-
MA hydrogel to combine the chondroconductive properties of Gel-MA and the potent
angiogenetic and cell-activating capacity of Hst1. To our best knowledge, this was the
first study to show the effects of Hst1 on the repair of osteochondral defects in TMJ.
Our data show that Hst1/Gel-MA hydrogel group possessed a significant higher ICRS
score and MODS in comparison with the Gel-MA group and control group. Furthermore,
histomorphometric analysis showed significantly higher expression of collagen II, aggrecan,
collagen fiber, GAG, and more newly formed subchondral bone and cartilage in Hst1/Gel-
MA hydrogel group than the Gel-MA group and control group. Our data suggest a
promising application potential of Hst1/Gel-MA hydrogels in promoting the repair of
critical-size osteochondral defects in TMJ.

The spontaneous healing efficacy of osteochondral defects in TMJ is highly dependent
on the size, shape, and depth of the lesions. For example, nearly no spontaneous tissue
repair can be detected in a defect 2 mm diameter and 2 mm deep in rabbit TMJ 3 weeks
postoperatively, since the lesions are largely restricted in cartilage or on the bone–cartilage
interface that bears limited resources of blood supply and regenerative cells [33]. When
defects are deeper and affect the subchondral bone area, the blood supply from the sub-
chondral bone area will trigger a classical healing cascade and deliver self-regenerative
MSCs [6]. In this situation, the healing efficacy shows a diameter-dependent pattern. In
deep (3 mm in-depth) and non-critical-size (1 mm in diameter) defects, the healing efficacy
varied with some defects being filled with disorganized fibrocartilage and others filled
with a nearly continuous layer of cartilage at 6 weeks postoperation [3]. Most in vivo
studies reported that when defects had a diameter of less than 3 mm, they may partially
heal [34,35]. Therefore, the osteochondral defects with a 3 mm depth and 3 mm diameter
in rabbit TMJs can be considered as critical-size defects. In our current study, we surgically
created critical-size osteochondral defects (3 mm in depth and 3 mm in diameter) in the
TMJ of rabbits to investigate the healing efficacy of Hst1/Gel-MA hydrogel. We found that
there was only some bone formation but nearly no newly formed cartilage in the untreated
defects. This finding suggests that blooding and blood-borne MSCs from subchondral bone
were insufficient in triggering chondrogenesis. Instead, the defects further collapsed and
caused breakdown of the surrounding tissues. This phenomenon might be attributed to the
secondary mechanical damage and further breakdown surrounding the lesions [1] since
the TMJ load may be redistributed to the TMJ condyle with a much lower surface area.

As alternative to auto-transplantation in the clinic, a large variety of TE techniques
have been developed to repair osteochondral defects. Scaffold material is an indispensable
element for TE to facilitate cell migration, proliferation, and differentiation as well as
the slow release of bioactive agents [15]. In recent TE techniques, there is a trend in
the design of material scaffolds to contain three parts with different physicochemical
and biological properties in order to facilitate the regeneration of bone, cartilage, and
the osteochondral interface separately [36]. However, such complicated designs are less
favorable for their industrial fabrication and clinical application. To develop a filling
material with more promise for clinical application, we adopted Gel-MA hydrogels as
the scaffold material. Gel-MA hydrogels possess a series of advantages, such as in being
biocompatible, biodegradable, nonimmunogenic, physicochemical modifiable, and cost-
effective [37]. They are highly similar to the natural ECM both in provide a free entrance for
nutrients and in supporting cellular growth [38]. Furthermore, Gel-MA can also support
its encapsulated chondrocytes to produce the ECM such as through proteoglycan and type
II collagen deposition as well as chondrogenesis-related gene expression [39]. In our study,
compared with the absence of tissue repair in the defects and even further breakdown of
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the surrounding tissues in control group, cell infiltration in the non-degraded scaffold of
the Gel-MA group could be detected with subchondral bone deposition at 4 weeks. In
addition, Masson’s trichrome staining and Alcian blue staining confirmed that there were
few collagen fibers and little GAG formation in the defects, which indicated that Gel-MA
supported cartilage ECM formation. Meanwhile, the score of ICRS and MODS of Gel-MA
group were significantly higher than the control group (p < 0.05). However, Gel-MA
hydrogel alone is not sufficient to heal the critical-size osteochondral defects in TMJ.

To further promote the healing efficacy, scaffold materials need to be functionalized
by bioactive agents, particularly proteinous growth factors such as BMP2 and transforming
growth factor-β (TGF-β). Osteochondral regeneration is delicately regulated by several
macromolecular protein growth factors, such as bone morphogenetic proteins (BMPs).
BMP2 belongs to BMP family, a group of proteinaceous growth factors under the TGF-β
superfamily [40]. The classical role for BMP2 is considered to be in the induction of (ectopic)
cartilage and bone formation [41,42]. In the USA, a product containing recombinant human
(rh)BMP2 in absorbable collagen has already been approved for clinical application in
nonunion bone fractures and spinal fusions [43]. However, the use of BMP2 is associ-
ated with the concern that BMP2 induces chondrocyte hypertrophy followed by cartilage
calcification [44], which compromises the regeneration of cartilage layer. In the field of
TE, there is a trend to combine growth factors to specifically induce and maintain the
zonal phenotypes of cartilage. For example, cultivation of MSCs with TGF-β1 (3 ng/mL)
and BMP-7 (300 ng/mL) induced the synthesis of superficial zone protein, a marker for
chondrocytes in the superficial zone [45], whereas insulin-like growth factor-1 (IGF-1)
did not [46,47]. Cultivation of chondrocytes isolated from the middle zone with TGF-β1
(30 ng/mL) and IGF-1 (100 ng/mL) significantly increased collagen synthesis [48,49]. TGF-
β1 also contributes to the maintenance of calcified cartilage zone as deletion of the TGF-β1
receptor gene from chondrocytes delayed endochondral ossification [50] and cultivation
of bovine hypertrophic chondrocytes with a combination of TGF-β1 (30 ng/mL) and 3%
(w/v) hydroxyapatite (HA) increased matrix deposition and mineralization [50,51]. How-
ever, such complex zonal arrangement of growth factors is less feasible for biomedical
application. In addition, proteinous growth factors bear low production yield and, thus,
high cost, which further limits their clinical application. As promising alternatives to
the macromolecular protein growth factors, peptides can be chemically and standardly
synthesized, thus bearing better reproducibility and yielding efficiency [52].

In this study, we adopted Hst1—a salary bioactive peptide that can promote a series of
cell activities, such as cell adhesion [23,24,27,30,53], spreading [23,24], migration [22], cell–
cell adhesion [24,54], angiogenesis [30], and metabolic activity [26,28,29,55]. Furthermore,
Hst1′s cell-activating effects seem to be independent of cell types, thus bearing broad
applicability. Such a property is of paramount importance particularly for the application
in repairing osteochondral defects, which requires promotion of the functions of both
osteoblast and chondrocytes [43,44]. To identify the optimal dosage of Hst1, we first
performed a preliminary study to investigate the dose-dependent effects of Hst1 on the
repair of critical-size osteochondral defects. We found that 50 µg Hst1/Gel-MA was
associated with insufficient new bone and cartilage formation, while 1000 µg Hst1/Gel-MA
resulted in overstimulation of bone regeneration with compromised cartilage formation. It
seems that over-dosed Hst1 will be more beneficial for bone regeneration and detrimental
for cartilage formation. This may be due to the angiogenetic effect of Hst1. As for other cell
types, Hst1 can promote the adhesion, spreading, and migration of endothelial cells [30].
Furthermore, Hst1 can also promote vascular morphogenesis and angiogenesis through
activating Rac1 via a RIN2/Rab5/Rac1 signaling pathway axis [30]. Moreover, it is well
established that overstimulated angiogenesis can cause cartilage resorption and bone
deposition [56]. Consequently, overdosed Hst1 may harm cartilage regeneration through
overstimulated angiogenesis.

On the other hand, angiogenesis is an indispensable biological event to deliver nutri-
ents, oxygen, and hematopoietic stem cells to cartilage defects, thereby facilitating cartilage
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regeneration. Consequently, elaborate modulation of Hst1 dosage is critical for balanced
bone and cartilage formation. In this study, we showed that 500 µg Hst1/Gel-MA hydro-
gels significantly promoted the deposition of ECM compositions (collagen II and aggrecan)
and the formation of zonally structured cartilage in the defects in comparison with Gel-MA
hydrogels and the control (p < 0.05). The score of ICRS and MODS in Hst1/Gel-MA group
were also significantly higher than in the Gel-MA group. In addition, numerous chondrob-
lasts in the newly formed cartilage layer and osteoblasts and osteoclasts in the subchondral
bone could be observed in our study, indicating a high level of metabolism and remodeling.
Consequently, 500 µg Hst1/Gel-MA hydrogel was proven to be the most efficacious in
repairing osteochondral defects in the TMJ. In comparison with the complicated designed
osteochondral constructs, the 500 µg Hst1/Gel-MA hydrogel is much more feasible and
simpler, thus bearing more promising potential in biomedical application.

However, hitherto, there are no reports about how Hst1 facilitates chondrogenesis.
One mechanism can be its well-established promoting effect on the adhesion, spreading,
and migration of hematopoietic stem cells from subchondral bone and/or the chondrocytes
from adjacent cartilage. The latter may be possible since that newly formed cartilage islands
first occurred in the vicinity of the remaining cartilage. However, it is also well known that
mature chondrocytes hardly migrate to repair cartilage defects [4]. Therefore, it may also
be explained that Hst1 induced the secretion of growth factors and cytokines from mature
chondrocytes so as to stimulate the chondrogenic differentiation of hematopoietic stem
cells. It has recently been established that Hst1 promotes osteogenic differentiation [57,58].
Furthermore, our recent study shows that Hst1 significantly promotes BMP2-induced
angiogenesis and osteogenesis [31]. Therefore, the interaction of exogenous Hst1 and
endogenous BMP2 may be also responsible for the promotion of cartilage formation in the
current study. Previous studies suggested that Hst’s effect is associated with numerous
signaling pathways, such as RAC1 [30], ERK [23], p38 [57], and NF-kB [58], among others.
However, there has been no report on the effect of Hst1 on chondrocytes.

4. Materials and Methods
4.1. The Preparation of Hydrogel Prepolymer Solution and Hst1

The freeze-dried Gel-MA was purchased from Wenzhou institute (Wenzhou, China).
200 mg of freeze-dried Gel-MA macromer was dissolved in 1 ml of PBS containing 0.5%
(w/v) 2-hydroxy-1-(4-(hydroxyethoxy)phenyl)-2-methyl-1-propanone (Irgacure2959, CIBA
Chemicals, Basel, Switzerland) at 80 ◦C and then filtered with a bacteria filter. The prepoly-
mer solution was stored at 40 ◦C in a constant temperature water bath. It was prepared
freshly before surgery and stored in bacteria-free bottles.

The lyophilized linear Hst1 peptide was obtained from the University of Amsterdam
(Amsterdam, Holland) and stored at −20 ◦C. Hst1 peptide (500 µg) was dissolved in
21.1 µL (defect volume) prepolymer solution to prepare as the implantation.

4.2. Group Set-Up

In order to screen the optimal dosage of Hst1, we first performed a preliminary
experiment, where we selected three doses of Hst1: 50, 500, and 1000 µg per defect
according to the findings in our recent publication [31]. In that study, we evaluated
the promoting effect of Hst1 at 50, 200, 500 µg/sample on BMP2-induced osteogenesis
and angiogenesis. Micro-CT analysis showed that Hst1 dose-dependently increased the
total volume of BMP2-induced newly formed bone. Furthermore, 50 µg of Hst1 per
sample could already significantly enhance trabecular number and decrease trabecular
separation of new bone. Immunostaining analysis showed that 500 µg of Hst1 per sample
significantly enhanced levels of the BMP2-induced osteogenic markers (Runx2, Collagen)
and angiogenic markers (FGF-2, CD105, and CD31). According to these results, in the
preliminary experiment of the current study, we chose 50 and 500 µg, and also added
1000 µg to see whether we could get more beneficial effects with the higher dose. Two
weeks postsurgery, animals were sacrificed and subjected to histological process. According
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to the histological staining result, 500 µg Hst1/Gel-MA was associated with a sufficient
and balanced bone and cartilage formation in comparison with 50 µg Hst1/Gel-MA and
1000 µg Hst1/Gel-MA (see details in Section 2.2). Consequently, we chose 500 µg Hst1 per
defect in the following experiments.

In the formal experiments, we set up 3 groups: control group (the defects receiving no
filling material); Gel-MA alone group (the defects filled with Gel-MA hydrogels without
Hst1); and 500 µg Hst1/Gel-MA group (the defects filled with 500 µg Hst1-functionalized
Gel-MA hydrogels). Fifty-four adult male New Zealand white rabbits (Zhejiang Chinese
Medical University, Hangzhou, China) were randomly divided into the 3 groups with
18 animals in each group. Six animals per group per time point were euthanized at 1, 2,
and 4 weeks postsurgery.

4.3. Animal Surgery

The animal study was reviewed and approved by the Institutional Animal Care and
Use Committee of Zhejiang Chinese Medical University (no. IACUC-20180625-04). With
the animals under general anesthesia, a preauricular skin incision was performed over
the right TMJ. Then the condyle was exposed, and an osteochondral defect, 3 mm in
diameter and 3 mm in depth, was created in the condyle with a 3 mm diameter drill.
Surgery was performed on the right condyle of the TMJ in all 54 animals, and the left
remained intact. In the control group, the defects were created but not treated. Gel-
MA group was given Gel-MA hydrogels. Hst1-functionalized Gel-MA hydrogels were
injected into the defect sites in Hst1/Gel-MA group. The Gel-MA prepolymer solution
was photopolymerized by ultraviolet rays (365 nm, 90 s) in the Gel-MA and Hst1/Gel-MA
groups (Figure 8). The articular capsule and skin were closed independently with nylon
sutures. After all procedures were completed, animals were returned to the animal facility.
Penicillin (1:100,000) was intraperitoneally administered every 24 h for the first three days
after surgery.

Figure 8. The schematic diagram (A–E) of the rabbit mandibular joint condyle critical-size (3 mm in diameter and 3 mm in
depth) osteochondral defects model (3 mm × 3 mm) established procedure.

4.4. Macroscopic Score Evaluation

The right TMJ and surrounding tissues were retrieved for macroscopic score eval-
uation. The gross appearance of the defect sites was photographed and blindly scored
by 3 independent observers using ICRS macroscopic scoring system which contains four
categories: the degree of repair, integration to border zone, macroscopic appearance, and
overall repair assessment [59].
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4.5. Histological Examination

The specimens for histological analysis were fixed in 10% neutral formalin (Sigma-
Aldrich, St. Louis, MO, USA) after macroscopic evaluation for 24 h at 4 ◦C, and then
decalcified with 10% ethylenediaminetetraacetate (EDTA)-buffered saline solution (Sigma-
Aldrich, St. Louis, MO, USA) for 28 days. The specimens were cut into 4 µm thickness
after embedded in paraffin (Sigma-Aldrich, St. Louis, MO, USA). The sagittal sections
were stained with hematoxylin and eosin, Masson’s trichrome, and Alcian blue (Sigma-
Aldrich, St. Louis, MO, USA). At the same time, the sections were immunohistochemically
analyzed for type II collagen (COL II) and aggrecan content, with procedures performed
following the manufacturer’s protocol. Under an Olympus CX51 microscope (Olympus
Corporation, Tokyo, Japan), all slices were examined, and a digital charge-coupled device
camera (QuantEM 512SC; Photometrics, Tucson, AZ, USA) was used for recording. The
sections were blindly scored by 3 different experienced pathologists using MODS [60].

4.6. Histomorphometry Analysis

The original defect area is bounded by a 3 mm × 3 mm square in all slices of the sam-
ples. The top of the square is aligned with the cartilage surface on both sides. Percentage of
newly formed subchondral bone area, new cartilage area, collagen fiber area, and GAG area
in defect area was detected and calculated by Image Pro Plus software (v. 6.0.0.260; Media
Cybernetics, Rockville, MD, USA). The areas of newly formed subchondral bone and new
cartilage were selected through a manual delineation by researchers (as indicated by the
blue (for bone tissue) and red (for cartilage tissue) dotted lines in Figure 4) but not the gray
value-based automatic selection by software. The content of collagen II and aggrecan was
expressed as integrated optical density (IOD) measured using ImagePro Plus 6.0.

4.7. Statistical Analysis

Statistical analysis between all groups was performed using one-way ANOVA and
Tukey’s HSD post hoc test using the SPSS 18.0 statistical analytical software (SPSS Inc.,
Chicago, IL, USA). All the data are presented as mean ± standard deviation (SD). In all
cases, p-values < 0.05 were considered to indicate a statistically significant difference, and
p-values < 0.01 and 0.001 were considered highly significant differences.

5. Conclusions

In this study, we, for the first time, demonstrated that Hst1-functionalized Gel-MA
hydrogel was a simple, feasible, and efficacious construct to facilitate the repair of os-
teochondral defects of TMJ in rabbits. In contrast to the current therapies, such as auto-
transplantation of chondrocytes or cartilages, Hst1/Gel-MA bears unlimited availability
and no donor-site morbidity. All these properties confer Hst1/Gel-MA with promising
potential in biomedical application. Further studies should be performed to investigate the
effects and molecular mechanisms of Hst1 on chondrogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14050484/s1, Figure S1. Light micrographs of H&E-stained tissue sections of rabbit
condyles with critical-size (3 mm in diameter and 3 mm in depth) osteochondral defects that were
treated as control group (A1–A6), Gel-MA group (B1–B6) and Hst1/Gel-MA group (C1–C6).
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