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Abstract: Non-independent evolution of amino acid sites has become a noticeable limitation of most methods aimed at 
identifying selective constraints at functionally important amino acid sites or protein regions. The need for a generalised 
framework to account for non-independence of amino acid sites has fuelled the design and development of new mathemat-
ical models and computational tools centred on resolving this problem. Molecular coevolution is one of the most active 
areas of research, with an increasing rate of new models and methods being developed everyday. Both parametric and non-
parametric methods have been developed to account for correlated variability of amino acid sites. These methods have been 
utilised for detecting phylogenetic, functional and structural coevolution as well as to identify surfaces of amino acid sites 
involved in protein-protein interactions. Here we discuss and briefl y describe these methods, and identify their advantages 
and limitations.
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Introduction
Revealing intra-molecular coevolution between amino acid sites of genes or gene regions has been one 
of the most important goals of genetists, bioinformaticians, experimentalists and of new emerging areas 
of research. Many methods have been devised to understand the evolutionary dynamic of organisms 
through the examination of multiple sequence alignments (MSA’s). Although this approach has dra-
matically improved our understanding of the mutational dynamics of proteins, the complexity of proteins’ 
mutability is beyond methods focusing on the analysis of linear sequences. The last decade has witnessed 
the emergence of a plethora of mathematical methods and computational tools aimed at drawing the 
spatial, functional and evolutionary dependencies between amino acid sites within a protein. The coevo-
lutionary relationships between amino acid sites are however swamped in a background of different 
interacting factors governing the amino acids evolutionary dependency. During the last few years many 
efforts have been devoted to uncover coevolutionary relationships between amino acid sites belonging 
to the same or different proteins. The importance of such studies has been underpinned by many 
examples where dependencies between amino acid sites have unearthed the functional importance of 
residues (For example, see Fares and Travers, 2006; Travers and Fares, 2007).

The intrinsic complexity of the evolutionary dependencies between amino acid sites has however 
hampered the development of sensitive methods to detect functional coevolution. In fact coevolution 
between two amino acid sites can be decomposed into stochastic coevolution, functional coevolution 
and interaction coevolution. Each of these factors has different weights depending on, among other 
factors, how realistic models are to detect coevolution and the quality of the multiple sequence align-
ment. The sensitivity of most of parametric and non-parametric methods to detect functional coevolu-
tion (hereon, functional will refer to all those types of coevolution that do not involve stochastic or 
phylogenetic components) has been always compromised by the ability of these methods to disentangle 
the different types of coevolution.

As a result of the many challenges that detecting real coevolutionary dependencies between sites 
offers, many methods have developed trying to optimise the sensitivity and specifi city to distinguish 
between the different types of evolutionary dependencies between amino acid sites.
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In the light of the neutral theory of molecular 
evolution (Kimura, 1968) molecular changes are 
selectively neutral and therefore fi xed by genetic 
drift (Hughes and Nei, 1988). This hypothesis 
implies that the fi xation rate of mutations is constant 
throughout the evolutionary time (Bastolla et al. 
2003), which is tantamount to the homogeneous 
distribution of substitution rates through genera-
tions. This theory has been challenged by several 
studies, with those relating the change in the rate 
of neutral mutations and protein’s structure being 
among the most interesting reports (Bastolla 
Vendruscolo and Knapp, 2000). These studies 
suggest that the fi xation rate of amino acid substitu-
tions depend upon more complex parameters that 
preclude the independence between amino acid sites 
as a possibility to explain molecular evolution.

Inter-Dependent Evolution 
of Amino Acid Sites
The main reason for the amino acid sites interde-
pendence is that proteins’ functions rely on their 
three-dimentional (3D) structure that relies on their 
complex functional and structural interaction net-
works. Identifi cation of functionally or/and struc-
turally related amino acid sites in a protein could 
shed light on the complex mutational dynamics 
that took place during the evolution of proteins. 
Functionally related amino acid residues are tightly 
evolutionarily linked because mutations at one 
position may very likely have dramatic effects on 
the dependent amino acid positions. Due to this 
dependency, the selection coefficient against 
changes in one amino acid site may be highly cor-
related with the complexity of its intra-molecular 
interaction networks. For any mutation hence to 
become fi xed at such sites, compensatory muta-
tions are needed at the related sites. This generates 
a dynamic of coevolution between functionally 
related sites and this dynamic has been regarded 
as an important phenomenon to understand pro-
cesses of protein evolution.

This idea of coevolution relies on the idea of 
co-variation proposed by Fitch and Markowitz in the 
70’s (Fitch and Markowitz, 1970), in which, in a 
particular time throughout evolution one region of 
the protein is invariable (due to structural or the 
functional constraints) while others accumulate 
mutations. As mutations are fixed elsewhere in 
the sequence throughout the evolutionary time, 
selective constraints on invariable regions may 

change (Figure. 1). Fitch later completed this concept 
of co-dependence between amino acid sites or pro-
tein regions (Fitch, 1971). This idea is essential in 
unveiling the mechanisms of molecular evolution, 
and might have pragmatic consequence for the struc-
ture prediction and drug design (Fares, 2006). Before 
its application to proteins, several authors have used 
the concept of coevolution to describe covariation 
between morphological characters (Pagel, 1994) or 
using DNA/RNA sequences (Schoniger and von 
Haeseler, 1994; Rzhetsky, 1995).

Detecting coevolving amino acid sites has been 
regarded as a good strategy for; (i) functional 
annotations of proteins encoded by unknown 
genes; (ii) revealing possible interactions between 
amino acids in the same protein; (iii) predicting 
protein-protein interactions; and (iv) understand 
how complex machineries undergo adaptive 
changes without having meaningful effects on the 
organism (Fraser et al. 2004).

Detecting Molecular Coevolution
Due to the signifi cant gap between available pro-
tein sequences and crystal structure for proteins, 
most of the studies on protein evolution are per-
formed over the linear sequence. Conclusions 
drawn from these studies are incomplete because 
they ignore the third dimension (spatial dimension) 
that accounts for the dependence between linearly 
distant amino acid sites. Coevolution methods 
aimed at predicting atomic interactions between 
amino acids in a protein perform a powerful tool 
to unravel amino acid site dependencies ameliorating 
thus the problem of the lack of three-dimensional 
information (Göbel et al. 1994; Pazos et al. 1997). 
Because of the fact that functionally important 
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Figure 1. Phylogenetic coevolution. As mutations are fi xed elsewhere 
in the sequence throughout the evolutionary time (black square 
mutating to a black hexagon), selective constraints on invariable 
regions may change (Triangle mutating to rhomboid).
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amino acid regions in a protein are usually 
conserved throughout evolution, authors have 
focused their efforts on trying to identify such 
regions by conducting directed mutagenesis 
experiments (Sander and Schneider, 1993; Mirni 
and Shakhnovich, 1999; Wood and Pearson, 1999; 
Friedberg and Margalit, 2002; Oliveira et al. 2002; 
Oliveira et al. 2003; Nimrod et al. 2005). However, 
the number of possible experiments necessary to 
identify functional dependencies between amino 
acid sites overwhelmed the experimental capacities 
of most if not all the laboratories. To overcome 
these experimental limitations, many authors 
devised statistical methods and computational tools 
to identify functional dependencies between amino 
acid sites using intra-molecular coevolution 
analyses (for example, Fares and Travers, 2006; 
Travers and Fares, 2007).

Several parametric and non-parametric methods 
have been implemented to identify important 
residues in proteins. These methods focus on 
variable amino acid sites that can be functionally 
important, or that surround important functional 
domains and which covariation have a compensa-
tory effect that maintains the three-dimensional 
structure characteristics (Taylor and Hatrick, 1994; 
Atwell et al. 1997; Chelvanayagam et al. 1997; 
Pazos et al. 1997; Olivera et al. 2002; Martin 
et al. 2005; Codoñer et al. 2006; Kim et al. 2006). 
Other methods have mostly focused on the detec-
tion of interaction between motifs or between 
proteins (Goh et al. 2000; Pazos and Valencia, 
2001; Goh and Cohen, 2002; Pazos and Valencia, 
2002; Ramani and Marcotte, 2003; Deng et al. 2006; 
Jothi et al. 2006; Kim and Subramaniam, 2006) 
or on the defi nition of protein-protein interaction 
networks (interactome) (Ju et al. 2003; Kim et al. 
2004; Pazos et al. 2005; Chen and Yuan, 2006; 
Yu and Gerstein, 2006). Coevolution has been 
also instrumental for the in silico inference of 
the protein three-dimensional structure and reso-
lution of docking problems (Göbel et al. 1994; 
Pazos et al. 1997).

New emerging parametric and non-parametric 
methods have devoted great part of their efforts on 
developing strategies to identify the components 
of coevolution.

The covariance between amino acid i and j in 
an alignment can be decomposed into:

Cij=Cphylogeny+ CStructure+ Cfunction+ Cinteractions
      + CStochastic

Cstructure and Cfunction account for co-variation 
due to the same selective forces acting on both 
sites to maintain a structural or functional domain 
(Atchley et al. 2000; Fig. 2). Phylogenetic covari-
ation (Cphylogeny) was exposed by Felsenstein 
(1985) to highlight the historical dependency 
between species and can hence be used for amino 
acid sites. On the other hand, among the remain-
ing components of coevolution, Cstructure and Cfunc-
tion are always very diffi cult to distinguish because 
they are not mutually exclusive and a pair of 
amino acid sites can be coevolving due to com-
bination of different dependencies. Finally, Cinter-
actions usually refl ects a functional and/or structural 
component, which make its distinction a rather 
diffi cult task. This component also implies that 
certain variation at the sequence level exists at 
amino acid sites involved in the interaction 
between two proteins. Even though interaction 
between amino acid sites implies coevolution 
between them, coevolution between sites does not 
necessarily mean they interact. Therefore, distin-
guishing coevolution due to interaction is easily 
mixed with that due to other factors. Stochastic 
covariation (Cstochastic) can be due to convergent 
covariation of two sites due to the mutational 
dynamic of the sites (for example, accelerated 
fi xation rates of evolution leading to saturation 
of amino acid sites). Removing the component of 
stochastic coevolution is more limited by our 
ability to model the dynamic of fi xation of muta-
tions at amino acid sites. Due to our inability to 
produce an analytical model to account for sto-
chastic covariation, most methods rely on simula-
tions of (MSAs). These MSAs share the same 
evolutionary parameters as the real MSA and can 
be used to produce a distribution of the probabil-
ities to identify coevolution under a certain amino 
acid substitution model. Identifying stochastic 
coevolution is very much conditioned by the 
statistical properties of MSAs. Low-quality and 
poorly populated MSAs are more prone to pro-
duce false functional coevolution as a result of 
the signifi cant effect of stochasticity on the detec-
tion of coevolution (Fares and Travers, 2006).

We consider two entities to coevolve when 
selective pressures in one specifi c entity drives the 
evolution of another entity (specifi city) and, when 
this evolution happens, it occurs in both entities 
and at the same time (reciprocity and simultaneity) 
(Janzen, 1980). The entities under coevolution go 
from nucleotides, to amino acids, to proteins, to 
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cells and even organisms. In this review we 
describe the most important methods to detect 
molecular coevolution and future directions in the 
identifi cation of coevolution.

Distance Matrix-Based Methods 
of Finding Correlation
Several authors have used phylogenetic approaches 
to test the parallel evolution of interacting proteins. 
Adopting an inverse rationale, these authors have 
used the similarity in the phylogenetic branching 
order of proteins under study as an indicator or 
likelihood of their possible interaction (Moyle et al. 
1994; Fryxell, 1996; van Kesteren et al. 1996; Yi 
et al. 2002). The correlation between the phyloge-
netic patterns of any two proteins can be used to 
estimate the probability of interaction between pro-
teins (Pellegrini et al. 1999; Date and Marcotte, 
2003). To test the phylogenetic correlation between 
interacting proteins we can compare tree distance 
matrices for the proteins under study. Several cor-
relation measures have been developed during the 

last years to test the interaction between proteins. 
These methods were based on the correlation of the 
phylogentic or evolutionary distance matrices (Goh 
et al. 2000; Goh and Cohen, 2002; Kim et al. 2004; 
Pazos et al. 2005; Waddell, Kishino and Ota, 2006), 
on amino acid homology matrices (Göbel et al. 
1994; Pazos et al. 1997; Pazos and Valencia, 2001; 
Pazos and Valencia, 2002; Hamilton et al. 2004), or 
on similarity matrices (Jothi et al. 2006). Also, we 
can use the correlation of the pattern of the presence 
of particular amino acid patterns in position i and j 
in a MSA as an indication of intra-molecular coevo-
lution (Neher, 1994). The fl ow of the algorithm to 
detect coevolution for the methods explained above 
is depicted in Figure 3. Based on these approxima-
tions, authors have used evolutionary covariation 
between proteins to identify ligands-receptors inter-
actions or to identify proximal coevolving amino 
acids in a three-dimensional structure (Pazos et al. 
1997; Pazos and Valencia, 2001).

Among the main limitations of these methods, 
are the sizes of MSAs used and the background 
coevolution noise (Martin et al. 2005; Fares and 

stochasticinteractionsfunctionstructurephylogenyij CCCCCC ++++= stochasticinteractionsfunctionstructurephylogenyij CCCCCC ++++=
Figure 2. Decomposition of coevolution. Coevolution between two amino acid sites (Cij) can be decomposed into phylogenetic coevolution 
(Cphylogeny), structural coevolution (Cstructure), functional coevolution (Cfunction), coevolution due to atomic interaction (Cinteraction) and stochastic 
coevolution (Cstochastic). Sites examined for coevolution are highlighted as colour stars in the multiple sequence alignment (group of horizon-
tal lines). Dashed vertical lines separate different coevolutionary components. The different sequences (horizontal lines) are phylogenetically 
related following the topology shown.
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Travers, 2006), and their inability to distinguish 
between positive and negative correlation (Pollock 
and Taylor, 1997). Several attempts have been 
made to reduce the background noise effect on the 
identifi cation of functional coevolution, with the 
method of Neher (1994) being among the best ones. 
Among the possible reasons for the superiority of 
the method of Neher is the fact that this method 
weight the correlation coeffi cients between amino 
acid sites using a scalar metric based on the charge 
and volume of the side chains of the amino acids 
involved. Therefore, method of Neher does take 
into account biologically relevant information. 
Kim and colleagues (2004) also focused on study-
ing the main limitations of correlation based meth-
ods to detect coevolution. They reported several 
causes for the low sensitivity of these methods to 
detect coevolution and protein-protein interaction, 
including among others (i) low correlation due to 
low diversity between the sequences in a MSAs of 
proteins belonging to the same family (Also see 

Pazos and Valencia, 2001); and (ii) low quality of 
the MSA.

Non-Parametric Methods
The most extensively used methods to detect 
coevolution are those relying on non-parametric 
methods based on the Mutual Information Content 
(MIC). This approach is taken from the informa-
tion theory (Kullback, 1959; Blahut, 1987; Farber 
et al. 1992), and is based on the variability that 
can be found in a protein alignment position. 
A formal measure of this variability is the Shan-
non entropy (Hi) that is defi ned in terms of prob-
abilities of the different symbols that can appear 
in the position i in the alignment, with these sym-
bols corresponding to the 20 different amino 
acids. Hi is defi ned as:
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Figure 3. Algorithm diagram for coevolution methods based on the correlation of distance matrices. Multiple sequence alignments are used 
to estimate different kind of distance matrices, which are compared afterwards. Ai and Bi symbolise either the distance between two amino 
acid sites within the multiple sequence alignment or the distance between two proteins. The correlation between matrices together with the 
phylogenetic congruence are used to test coevolution between amino acid sites or proteins.
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MIC definition involves the joint probability 
distribution, P(xi, yj), of the occurrence of sym-
bol x at position i and symbol y at position j 
belonging to the same protein or to two different 
proteins.

 H i j P x y P x yi j i j
x yi j

( , ) ( , ) log ( , )
,

= − ∑  

So MI values is calculated as:

 MI = H(i) + H( j) – H(i, j) 

where H(i) is the measure of the variability at the 
amino acid site i, H(j) the measure of the variabil-
ity at site j and H(i,j) is the join probability as 
described above. MI values range between 0, indi-
cating independent evolution between sites i and j 
or conserved amino acid sites, and a positive value 
whose magnitude depends on the strength of 
covariation between sites (Blahut, 1987). Further, 
the power of MI to predict real coevolution is 
highly dependent on the level of background con-
servation in the MSA, as highlighted in a study 
testing the infl uence of conservation on calcula-
tions of covariance between amino acid sites in 
MSA (Fodor and Aldrich, 2004).

The advantage of using MI values to quantify 
the amount of coevolution, and thus the probabil-
ity of interaction between proteins or amino acids, 
relies on the applicability of the method without 
knowledge about the relationship between the 
residues in the MSA or the evolutionary dynamic 
of these residues. Because of the historical depen-
dence between amino acid sites, MI values are 
always affected by these dependencies unless oth-
erwise corrected explicitly in the model to detect 
coevolution. Several studies have attempted to 
address the correction of MI values by subtracting 
the effect of phylogenetic dependence between 
amino acid sites (Atchley et al. 2000; Wollenberg 
and Atchley, 2000; Tillier and Lui, 2003; Buck and 
Atchely, 2005). However, most of these methods 
applied adhoc corrections to the problem resulting 
in a decrease in their sensitivity to detect true 
coevolutionary relationships. Further, many of the 
studies using MIC to detect coevolution, focused 
on detecting specifi c coevolving amino acid sites 
within a protein or protein motif as a strategy to 
ameliorate the problem of false positive results in 
the analyses (Korber et al. 1993; Clarke, 1995; 

Atchely et al. 2000; Wollenberg and Atchley, 2000; 
Olivera et al. 2002; Hoffman et al. 2003; Tillier 
and Lui, 2003; Weckwerth and Selbig, 2003; Buck 
and Atchley, 2005; Gloor et al. 2005; Hummel 
et al. 2005). Many case studies have yielded impor-
tant information regarding the coevolution in active 
sites or regions surrounding important functional 
domains in proteins (Olivera et al. 2002; Weckw-
erth and Selbig, 2003; Gloor et al. 2005). These 
methods have been also used to reveal gene func-
tional annotations using MIC profi les in combina-
tion with other approximations (Zeng et al. 2002). 
The rationale behind this approach is that genes 
showing similar functions do normally coevolve. 
Under this assumption, genes sharing the same 
coevolution pattern across different genomes are 
expected to have related functions. Consequently, 
protein functions can be inferred using coevolu-
tionary analyses when comparing with proteins 
already annotated.

Coevolution between proteins known to interact 
has been also used to identify amino acid sites 
involved in protein-protein interactions (Martin 
et al. 2005; Codoñer et al. 2006; Tillier et al. 2006). 
Authors have also used coevolution analyses based 
on MIC to identifi ed protein-protein interactions 
by comparing phylogenetic profi les between pro-
teins or domains (Kim et al. 2006; Kim and 
Subramaniam, 2006), by indirectly measuring 
networks of gene interactions (Chen et al. 2006), 
or in combination with other methods to detect 
differences in the amount of functional and struc-
tural sites between transient and permanent pro-
tein-protein interactions (Mintseris and Weng, 
2005). These approximations are very useful when 
the purpose is to highlight specifi c amino acid sites 
in the protein responsible for the interaction 
between residues.

As we mention elsewhere in the manuscript, 
sensitivity of most of the methods developed to 
detect coevolution using MI values depends on 
(i) the reliability of the MSA, (ii) the number of 
sequences in the MSAs; and (iii) the mean pairwise 
divergence levels in the MSAs.

Parametric Methods
Parametric approximations have not received much 
attention in comparison with non-parametric meth-
ods. The main reason is that parametric methods 
are developed around variables that are based on 
several assumptions. These methods are therefore 
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subjected to several inaccuracies prompted by our 
limited knowledge of the process of between-
residues evolutionary interaction and therefore by 
the simplistic assumptions made by the models. 
Assuming these limitations, authors have devel-
oped several models to detect coevolution using 
formally developed probabilistic models, based on 
maximum likelihood approximation (Pollock, 
Taylor and Goldman, 1999; Choi, Li and Lahn, 
2005; Pei et al. 2006), on Bayesian probabilities 
(Dimmic et al. 2005), on phylogentic approaches 
(Fukami-Kobayashi et al. 2002), or on sequence 
divergence based approximation (Fares and 
Travers, 2006; Fares and McNally, 2006).

These methods have also incorporated several 
correction measures to account for the noise caused 
by the non-independence between sequences. For 
example, some methods have implemented accu-
rate inferences of ancestral sequences (Pollock, 
Taylor and Goldman, 1999). Although, these meth-
ods improved the sensitivity to detect coevolution 
under specifi c datasets, they showed limited sen-
sitivity to identify real coevolution. For example, 
the method developed by Pollock and colleagues 
makes the simplistic assumption of constant coevo-
lutionary relationships between amino acid sites 
and is limited to closely related protein families 
(Pollock, Taylor, and Goldman, 1999).

Choi and colleagues (2005) used the increment 
in the log-likelihood values for the phylogeny of 
orthologous proteins to detect coevolving posi-
tions. Other methods have used the phylogentic 
information to identify compensatory mutations in 
MSAs (Fukami-Kobayashi et al. 2002).

In contrast to the phylogenetic approaches, the 
method developed by Fares and Travers (Fares 
and Travers, 2006; Fares and McNally, 2006) is 
capable of distinguishing between background 
and true correlations with no knowledge about 
the phylogenetic relationships between sequences. 
This method corrects pairwise sequence diver-
gence values by the strength of the amino acid 
substitutions using BLOcks Substitutions Matrix 
62 (BLOSUM62) values. Then correlation of 
divergence values between amino acid sites is 
estimated to identify signifi cant coevolutionary 
relationships between amino acid sites. In addi-
tion, it includes three-dimensional information to 
identify functional and structural pairs of coevolv-
ing sites. This method is also subjected to several 
limitations among which are important the 
saturation of synonymous sites; low number of 

sequences in the MSA; High pairwise divergence 
levels and inability to identify conserved coevolv-
ing sites.

Despite the many limitations of parametric 
methods, these have been regarded as presenting 
more statistical power than non-parametric meth-
ods (Pollock, Taylor and Goldman, 1999; Fukami-
Kobayashi et al. 2002; Dimmic et al. 2005; Fares 
and Travers, 2006; Pei et al. 2006). These methods 
have been also shown to present greater sensitivity 
to detect coevolving residues sharing weak signal 
of coevolution.

Other Methods
Gene expression correlation between interacting 
proteins has been also used as a measure of coevo-
lution (Fraser et al. 2004). Rather than using 
covariation between amino acid sites, this method 
used co-expression between proteins as a measure 
of coevolution. The rationale behind this method 
is that correlation in the expression levels of two 
proteins is more likely to account for the interaction 
between the proteins because interacting proteins 
have to present similar abundances in the cell. 
Authors thus regarded this measure as being more 
powerful in detecting coevolution than conven-
tional covariation based methods (Fraser et al. 
2004). Further, authors have highlighted the good-
ness-of-fi t of this method in comparison to methods 
based on phylogenetic profi les (Pellegrini et al. 
1999) or conservation of gene neighbourhood 
(Dandekar et al. 1998), because it is not limited by 
the presence or absence of genes in different spe-
cies or by the information of syntheny in other 
related species.

Another method used for detecting protein 
coevolution is the one developed by Ramani and 
Marcotte (2003). This method compares trees 
inferred for ligands and their receptors, and cre-
ates distance matrices for both alignments based 
on their phylogenetic trees. The method fi xes then 
one of the matrices and shuffl es rows and columns 
in the other distance matrix as to maximize the 
number of coincidences and minimise the root 
mean square difference between the elements of 
the two matrices. Interacting proteins will be 
those that have equivalent columns. They also use 
the three-dimensional based information to visu-
alize the interacting partners, and estimate the MI 
values to infer the accuracy of the method. 
Pritchard and co-workers (2001) also developed 
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a method based on fi nding patterns of amino acids 
in specifi c positions of the MSAs being compared. 
This method looks for correlated variation 
between two amino acid sites by splitting the 
patterns of amino acid pairings between the sites 
into defi ned blocks. A pair of amino acids (A and 
B) defi nes each block and the occurrence of these 
amino acids is restricted to that particular block. 
The number of sequences in these blocks (size of 
the blocks) and the frequencies of the amino acids 
are used in the estimation of the correlated varia-
tion of the two sites examined. Pritchard and 
colleagues tested the accuracy of the method 
using several simulated datasets and showed that 
the sensitivity of the method is greater than that 
of other non-parametric and parametric methods. 
Among the greatest advantages was the fact that 
the number of sequences at which sensitivities 
were acceptable was low (around 16 sequences). 
However sensitivity is greatly dependent on the 
level of amino acid variability in the MSA. 
Another assumption made by the authors was that 
there are no shifts on the pairings of amino acids 
throughout evolution. The same pairs coevolve 
throughout the evolutionary time of the species. 
This test then can very likely fail when dealing 
with paralogous sequences, where the shift in the 
evolutionary constraints are very probable after 
the gene duplication.

Future Challenges
Most of the methods exposed in this review have 
the limitation of being highly dependent on the 
quality of the MSAs regarding the number of 
sequences, the mean pairwise sequence divergence 
levels as well as the amount of sequence variability 
information contained on the different amino acid 
sites. Future work should be focusing on minimis-
ing the effects of these factors on the sensitivity of 
the different parametric and non-parametric 
methods to detect coevolution. For example, intro-
ducing models capable of accurately quantifying 
and detecting stochastic amino acid sites covaria-
tion would be desirable especially when the num-
ber of sequences or the amount of biological 
information are limited. More work is also needed 
on improving the ability of methods to detect pro-
tein-protein interfaces and to disentangle functional 
coevolution from stochastic and phylogenetic 
coevolution. Regarding parametric methods to 
detect coevolution, introducing parameters 

accounting for biological information will lead to 
more realistic models that will tackle the problem 
of stochastic covariation.
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