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Abstract

The innate immune response is primarily mediated by the Toll-like receptors functioning through the MyD88-dependent
and TRIF-dependent pathways. Despite being widely studied, it is not yet completely understood and systems-level
analyses have been lacking. In this study, we identified a high-probability network of genes activated during the innate
immune response using a novel approach to analyze time-course gene expression profiles of activated immune cells in
combination with a large gene regulatory and protein-protein interaction network. We classified the immune response into
three consecutive time-dependent stages and identified the most probable paths between genes showing a significant
change in expression at each stage. The resultant network contained several novel and known regulators of the innate
immune response, many of which did not show any observable change in expression at the sampled time points. The
response network shows the dominance of genes from specific functional classes during different stages of the immune
response. It also suggests a role for the protein phosphatase 2a catalytic subunit a in the regulation of the
immunoproteasome during the late phase of the response. In order to clarify the differences between the MyD88-
dependent and TRIF-dependent pathways in the innate immune response, time-course gene expression profiles from
MyD88-knockout and TRIF-knockout dendritic cells were analyzed. Their response networks suggest the dominance of the
MyD88-dependent pathway in the innate immune response, and an association of the circadian regulators and
immunoproteasomal degradation with the TRIF-dependent pathway. The response network presented here provides the
most probable associations between genes expressed in the early and the late phases of the innate immune response, while
taking into account the intermediate regulators. We propose that the method described here can also be used in the
identification of time-dependent gene sub-networks in other biological systems.
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Introduction

The innate immune system is the primary host response to

invading pathogens. The innate immune response is characterized

by germline-encoded pattern-recognition receptors (PRRs) that

detect and bind to specific microbial components, also known as

pathogen-associated molecular patterns (PAMPs). Toll-like recep-

tors (TLRs) are a family of PRRs that are conserved from worm to

mammals and expressed on different types of immune cells, such

as macrophages, dendritic cells (DCs) and B cells, as well as non-

immune cells, such as fibroblasts and epithelial cells. 10 and 13

TLRs have been identified in human and mouse, respectively,

each with distinct microbial ligands. The binding of these ligands

to their specific receptors triggers downstream signaling cascades

causing the expression of pro-inflammatory cytokines, ultimately

leading to systemic inflammation. TLRs primarily function

through two pathways – the MyD88-dependent pathway which

leads to the expression of proinflammatory cytokines, and the

TIR-domain–containing adaptor protein-inducing IFN-b (TRIF)-

dependent pathway which produces the type I interferons (IFNs)

[1,2].

Though much is known about the pathways activated during

the innate immune response, recent perturbation studies have

identified previously unknown regulators and transcription factors,

highlighting the complexity of the innate immune system and the

incompleteness of our current knowledge [3–5]. While these

studies provide important information about the genes affected on

perturbation of a causal gene, they do not explain the cause of the

observed expression changes. Additionally, these studies are

inherently limited to genes which show changes in expression at

the time of observation thus providing an incomplete representa-

tion of the activated pathways. The complexity of the innate

immune system, the ease of monitoring transcriptional changes,

and the availability of large amounts of regulatory and interaction

information, all facilitate its analysis using computational methods.

An initial computational study mapped all the known interactions

associated with the immune response from literature [6]. This

study provided a high confidence signaling network and identified
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the ‘‘bow-tie’’ structure of the immune response. However, it was

limited in size and coverage. Li et al. used this signaling map to

identify 10 distinct input-output pathways [7]. The resultant

modules were further used by Richard et al. to identify a minimum

set of genes whose deletion affects the fidelity of the TLR signaling

pathways [8]. Though these methods used novel approaches to

analyze the TLR signaling pathways, they did not take the

temporal changes of the immune response into account. Using a

different approach, Seok et al. studied the regulatory networks of

10 transcription factors and their targets using the Network

Component Analysis approach [9]. While this study considered

the dynamic nature of the immune response through the use of

time-course gene expression profiles, it was limited to only 10

transcription factors. Thus, the computational analyses so far

performed to study the innate immune response have either been

limited by the size of the molecular network used, or by the lack of

time-course gene expression profiles. In this study, we perform a

comprehensive computational analysis of the dynamic aspects of

the innate immune response in the context of a large-scale

molecular network.

Several methods using condition-specific genetic, transcriptional

and epigenomic data in the context of large protein-protein

interaction (PPI) and protein-DNA interaction (PDI) networks

have been developed, and have led to the identification of novel

regulators and pathways in several cellular systems [10,11]. These

include Network Component Analysis (NCA) [12], DREM [13]

and its recent update SDREM [14], ResponseNet [15] and

SteinerNet [16,17]. Data from time-course gene expression

profiles is particularly informative in this context since it can

capture chronological events in the cellular system. However,

some of the methods listed above, like ResponseNet and

SteinerNet, are insensitive to the temporal aspect of gene

expression, while others like NCA and SDREM use the temporal

gene expression information only to identify transcription factors

activated at various time points but not to predict active networks.

Others have used time-course gene expression profiles either to

identify time-specific protein-modules in PPI networks [18–21], or

to infer transcription regulatory networks activated over time

[12,13,22]. Though all the methods described so far are relatively

successful in identifying network components and modules

activated at specific time points, no attempt has been made to

identify paths connecting genes expressed at different time points.

Such temporal paths can show potential connections between

genes expressed at different stages of a response thus providing

information about intermediate, transiently expressed regulators

that would otherwise have been overlooked.

In this work, we studied the innate immune response in

dendritic cells (DCs) stimulated by lipopolysaccharide (LPS). LPS

is a component of the outer membrane of Gram-negative bacteria

and specifically binds to the TLR4 receptor, triggering both the

downstream MyD88 and TRIF-dependent pathways. We used

time-course gene expression profiles collected at 8 time points after

LPS stimulation in the context of a high-confidence PPI, PDI and

post-translational modifications (PTM) network. We grouped the

gene expression profiles into three groups – the initial response

genes (greatest fold-change in expression between 0.5–1 hour after

stimulation), the intermediate regulators (greatest fold-change in

expression between 2–4 hours after stimulation) and the late

effectors (greatest fold-change in expression between 6–8 hours

after stimulation). We then attempted to identify the most

probable paths connecting the initial response genes to the late

effectors in the interaction network, while taking into account the

intermediate regulators. In order to do this, we used a network

flow optimization approach allowing the flow to follow a time-

dependent path within the molecular network. Using this method,

we were able to identify an optimal gene sub-network for activated

DCs. Based on this sub-network, we identified several known core

components of the innate immune response, novel down-stream

participants and pathways connecting these core components. We

were able to identify genes playing an important role in the innate

immune response but showing no observable change in expres-

sion. We also analyzed time-course gene expression profiles of

MyD88-knockout cells and TRIF-knockout cells, and compared

their gene sub-networks to that obtained for wild-type DCs in

order to identify the components that are independently activated

in each pathway. Finally, we identified the distinct functional

classes of genes expressed during different stages of the immune

response and how their patterns of expression change in MyD88

and TRIF-knockout DCs compared to those in wild-type DCs.

Results

Optimal sub-network identification
We used a minimum cost flow optimization approach to identify

important components of the innate immune response over time

on LPS stimulation. A network of PPI and regulatory interactions,

including transcription factor-target gene, phosphorylation, de-

phosphorylation and ubiquitination relationships, was prepared.

Network edges were scored based on interaction reliability as

obtained from the protein-protein interaction database, HitPredict

[23]. Time-course gene expression levels were obtained using

RNA-seq from DCs before LPS stimulation and up to 8 hours

after LPS stimulation. The genes with significant changes in

expression after LPS stimulation were divided into 3 groups based

on the time of their greatest change in expression:

1. Initial response genes – genes showing the highest fold change

in expression between 0.5–1 hour after LPS stimulation,

2. Intermediate regulators – genes showing the highest fold

change in expression between 2–4 hours after LPS stimulation,

3. Late effectors – genes showing the highest fold change in

expression between 6–8 hours after LPS stimulation.

Author Summary

The innate immune response is the first level of protection
in organisms against invading pathogens. It consists of a
large number of proteins functioning in signaling cascades
triggered by the binding of fragments from microbes to
specific cellular receptors. Disruptions in these pathways
can lead to numerous diseases. As such, the innate
immune system has been the subject of a large number
of studies. However, due to its complexity and the
interplay of a large number of pathways, it is not yet
completely understood. In this study, we measured
transcriptional changes in activated immune cells and
used this information in the context of a large network of
protein-protein and protein-DNA interactions to identify a
smaller network of response genes. We did this by
identifying the most probable network paths connecting
genes showing large changes in their expression patterns
at successive stages of the response. Analysis of this
activated gene network revealed the associations between
various temporal regulators of the innate immune
response. We also identified response networks for
immune cells lacking important mediators, MyD88 and
TRIF, to clarify the distinct functional modules affected by
their associated pathways in the innate immune response.

Gene Networks Activated in Innate Immunity
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In order to identify potential paths through the molecular

network connecting the genes within the three groups, we

formulated the problem as a minimum cost flow optimization

problem incorporating the gene expression levels in three stages.

Figure 1 shows a schematic representation of the proposed

method. We set our source nodes as the initial response genes. The

target nodes of the network were the late effector genes. Edges of

the network were assigned costs that were inversely proportional to

their interaction reliability. Edges were also given a flow capacity

proportional to the observed change in expression of the adjacent

genes. A constraint was added to the flow optimization problem to

force the flow to go through at least one intermediate regulator.

We solved the optimization problem to identify the path of

minimum cost for the flow to pass through the network using

linear programming techniques (see Materials and methods for the

problem formulation). The method found the most probable paths

in the network between genes expressed in the initial response and

those expressed at a later time while taking into account the genes

expressed during the intermediate stage. Each edge of the optimal

sub-network was assigned a flow signifying its importance. This

resulted in a weighted gene sub-network where the edges were

scored according to their importance. Flows were calculated for

nodes, or genes, as the sum of the flows of their incoming edges.

Genes with high flows were considered important due to their

connection to high-flow edges. The reliability of the optimal

solution was confirmed and statistical significance was calculated

for each gene in the optimal sub-network by randomizing the

source and target nodes (see Materials and methods). The flow

assigned to a gene within the sub-network shared an inverse

relationship with its statistical significance, demonstrating that a

high flow was a good indicator of reliability (Figure S1). The genes

with the highest flows – Socs3, Nfkb1, Jak2, Jun, Fos, Cxcl10 and

Stat1 are well-known components of the innate immune response.

Table 1 shows 20 genes with the highest flows in the optimal sub-

network for activated wild-type DCs (See Table S1 for the list of all

predicted genes and their statistical significance). As shown by the

results, the method not only predicted essential genes expressed

within each of the 3 groups, but also genes for which no significant

change in expression was detected but were connected to others

with significant changes in expression over time.

Optimal sub-network evaluation
In order to evaluate the reliability of the gene network resulting

from the paths identified by solving the flow optimization problem,

we compared the genes in the optimal sub-network with the

experimentally identified regulators of the innate immune

response from previous perturbation experiments [3,4]. Of the

125 regulators identified by Amit et al. [3], our sub-network

contained 62 (49.6%), all of which had a flow greater than 1

(Table S2). In a similar study by Chevrier et al. [4], our sub-

network contained 30 of the 43 known or novel regulators

identified (69.8%), and 56 of the 102 (54.9%) TLR target genes

affected by the perturbation of these regulators (Table S3). The

sub-network also contained the gene, Polo-like kinase 2 (Plk2),

which activates a distinct signaling cascade. Thus, our sub-network

contained a significant number of the regulators of the innate

immune response that were recently experimentally identified.

We further confirmed the quality of the predicted gene network

through Gene Ontology (GO) and KEGG pathway enrichment

analysis. The genes having flows greater than 1 in the sub-network,

were enriched for the Toll-like receptor signaling pathway

(p = 5.10e-41), Jak-STAT signaling pathway (p = 4.88e-45), path-

ways in cancer (p = 2.50e-41) and chemokine signaling pathway

(p = 5.16e-40) among others (See Table S4 for full list). The

association of the predicted genes with the innate immune

response is further confirmed by the GO Biological Process terms

enriched for these genes. Protein amino acid phosphorylation

(p = 7.80e-36), immune response (p = 1.35e-32) and regulation of

programmed cell death (p = 1.72e-29) were some of the most

enriched terms (See Table S5 for full list). 49.7% of the genes

identified in the optimal sub-network did not show significant

change in their expression levels on LPS stimulation. In order to

confirm that these genes contribute to the enrichment of functional

terms associated with the innate immune response, we compared

the enrichment of the KEGG pathways and the GO terms in all

predicted genes with those that showed differential expression after

LPS stimulation (Table S6, S7). Including predicted genes lacking

differential expression significantly improved the enrichment of

the KEGG pathways and the GO terms associated with the innate

immune response over that observed for differentially expressed

genes only. This further confirmed the association of the genes

predicted in optimal sub-network with the innate immune

response.

Additional analysis of GO term enrichment of genes identified

in the sub-network at each time point showed the distinct processes

active during different stages of the immune response. Table 2

shows the most significant GO Molecular Function and Cellular

Component terms enriched in genes identified at each time point.

The most significant term enriched for genes expressed between

0.5–1 hour is ‘‘transcription regulator activity’’ (p = 1.18e-09) for

20% of the genes indicating an upregulation of transcription

factors during the first hour of the immune response. On the other

hand, genes predicted at 2–4 hours are enriched for ‘‘nucleotide

binding’’ (p = 9.33e-04, 28.5% genes) and ‘‘protein kinase activity’’

(p = 1.27e-03, 13% genes) suggesting a role for signal transducers.

Finally, the terms enriched for genes predicted between 6–8 hours

are ‘‘proteasome complex’’ (p = 2.98e-11, 7%) and ‘‘peptidase

activity’’ (p = 5.2e-08, 13%) highlighting the activity of the

immunoproteasome during this phase of the innate immune

response. Finally, genes that were identified in the optimal sub-

network but which did not show change in expression during the

sampled time points were enriched for GO terms such ‘‘protein

kinase activity’’ (p = 7.52e-31, 16%), ‘‘cytokine binding’’ (p = 5.9e-

26, 6%) and ‘‘transcription factor activity’’ (p = 1.18e-07, 12%)

(Table 3).

To check the quality of the network paths predicted by the

method, we identified all the possible paths predicted in the

optimal sub-network that matched a directed path of the same

length in a KEGG pathway. Our method was able to predict

directed paths of 3 edges or more in 13 KEGG pathways,

including the Jak-STAT signaling pathway, the Chemokine

signaling pathway, the Toll-like receptor pathway and the MAPK

signaling pathway (Table 4, Table S8). The longest predicted

directed path contained 7 edges and was part of the Jak-STAT

signaling pathway. Thus, the method was able to partially recover

known pathways in the form of short paths connecting genes

expressed at consecutive time points. We also identified all shortest

paths up to 3 edges (i.e. containing 4 nodes at most) between genes

expressed at different stages of the immune response and checked

how well they were represented in the same KEGG pathway. We

found that 84.9% of the predicted paths have at least 2 genes in

the same KEGG pathway, while 11.6% of the paths have all genes

in the same KEGG pathway (Figure S2). Taken together, these

results confirm the reliability of the optimal gene sub-network

identified for activated wild-type DCs.

To demonstrate the utility of our algorithm, we compared the

optimal sub-network identified by our method to that identified

using a non-temporal minimum cost flow optimization method,

Gene Networks Activated in Innate Immunity
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ResponseNet [15]. Using minimum cost flow optimization

through our initial network, ResponseNet identified paths from

the initial response genes to the late effectors without taking the

intermediate regulators into account (Table S9). Table 5 shows the

results of the comparison between the optimal sub-networks

predicted by our method and ResponseNet. ResponseNet

identified fewer genes and interactions in the predicted sub-

network. More significantly, since there was no constraint for the

flow to pass through the intermediate regulators, it identified only

49 of these as compared to the 154 by the current method. Our

method also identified significantly higher number of known

regulators in the innate immune response in addition to longer

paths in associated pathways. On the other hand, ResponseNet

failed to identify a directed path of 3 or more edges within any

KEGG pathway associated with the innate immune response.

These results clearly demonstrate that including the intermediate

regulators into the problem formulation, as we propose here,

improves the ability of the method to predict candidate genes and

associated networks using time-course gene expression profiles.

Identified genes and their associated networks
The gene predicted with the highest flow in the optimal sub-

network was Suppressor of cytokine signaling 3 (Socs3) followed by

Nuclear factor kb1 (Nfkb1). Both genes were significantly

upregulated between 2–4 hours and are well-known regulators

of the innate immune response. Socs3, along with Socs1 and

Socs2, is an inhibitor of cytokine signaling pathways. It is a key

regulator of interleukins 6 and 10 (Il6 and Il10) [24]. In the

identified sub-network, Socs3 is induced by the primary regulators

of the immune response such as Nfkb1 and inhibits a large

number of proteins, specifically interleukin receptors (Figure 2a).

Nfkb1 is induced both in the early and late phase of the innate

immune response and is primarily responsible for the expression of

inflammatory cytokines. Other genes identified with high flows

were the Janus kinase 2 (Jak2), Rous sarcoma oncogene (Src) and

phosphoinositide-3-kinase, regulatory subunit 5 (Pik3r5), all of

which have been implicated in the TLR response pathway. Src, a

protein tyrosine kinase that modulates a large number of signaling

pathways during the innate immune response, was upregulated

between 2–4 hours. Along with Src, other tyrosine kinases from the

Src family, such as Hck and Lyn, were also identified (Figure 2b).

Syk, another protein tyrosine kinase of the Syk-ZAP70 family that

is found in innate immune cell types, was also identified as part of

the network though no significant change in gene expression levels

was detected at the tested time points (Figure 2c). Several other

components of the Src signaling pathways like Card9, Cblb, Fcerc
and various integrins were also identified within the gene sub-

network.

Among other known regulators, the induction of Ralgds by

Ras proteins, and the further upregulation of the Rac genes, was

also detected (Figure 2d). Gadd45b, an anti-apoptotic inhibitor

induced by Nfkb [25] was also part of the sub-network. Gadd45b

was significantly upregulated between 2–4 hours and was

predicted to inhibit the cyclins B2, B3 and CDK (Figure 2e).

Another anti-apoptotic inhibitor, the X-linked inhibitor of

apoptosis (Xiap) was also identified. Xiap is regulated by Nfkb

and in turn inhibits Casp3 and Casp7 thus controlling apoptosis

(Figure 2f) [25].

Figure 1. Gene expression profiles and schematic representation of the method. A. Log fold change in gene expression levels of 1047
genes showing greater than 2-fold up-regulation in dendritic cells on LPS stimulation at 7 time points. The orange blocks illustrate the partitioning of
the genes into 3 groups based on the time of their highest fold change - T1: 0.5–1 hour, T2: 2–4 hours, T3: 6–8 hours, used to identify the most
probable paths between them within the molecular network. B. Schematic representation of the minimum cost network flow optimization used to
predict an optimal sub-network in active DCs from a large molecular network containing protein-protein interactions, protein-DNA interactions and
post-translational modifications. The sub-network is obtained by optimizing the flow from the auxiliary source node (S) to the auxiliary sink node (T)
such that it includes edges with the lowest edge cost, A, (highest edge reliability) and the highest edge capacity, C, (greatest fold change in
expression of adjacent genes). The predicted minimum cost flow path (in red) passes through at least one of genes A and B which show altered
expression between 0.5–1 hour, followed by one or more of the genes E and F with significant change in expression between 2–4 hours, before
finally passing through at least one of the genes, I and J, with altered expression between 6–8 hours.
doi:10.1371/journal.pcbi.1003323.g001

Gene Networks Activated in Innate Immunity
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Another class of proteins identified, were the Akt serine-

threonine protein kinases Akt1, Akt2 and Akt3, which are

downstream effectors of the PI3K pathway (Figure 2g). Expression

level change was only observed for Akt1 which was down-regulated

at 0.5–1 hours followed by an up-regulation at 3 hours. Other

predicted components include the Dual specificity phosphatases

(DUSP proteins) which were significantly upregulated between

0.5–1 hour, except Dusp6. The Dusp proteins regulate the immune

response by dephosphorylating the Map kinases and repressing the

LPS-induced inflammatory response (Figure 2h). Interestingly, the

network indicated that the Dusp genes were expressed within the

early stages of the innate immune response suggesting that control

of inflammation begins soon after its induction.

Many of the genes identified in the network do not show any

significant change in expression after activation of the DCs, but

are known to be essential for the response. An example is the

protein phosphatase 2a catalytic subunit a (ppp2ca) which has a

high flow in the sub-network. A serine threonine phosphatase

required for the dephosphorylation of the 20S proteasome

subunits, ppp2ca is known to affect the ability of the proteasome

to degrade substrates, along with protein kinase A (PKA) [26].

Ppp2ca has also been recently shown to play an important role in

the regulation of endotoxin tolerance through the regulation of

MyD88 activity [27]. The identified gene sub-network indicated

extensive interactions between ppp2ca and the subunits of the

immunoproteasome, suggesting a role of ppp2ca in the regulation

of the immunoproteasome (Figure 3). The immunoproteasome is

induced by interferons and is central to the regulation of the

immune response and in the prevention of auto-inflammatory

diseases through its ability to degrade toxic protein aggregates

during cytokine-induced oxidative stress [28].

Analysis of MyD88 and TRIF-knockout dendritic cells
We applied the method described above to time-course gene

expression profiles obtained from DCs of MyD88 and TRIF-

knockout mice in the context of the comprehensive molecular

interaction network. MyD88 and TRIF are essential components

of the innate immune response and trigger distinct pathways that

result in the activation of early and late phase Nfkb, respectively.

Previous studies have shown that Nfkb and Mapk8 (JNK) are

activated in a delayed manner in MyD88-knockout cells.

However, inflammatory cytokines like IL12 or TNFa are not

produced [29]. In order to identify the MyD88-independent

response network, we used gene expression levels from MyD88-

knockout DCs to assign edge capacities, and removed the MyD88

gene and its links within the network prior to solving the minimum

cost flow optimization problem (See Table S10 for identified genes

and edges). We performed a similar analysis on the data from

TRIF-knockout DCs by removing TRIF and its links from the

network and predicting a MyD88-dependent response network on

LPS stimulation (See Table S11 for identified genes and edges).

A comparison of the genes and their flows in the identified sub-

networks suggests that the response pathways active in the wild-

type and TRIF-knockout sample are similar (Figure 4a). The

active sub-networks identified for both these samples are enriched

in the KEGG pathways ‘‘Cytokine-cytokine receptor interaction’’

(p = 1.13e-29), ‘‘Jak-STAT signaling pathway’’ (p = 2.34e-15) and

‘‘Toll-like receptor signaling pathway’’ (p = 6.07e-11). These

findings suggest the dominance of the MyD88 pathway in the

wild-type response. Indeed, this dominance has been previously

observed during pulmonary infection [30]. On the other hand, the

most enriched pathways in the genes exclusively identified in the

Table 1. Genes predicted with the highest flows in the optimal sub-network (p,0.05).

Initial response genes (0.5–
1 hour) Intermediate regulators (2–4 hours) Late effectors (6–8 hours) Genes with no change in expression

Gene Flow Gene Flow Gene Flow Gene Flow

Jun 13.68 Socs3 85.85 Cxcl10 10.91 Stat1 8.74

Fos 10.34 Nfkb1 76.87 Ddx58 9.33 Mapk8 8.72

Il1b 9.86 Jak2 54.44 Stat2 8.65 Irf5 7.60

Tnf 9.36 Src 38.30 Atf3 8.29 Adcy5 7.43

Cxcl2 7.59 Pik3r5 27.86 Isg15 8.15 Mapk1 7.40

Il1a 7.40 Rela 23.35 Irf7 7.30 Sp1 7.37

Akt1 6.43 Stat5a 20.40 Nos2 6.91 Stat6 7.17

Atf4 5.49 Met 18.94 Ifnar2 5.20 Sp3 7.13

Nfkbiz 5.25 Eif2ak2 17.77 Stat3 5.01 Creb1 6.88

Egr1 5.20 Irf1 17.53 Rsad2 4.97 Mapk12 6.80

Sfpi1 4.99 Ccl4 15.70 Ccl5 4.93 Il7r 6.52

Il1r2 4.79 Ccl3 15.64 Il15ra 4.13 Akt2 6.43

Traf6 4.54 Ripk2 14.43 Ifngr1 4.09 Mapk10 6.39

Nfkbia 4.39 Nfkbib 13.95 Socs1 4.07 Mapk9 6.39

Hras1 4.39 Hsp90aa1 13.94 Rac2 4.03 Rac1 6.27

Tnfaip3 4.02 Ccr2 12.58 Zbp1 4.00 Pik3r2 6.24

Ereg 4.00 Traf1 11.48 Gbp2 3.74 Ppp2ca 6.19

Vegfa 3.90 Il6 10.94 Casp1 3.31 Trp53 6.08

Areg 3.87 Ppp1cb 10.86 Cd40 3.31 Mapk11 5.62

Pgf 3.60 Icam1 10.46 Il1r1 3.27 Akt3 5.50

doi:10.1371/journal.pcbi.1003323.t001
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MyD88-knockout network are the ‘‘Circadian rhythm’’ (p = 6.29e-

5) and ‘‘Ubiquitin mediated proteolysis’’ (p = 3.2e-4) suggesting an

association between these pathways and the MyD88-independent,

TRIF-dependent pathway (Table 6, Tables S12 and S13).

In order to identify the dominant changes in the immune

response over time, we classified the genes from the optimal sub-

networks obtained for the wild-type, MyD88-knockout and TRIF-

knockout DCs into functional classes. Global changes in the

expression patterns of genes identified as part of the optimal sub-

network at each of the 3 stages showed a dominance of

functionally distinct groups at different times during the immune

response (Figure 4b). In wild-type DCs, transcription factors and

enzyme modulators were predominantly expressed during 0.5–

1 hour after LPS stimulation. On the other hand, kinases and

signaling molecules were abundant between 2–4 hours after

stimulation. Finally, proteases and defence/immunity proteins

along with receptors showed the greatest changes in expression in

the late phase of the immune response between 6–8 hours. TRIF-

knockout DCs showed similar changes in the expression patterns

of genes. However, these patterns were significantly different in the

Table 2. GO Molecular Function and Cellular Component terms enriched in genes with significant change in expression identified
in the optimal sub-network.

Time GO Term % genes PValue Bonferroni

0.5–1 hour DNA binding 21.15 4.25E-07 1.42E-04

Transcription regulator activity 20.38 3.54E-12 1.18E-09

Nuclear lumen 11.53 7.32E-07 1.59E-04

Intracellular organelle lumen 11.53 8.78E-05 1.89E-02

Organelle lumen 11.53 9.20E-05 1.98E-02

Transcription factor activity 10.38 1.44E-04 4.70E-02

Cytosol 7.69 3.70E-05 7.99E-03

Nucleoplasm 7.69 1.18E-04 2.53E-02

Transcription factor binding 7.30 4.72E-07 1.58E-04

Protein dimerization activity 6.92 1.96E-05 6.54E-03

Transcription repressor activity 5.76 4.66E-06 1.56E-03

Transcription cofactor activity 5.00 2.16E-05 7.20E-03

MAP kinase tyrosine/serine/threonine phosphatase activity 1.92 2.42E-05 8.06E-03

MAP kinase phosphatase activity 1.92 2.42E-05 8.06E-03

2–4 hours Nucleotide binding 28.57 3.50E-06 9.33E-04

Ribonucleotide binding 24.67 8.02E-06 2.14E-03

Purine ribonucleotide binding 24.67 8.02E-06 2.14E-03

Purine nucleotide binding 24.67 2.04E-05 5.43E-03

ATP binding 19.48 1.56E-04 4.08E-02

Adenyl ribonucleotide binding 19.48 1.91E-04 4.98E-02

Protein kinase activity 12.98 4.75E-06 1.27E-03

Protein serine/threonine kinase activity 9.74 7.52E-05 1.99E-02

6–8 hours Cytosol 12.93 1.33E-08 2.26E-06

Peptidase activity 12.93 1.64E-07 5.28E-05

Peptidase activity, acting on L-amino acid peptides 11.94 1.11E-06 3.56E-04

Endopeptidase activity 10.94 4.15E-08 1.33E-05

Extracellular space 8.95 1.84E-04 3.07E-02

Cell surface 7.46 2.40E-05 4.05E-03

Proteasome complex 6.96 1.76E-13 2.98E-11

External side of plasma membrane 5.97 4.78E-05 8.04E-03

Cytokine binding 5.47 1.10E-07 3.51E-05

Proteasome core complex 4.97 7.71E-13 1.30E-10

Threonine-type peptidase activity 4.97 1.23E-12 3.96E-10

Threonine-type endopeptidase activity 4.97 1.23E-12 3.96E-10

Cytokine receptor activity 3.48 5.29E-05 1.69E-02

MHC class I protein complex 2.98 1.56E-04 2.61E-02

MHC class I peptide loading complex 1.99 1.46E-04 2.43E-02

doi:10.1371/journal.pcbi.1003323.t002
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MyD88-knockout DCs. Transcription factors were not as signif-

icantly upregulated in the early phase, but more so in the late

phase, when the expression of proteases and defence/immunity

genes was significantly reduced. Thus, the identified sub-networks

suggest a pattern in the global change in gene expression during

the different stages of the immune response. The similarity of the

patterns of gene expression in the TRIF-knockout DCs and wild-

type DCs further support the dominant role of the MyD88-

dependent pathway in the innate immune response. An analysis of

the functional distribution of the genes predicted in the network,

but not showing significant differential expression on activation,

illustrates their similarity to the intermediate regulators in the wild-

type as well as knockout DCs.

Several important components of the innate immune

response were identified in both knockout sub-networks,

however, with significantly different flows. Nfkb1, Jak2 and

Socs1 were genes with the highest flows (.40) in the TRIF-

knockout network. These genes were also identified in the

MyD88-knockout network, but with flows just above 1. This

disparity in the flows possibly indicates their changing levels of

expression and significance within the two sub-networks. The

sub-network associated with MyD88-knockout DCs had differ-

ent genes with high flows – Akt3, Casp8 and Stat2. Interestingly,

the kinase Pik3r5 had similar levels of predicted flow in both

knockout networks. It was upregulated in both instances but

much more so in the MyD88-knockout DCs.

Git1 and Cry1 were two of the important candidates identified

only in the MyD88-knockout gene network. Git1 (G-protein

coupled receptor kinase interacting protein 1) acts in the formation

of a scaffold to bring together molecules to form signaling modules

and increase the speed of cell migration. Its role in the innate

immune response is currently not known. However, it was

significantly upregulated in the MyD88-knockout sample and

found to interact with Pxn, Arhgef6 and Arhgef7 (Figure 5a).

The other important gene identified, Cry1, is a key component

of the circadian core oscillator complex. The role of Cry1 in the

negative regulation of the activation of Nfkb and further induction

of proinflammatory cytokines has been recently elucidated [31].

Cry1 was significantly upregulated in the MyD88-knockout DCs

between 6–8 hours after stimulation and could potentially be

Table 3. GO Molecular Function and Cellular Component terms enriched in genes with no significant differential expression
identified in the optimal sub-network.

GO Term % genes PValue Bonferroni

Protein kinase activity 16.29 1.39E-33 7.52E-31

Cytokine binding 6.48 1.10E-28 5.95E-26

Protein serine/threonine kinase activity 11.21 9.47E-22 5.14E-19

Cytokine receptor activity 4.55 1.15E-21 6.25E-19

Purine ribonucleotide binding 25.74 1.84E-21 9.98E-19

Ribonucleotide binding 25.74 1.84E-21 9.98E-19

Plasma membrane 32.75 4.81E-21 1.75E-18

Integrin complex 3.33 3.00E-20 1.09E-17

Purine nucleotide binding 25.92 3.35E-20 1.82E-17

Receptor complex 4.55 2.06E-17 7.49E-15

Adenyl ribonucleotide binding 20.67 2.92E-16 1.81E-13

ATP binding 20.49 3.12E-16 1.81E-13

Nucleotide binding 26.80 8.16E-16 4.22E-13

Protein tyrosine kinase activity 5.95 1.31E-15 7.23E-13

Purine nucleoside binding 21.19 1.37E-15 7.23E-13

Nucleoside binding 21.19 2.20E-15 1.21E-12

Adenyl nucleotide binding 20.84 4.57E-15 2.47E-12

Plasma membrane part 19.61 3.44E-13 1.25E-10

Transmembrane receptor protein tyrosine kinase activity 3.15 1.03E-11 5.59E-09

Cytosol 9.28 2.44E-11 8.87E-09

Transcription factor activity 11.73 2.17E-10 1.18E-07

MAP kinase activity 1.75 2.22E-10 1.21E-07

Cell surface 5.78 1.84E-08 6.70E-06

Chemokine receptor activity 1.75 4.22E-08 2.29E-05

Growth factor binding 2.80 5.01E-08 2.72E-05

Transcription regulator activity 14.54 5.23E-08 2.84E-05

Chemokine binding 1.75 6.70E-08 3.64E-05

Protein phosphatase type 2A complex 1.40 7.77E-08 2.83E-05

Nucleoplasm 8.41 9.65E-08 3.51E-05

GTPase activity 3.50 2.64E-07 1.43E-04

doi:10.1371/journal.pcbi.1003323.t003
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regulating the activation of Nfkb signaling. Though Cry1 was part

of the gene network associated with the activation of wild-type

DCs, it was not identified in the optimal gene sub-network

associated with TRIF-knockout DCs, suggesting that the upregu-

lation of Cry1 and its role might be controlled by the MyD88-

independent, TRIF-dependent pathway (Figure 5b).

The MyD88-knockout associated gene network also contained a

number of genes from the E2 and E3 ubiquitin-conjugating

enzyme families, including several members of the Trim family,

which are known for their role in suppressing the immune

response by increasing the ubiquitination and subsequent degra-

dation of regulatory genes [32]. The selective prediction of these

ligases in the MyD88-knockout response network suggests that

proteolytic degradation might also be predominantly affected by

the TRIF-dependent pathway.

The response network identified for the TRIF-knockout sample

highlights the wild-type MyD88 pathway wherein MyD88 triggers

the activation of Nfkb which in turn induces the inflammatory

cytokines, further inducing the Jaks and Stats and finally

upregulating the Socs genes which repress the inflammatory

response (Figure 5c).

Discussion

We used a method based on minimum cost flow optimization to

identify paths connecting genes expressed during 3 major stages of

the innate immune response within a large molecular interaction

network. This method was able to identify a sub-network active

during the innate immune response, with genes and interactions

associated with flows corresponding to their importance in the

network, while taking their time of expression into account. A

large number of genes were identified in spite of their lack of

significant change in expression, but based on how well they were

connected to genes that showed significant changes in expression

over time.

The optimal sub-network identified in this study is based on

gene expression profiles obtained from LPS stimulated DCs and

represents a pathogen-specific response of the innate immune

system against infection by Gram-negative bacteria. A significant

number of previously known components of the innate immune

Table 4. Directed paths predicted in the optimal sub-
network found in KEGG Pathways.

KEGG Pathway Edges in longest predicted path

Jak-STAT signaling pathway 7

Chemokine signaling pathway 5

Cell cycle 4

Complement and coagulation cascades 4

MAPK signaling pathway 3

Axon guidance 3

Toll-like receptor signaling pathway 3

Tuberculosis 3

Focal adhesion 3

ErbB signaling pathway 3

Adherens junction 3

Gap junction 3

GnRH signaling pathway 3

doi:10.1371/journal.pcbi.1003323.t004
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response were identified along with important pathways triggered

immediately after LPS stimulation in DCs. One of the genes

identified was the protein phosphatase 2 catalytic subunit a
(pppc2a), recently found to be an important player in the immune

response [27]. Based on the interactions of this protein in the

optimal sub-network, we propose an additional role for this

protein in the regulation of protein degradation by the

immunoproteasome. The differences between the MyD88 and

TRIF-dependent pathways are difficult to predict based on the

wild-type response network alone due to the large overlap between

these two pathways. Both pathways result in the activation of Nfkb

and its downstream effectors. However, the analyses of the

activated MyD88 and TRIF-knockout DCs performed here

helped clarify their difference. The results indicate the dominance

of the MyD88-dependent pathway during the innate immune

response and the association of the TRIF-dependent pathway with

the circadian genes and those involved in immunoproteasomal

degradation. Both these findings need to be investigated further.

The wild-type response sub-network also shows the distinct

functions of genes expressed during the three stages of the innate

immune response. The enrichment of transcription factors during

the early stage highlights the induction of the immune response.

This is followed by significant changes in the expression of kinases

and signaling molecules activating the signaling cascades during

the intermediate stage. These in turn lead to the expression of

defense/immunity proteins, such as cytokines in the late phase of

the immune response. The late phase is also characterized by an

increase in the expression of proteases signifying the start of

suppression of the immune response through the degradation of

proteins promoting inflammation.

There are currently very few methods available that allow the

use of time-course gene expression profiles for the prediction of

active gene sub-networks. Two such methods, NCA and SDREM,

use the temporal gene expression information only to identify

transcription factors activated at various time points but not to

predict the gene sub-networks. Additionally, SDREM requires

Figure 2. Associated interactions for selected proteins within the optimal sub-network. The sub-networks show the most probable
associations of some of the genes/proteins within the 3 time-based groups. Several genes showing no change in expression are also part of these
sub-networks. A. Socs3, B. Hck and Lyn, C. Syk, D. Ralgds, E. Gadd45b, F. Xiap, G. Akt family of proteins, H. Dusp proteins. Edge and node colors
indicate relative flow with darker colors signifying greater flow.
doi:10.1371/journal.pcbi.1003323.g002
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source genes to be defined based on prior knowledge of the

pathway and is very slow. Our method allows the use of time-

course gene expression profiles and attempts to identify optimal

paths between genes expressed at subsequent stages of a cellular

response over time. Due to the use of connectivity as additional

evidence, the method proposed here has a limited dependence on

gene expression levels, thus identifying several components lacking

significant changes in expression on LPS stimulation. Additionally,

important regulators were identified from the genes showing

changes in expression levels based on their connections within the

network, thus limiting the effect of erroneous experimental

observations. The approach proposed was used to identify time-

dependent gene sub-networks in activated immune cells. However,

this method is independent of the system studied and can be used

in any other biological system that changes over time, such as

embryonic development or cellular response to stress.

The method proposed here is based on minimum-cost flow

optimization approach through a large interaction network. A

variation of the method, ResponseNet, has been previously used in

yeast to identify optimal paths within a yeast molecular network

leading from genetic hits to differentially expressed genes without

accounting for transcriptional changes over time [15]. Our

method differs from ResponseNet in its ability to analyze time-

course gene expression profiles. The source nodes and targets of

the flow optimization problem are both differentially expressed

Figure 3. Ppp2ca and its potential role in immunoproteasome
regulation. The sub-network shows the most probable associations of
ppp2ca that are active during the innate immune response. Pppc2a is
induced by Nfkb1 and interacts with several immunoproteasome
subunits. Edge and node colors indicate predicted flow with darker
colors signifying greater flow.
doi:10.1371/journal.pcbi.1003323.g003

Figure 4. Comparison of MyD88 and TRIF-knockout gene sub-networks. A. Comparison of the predicted flows of 20 genes from the optimal
sub-networks of wild-type, MyD88-knockout and TRIF-knockout DCs. The heat map shows the similarity between the wild-type and the TRIF-
knockout response to LPS stimulation through the large number of common genes predicted with high flows. B. Functional classes of genes based
on the time of their highest fold change in expression and identified in the optimal sub-networks identified for wild-type, TRIF-knockout and MyD88
DCs on activation by LPS. ‘‘Unknown’’ denotes predicted genes that do not show significant change in expression on activation. Distinct gene groups
are activated at different time points during the innate immune response. Protein class ‘‘Others’’ includes cytoskeletal proteins, cell adhesion
molecules, calcium-binding proteins, ligases, transfer-carrier proteins, oxidoreductases, extracellular matrix proteins, transporters, chaperones,
structural proteins, membrane traffic proteins, transmembrane receptor regulators, lyases, isomerases, cell junction proteins, surfactants and storage
proteins.
doi:10.1371/journal.pcbi.1003323.g004
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genes. Most importantly, our method has an additional constraint

that forces the predicted flow through genes showing significant

differential expression at intermediate time points. This con-

straint greatly improves the prediction performance of the

minimum cost flow optimization by identifying a greater number

of known regulators and associated pathways. Additionally, the

reliability scores used to weight the network edges are derived

from the genomic features and functional annotations of the

interacting proteins rather than the characteristics of the

experiments in which they were identified [33]. One of the

advantages of the original method was the identification of genes

whose change in transcriptional activity cannot be detected in

expression detection experiments. In addition to this, our method

also has the ability to identify intermediate regulators acting

between different stages of the response. Further, the method

proposed here succeeds in capturing sections of KEGG pathways

and several known candidate genes associated with the innate

immune response.

The method described in this study requires that time-course

gene expression profiles from a biological system be partitioned

into three stages – early, intermediate and late. While this

partitioning works reasonably well for the innate immune system,

it may not necessarily be possible for other biological systems.

Additionally, it is likely that grouping of time points potentially

hides certain relationships between genes resulting in a network

that is not completely representative of cellular processes.

Extending the method to include additional time points would

improve the quality of the sub-network predicted. The inclusion of

more interactions and pathway information would further increase

the probability of identifying novel candidate genes.

A problem common to all such methods that attempt to predict

pathways using gene expression data is the difficulty in completely

reconstituting existing pathways on the basis of changes in gene

expression levels alone. This is because genes are not necessarily

expressed in the order of their known role in a pathway (Figure S3,

S4, S5, S6, S7, S8). This problem can be partially addressed by

including data about protein levels and post-translational modi-

fication events. An associated problem is the dependence of the

prediction accuracy on the frequency at which gene expression

levels are monitored. The currently prevalent time intervals of

30 minutes and 1–2 hours after stimulation do not accurately

represent the time-scale of cellular events which take place on the

Table 6. KEGG pathways enriched in genes identified exclusively in MyD88 and TRIF-knockout sub-networks.

Sample Term % genes PValue Bonferroni

Circadian rhythm 1.67 4.92E-07 6.29E-05

Small cell lung cancer 3.56 9.38E-07 1.20E-04

MyD88-knockout Ubiquitin mediated proteolysis 4.39 2.50E-06 3.20E-04

Pathways in cancer 7.32 2.59E-06 3.32E-04

Alzheimer’s disease 4.39 1.89E-04 2.39E-02

Focal adhesion 4.60 2.16E-04 2.72E-02

Cytokine-cytokine receptor interaction 15.45 9.39E-32 1.13E-29

Jak-STAT signaling pathway 9.09 1.95E-17 2.34E-15

MAPK signaling pathway 11.59 5.36E-16 6.66E-14

Chemokine signaling pathway 8.86 8.70E-14 1.04E-11

Toll-like receptor signaling pathway 6.36 5.05E-13 6.07E-11

NOD-like receptor signaling pathway 4.55 1.77E-10 2.12E-08

Focal adhesion 7.95 5.65E-10 6.78E-08

GnRH signaling pathway 5.00 2.06E-08 2.47E-06

Progesterone-mediated oocyte maturation 4.32 3.10E-07 3.72E-05

Apoptosis 4.32 4.49E-07 5.39E-05

Pathways in cancer 8.86 1.99E-06 2.38E-04

TRIF-knockout Prion diseases 2.50 8.44E-06 1.01E-03

T cell receptor signaling pathway 4.32 4.07E-05 4.87E-03

Leukocyte transendothelial migration 4.32 4.57E-05 5.47E-03

Vascular smooth muscle contraction 4.32 5.12E-05 6.13E-03

Pancreatic cancer 3.18 8.37E-05 1.00E-02

Hematopoietic cell lineage 3.41 1.11E-04 1.33E-02

Gap junction 3.41 1.45E-04 1.72E-02

Neurotrophin signaling pathway 4.32 1.49E-04 1.77E-02

Natural killer cell mediated cytotoxicity 4.09 2.09E-04 2.48E-02

Melanogenesis 3.64 2.17E-04 2.57E-02

Long-term potentiation 2.95 2.61E-04 3.09E-02

Bladder cancer 2.27 2.76E-04 3.26E-02

Insulin signaling pathway 4.32 3.18E-04 3.75E-02

doi:10.1371/journal.pcbi.1003323.t006
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scale of seconds to minutes [34]. This is illustrated by the fact that

the most important regulatory gene, Nfkb1, showed high levels of

expression at the first time point – 0.5 hours, indicating that the

expression data used here does not include a significant number of

events that occur between 0 and 0.5 hours. The emergence of

Socs3 as a more important component of the optimal sub-network

than Nfkb1 might also be a result of the experiment focusing not

on the TLR pathway, but events that follow after the first effectors

have already been expressed i.e. Nfkb signaling pathway,

chemokine-chemokine signaling pathway, etc. Thus, experiments

that monitor gene expression levels starting immediately after

activation and at frequent time intervals would help improve the

accuracy of the predicted network.

Despite these drawbacks, our results clearly demonstrate that

the method described here is capable of predicting active gene sub-

networks from time-course gene expression profiles with reason-

able accuracy.

Conclusions
The innate immune response is complex and occurs through

multiple pathways. The interplay within the activated pathways

makes the identification of novel components and their associa-

tions difficult. In this study, we addressed this issue by using time-

course gene expression profiles of activated dendritic cells in

combination with a comprehensive molecular interaction network.

We developed a method based on minimum cost flow optimiza-

tion in a large interaction network to identify paths between genes

expressed at different time points of the immune response. Using

this method, we identified an optimal gene sub-network activated

during the innate immune response. We confirmed the role of

several known and novel components in the identified network

and suggest a role for the protein ppp2ca in the regulation of the

immunoproteasome. A flow value was assigned to each identified

gene and interaction within the network indicative of its

importance. We also compared the response of the wild-type

Figure 5. Interactions associated with genes identified in MyD88-knockout and TRIF-knockout response. Genes predicted to be part of
the optimal sub-network in either the MyD88-knockout or the TRIF-knockout samples. A. Sub-network associated with Git1 which has the highest
flow in the MyD88-knockout sample. B.Cry1, a component of the circadian complex and its associated network. C. A sub-network identified for the
TRIF-knockout DCs showing the role of MyD88, Nfkb, the cytokines, Jak-Stat pathway and finally Socs1 induction. Edge and node colors indicate
relative flow with darker colors signifying greater flow.
doi:10.1371/journal.pcbi.1003323.g005
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DCs with DCs from MyD88-knockout mice and TRIF-knockout

mice and identified the global changes in expression patterns of

genes in distinct functional classes. Our results are consistent with

previous studies suggesting the dominant role of the MyD88-

dependent pathway. We further showed that genes related to

proteasomal degradation and circadian rhythms are primarily

associated with the MyD88-independent, TRIF-dependent path-

way. The method proposed here is independent of the biological

system and can be used to identify time-dependent gene sub-

networks with the help of time-course gene expression profiles

related to any other cellular conditions. Future work in this area

will be aimed at developing methods to accurately predict longer

pathways while incorporating time-course gene expression

profiles from multiple time points without the necessity of

grouping them.

Materials and Methods

Samples and time-series experiments
GM-CSF-induced bone marrow-derived dendritic cells (GM-

DCs) were prepared from C57BL6/J mice (purchased from Japan

Clea Inc.) as described previously [3]. The cells were stimulated

with LPS from Salmonella minessota Re-595 (purchased from

Sigma) at a concentration of 100 ng/ml. Stimulated cells were

harvested at 0, 0.5, 1, 2, 3, 4, 6, 8, 16, 24 hours after stimulation.

Total RNA was extracted from the cells using TRIzol (Invitrogen)

according to the manufacturer’s instruction. The RNA was

subjected to RNA-seq as described in a previous study [35]. Mice

deficient in MyD88 or TRIF were prepared as described in an

earlier study [36,37]. The RNA-seq data is available in the

Sequence Read Archive under the accession number

DRA001131.

Mapping and expression level identification
The RNA-Seq data for the wild type, MyD88-knockout and

TRIF-knockout DCs at 10 time points, from 0 to 24 hours after

LPS stimulation, were obtained in the form of 35 bp single-end

reads. The reads were mapped to the RefSeq mm9 mouse

reference genome [38] using Bowtie [39]. Exon-exon junctions

were found using TopHat [40] with each read having at most 2

mismatches and 20 mappings to the reference genome, and a

minimum intron length of 70 bp. For each read, the mapping with

the highest alignment score was selected. The mapping statistics

are shown in Table S14. Transcript abundances for all three

samples at 10 time points were estimated using Cufflinks and

Cuffdiff [41] using the –T option to treat the samples as a time-

series. The data from the last two time points, 16 hours and

24 hours, was not used in this study because we were concerned

about the effect of their large separation from the prior time points

on the quality of the sub-network predicted. Maximum absolute

log fold change in expression was calculated for each gene over all

time points, as follows:

fcimax~ max
j

log2

eij

ei0

����
����, ð1Þ

Where fcimax = maximum absolute log fold change for gene i over

time j where j = {0.5,1,2,3,4,6,8},

eij = transcript abundance of gene i at time j hours after LPS

stimulation,

ei0 = transcript abundance of gene i at time 0 hours before LPS

stimulation.

Genes with at least 2 fpkm in 50% of the experiments, at least

10 fpkm for 2 or more time points and an absolute fold change

greater than 2 for at least one time point in each sample were

considered for further analysis. Each selected gene was assigned to

one of the following groups depending on the time at which it

showed the highest absolute fold change (Figure 1A):

1. Initial response genes – highest absolute log fold change

between 0.5–1 hour after LPS stimulation

2. Intermediate regulators – highest absolute log fold change

between 2–4 hours after LPS stimulation

3. Late effectors – highest absolute log fold change between 6–

8 hours after LPS stimulation

The genes and their expression levels are shown in Tables S15,

S16, S17.

Network preparation
A network of regulatory and physical interactions from mouse

was prepared by combining the following datasets:

1. Protein-protein interactions (PPIs): High confidence mouse

PPIs were obtained from HitPredict (likelihood.1). HitPredict

is a database of PPIs combined from multiple sources and

scored for their reliability based on the genomic features of the

interacting proteins [23,33]. Core mouse interactions related to

the immune response were taken from Innatedb [42]. Further,

high confidence PPIs for human proteins were taken from

HitPredict and their mouse orthologs were identified using

Homologene [38].

2. Transcription regulatory data: Transcription factor – target

gene relationships from TRANSFAC [43] were added to the

network.

3. Pathways from KEGG: All functional associations, with the

exception of ‘‘missing interactions’’, from KEGG pathways

[44,45] were added to the network.

Table S18 shows the counts of the different interaction types

included in the network. PPIs were considered as bi-directional

edges whereas all other associations (transcription factor–target

gene, functional association, expression regulation, post-transla-

tional modification and inhibition) were considered uni-direction-

al. Genes and their corresponding proteins were represented by a

single node in the network.

Network edge scores
The edges of the network were weighted according to their

reliability. Reliability scores provided by HitPredict and

TRANSFAC were used. Innatedb core PPIs and interactions

from KEGG pathways were uniformly assigned a high

reliability score of 999 since these were manually curated. All

scores were scaled to values between 0 and 0.8 as shown in

Table S19.

wij~f sij

� �
ð2Þ

Where f () = scaling function

sij~likelihood ratio V i,jð Þ[HitPredict; 0:163ƒsijƒ999

sij~999V i,jð Þ[Innatedb, KEGG
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sij~Transfac score V i,jð Þ[TRANSFAC; 1ƒsijƒ6

The complete network of 103218 interactions among 12856

proteins, or protein complexes, along with the data source,

reliability scores and edge weights is given in Table S20.

Linear programming formulation
The network was denoted by a graph G = (V, E) with E edges

and V nodes (including the auxiliary source S and the auxiliary

sink T). The auxiliary source, S, was connected to the set of

initial response genes (GT1), while the auxiliary sink, T, was

connected to the late effector genes (GT3). Direct edges between

GT1 and GT3 were excluded. The intermediate regulators (GT2)

were also a part of the network but not connected to the S or T

nodes. All edges, E, were assigned a capacity and a cost (See

Figure 1B).

Edge capacities. The capacity of an edge specifies the

maximum flow that can pass through it. The edge capacities differ

with the expression levels of genes to which they are connected.

The edge capacities are defined as follows:

For edges between the auxiliary source, S, and the initial

response genes GT1,

CSi~
fcimaxP

i fcimax=N
|log2

eiP
i ei=N

Vi[GT1 ð3Þ

For edges connected to the intermediate regulators GT2,

Cij~
fcimaxP

i fcimax=N
|log2

eiP
i ei=N

Vi[GT2, j=[GT2 ð4Þ

Cij~

fcimaxP
i

fcimax=N
|log2

eiP
i

ei=N

� �
z

fcjmaxP
j

fcjmax=N
|log2

ejP
j

ej=N

� �� �

2
Vi, j[GT2

ð5Þ

For edges between the late effectors, GT3, and the auxiliary sink T,

CiT~
fcimaxP

i fcimax=N
|log2

eiP
i ei=N

Vi[GT3 ð6Þ

For all other edges, not connected to the intermediate regulators

or the auxiliary source and sink,

Cij~1Vi,j=[S|GT2|T ð7Þ

fcimax = maximum absolute log fold change of gene i, as per

equation (1)

ei = average expression level of gene i in fpkm across all time points

considered,

N = number of genes with significant change in expression,

S = auxiliary source node, T = auxiliary sink node,

GT1 = genes showing maximum absolute fold change between 0.5–

1 hour,

GT2 = genes showing maximum absolute fold change between 2–

4 hours,

GT3 = genes showing maximum absolute fold change between 6–

8 hours.

In equations (3)–(6) above, the first term takes into account the

relative fold change of the gene allowing for greater edge capacity

with greater fold change. Since RNA-seq data was used and

transcripts with greater fragment counts are considered more

reliable, the absolute fragment counts were taken into account by

the second term when calculating the capacity. The capacity of the

incoming and outgoing edges connected to GT2 genes was

calculated using only the relative fold change of the gene and its

fragment count, while not considering those of adjacent GT1 and

GT3 genes. This ensured that the selection of the optimal path was

affected by the change in expression of the GT2 genes only. The

fold change in expression and average fragment count of GT1 and

GT3 genes was used to assign capacities only to the edges that

connected them to the auxiliary source and the auxiliary sink,

respectively. Thus, the source and target genes selected as the

starting and end points of the optimal paths were dependent upon

the fold changes in expression levels of the GT1 and GT3 genes only

and did not affect the subsequent edges selected.
Edge costs. For edges connected to genes in one of the three

stages, the weights were adjusted to correspond to their capacities

as follows:

wSi~CSiVi[GT1 ð8Þ

wij~CijVi[GT2 ð9Þ

wiT~CiTVi[GT3 ð10Þ

wij~f sij

� �
Vi,j=[S|GT2|T , as per equation (2)

The edge costs were calculated as:

Aij~{log10wijV i,jð Þ[E ð11Þ

Problem formulation. The goal of the problem formulation

was to identify paths from auxiliary source, S, to auxiliary sink, T, that

minimized the cost of the flow through the network while passing

from the initial response genes (GT1) to the late effectors (GT3) through

the intermediate regulators (GT2). In order to optimize the flow, fij,

from nodes i to j, we consider the following optimization problem:

minimize
X

i[V ,j[V

Aij|fij

� �
{ c1|

X
i[GT1

fSi

0
@

1
A

{ c2|
X

i[GT2,j[V

fij|f sij

� �� �0
@

1
A

Subject to :X
j[V

fij{
X
j[V

fji~0Vi[V{ S,Tf g

X
i[GT1

fSi{
X

i[GT3

fiT~0

X
j[GT2

fijw0Vi[V{ S,Tf g

0ƒfijƒCijV i,jð Þ[E

ð12Þ

(5)
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c1§0, is a constant to adjust the number of GT1 genes included in

the optimal sub-network,

c2§0, is a constant to adjust the number of GT2 genes included in

the optimal sub-network,

fij = flow between nodes i and j,

f sij

� �
~weight for edge i,jð ÞVi[GT2, as defined by equation (2).

This problem formulation differs from a previous variation of

this method [15] in three significant aspects – 1) the start and end

points of the paths to be identified are genes with expression

changes at different time points in a response, 2) the additional

tuning factor c2, scaled by the original edge reliability f sij

� �
, which

allows control over the capacities of the edges connected to the

intermediate regulatory genes (GT2), and 3) the added constraint

denoted by equation (12) which forces the flow to pass through at

least one intermediate regulatory gene. The optimization problem

was solved using the GNU Linear Programming Kit. The solution

to this problem identified the most probable set of edges

connecting genes with large changes in expression from each of

the three time-dependent groups.

We solved the optimization problem for all combinations of c1

and c2 ranging from 0 to 5 in intervals of 0.5 (Table S21). The

optimal sub-network with the highest number of source nodes and

less than 1% unreliable edges (edge weight,0.5) was chosen with

c1 and c2 values of 0.5 and 0 respectively. The predicted nodes

were assigned a flow by combining the flows of all incoming edges

to each node. Nodes with higher flows were considered important

in the innate immune response.

The stability of the optimal sub-network was tested using the

method described in Mahadevan and Schilling [46], and used in

Yeger-Lotem et al. [15]. Briefly, we fixed the optimization score to

that obtained for the above optimal sub-network, and alternately

maximized and minimized the flow for each edge in it to identify

the bounds of the alternate optimal solutions for this problem.

97% of the nodes and 93% of the edges from the optimal sub-

network were unchanged in the 4466 alternate optimal solutions

obtained (median values). The median change in predicted flow

for the nodes and the edges in the alternate solutions was 0. These

results indicated that the alternate solutions to this optimization

problem did not differ significantly from the presented sub-

network and further support its reliability.

Statistical evaluation
The genes identified as part of the optimal gene sub-network

were assigned a statistical significance. This was done by solving

the minimum cost flow optimization problem 5000 times using the

original molecular interaction network but with randomly selected

genes in the GT1, GT2 and GT3 sets i.e. initial response genes,

intermediate regulators and late effectors in numbers equal to

those from the real sample. The p-value was calculated as the

fraction of solutions in which a gene was identified with an equal

or higher flow than that in the optimal sub-network and with at

least all the connecting edges in the optimal sub-network. We

observed that the predicted flow in the final network increased

with decreasing p-value (Figure S1) suggesting that a high flow was

a good indicator of high statistical significance and hence greater

reliability.

ResponseNet implementation
The ResponseNet algorithm was implemented as a non-

temporal minimum cost flow optimization method. The problem

formulation was changed to remove the constraint in equation (12)

thus allowing the flow to go from the initial response genes

(source nodes) to the late effectors (target nodes) without being

constrained to pass the intermediate regulators. Additionally,

the term involving c2 was also removed from the optimization

problem. The algorithm was run on the same network as our

method with identical edge costs. The capacities of edges GT1 –

S and GT3 – T were set as described in equations (3) and (6). The

capacity of all other edges was set to 1. The optimal solution was

calculated for c1~0:5 and the identified genes were compared

to known regulators and KEGG pathways as described in the

Results.

Path prediction
All possible paths within the optimal sub-network from the

initial response genes (GT1) to the late effectors (GT3) were

identified and compared to all KEGG pathways to determine

their overlap.

Paths were predicted between genes in the groups GT1, GT2 and

GT3 by finding the weighted shortest paths [47] of up to 3 edges in

the optimal sub-network. The edges were weighted as per the

formula suggested by Opshal et al. [48]:

Eij~
fij

�ff
ð13Þ

where fij = flow assigned to edge (i, j),

�ff = average flow of all edges in the optimal sub-network.

The shortest weighted paths identified were then compared to

all KEGG pathways.

Analysis of MyD88 and TRIF-knockout samples
An optimal gene sub-network was identified by solving the flow

optimization problem using the time-course genes expression

profiles from MyD88 and TRIF-knockout DCs in a manner

similar to that described above for the wild-type DCs. The MyD88

gene and its interactions were removed from the starting network

when the MyD88-knockout gene expression levels were consid-

ered. Similarly, during the analysis of the TRIF-knockout sample,

TRIF (Ticam1) and its interactions were removed from the

network.

Enriched annotations and network representations
Enriched Gene Ontology terms and KEGG pathways were

obtained using DAVID [49] with all mouse genes used as the

background. Networks were prepared and formatted using

Cytoscape2.7 [50]. Protein functional classes were identified using

PANTHER [51].

Supporting Information

Figure S1 Relationship between flow predicted for a gene and

the average statistical significance of its occurrence in the optimal

sub-network.

(PDF)

Figure S2 The fraction of identified paths of length 3 in the

optimal sub-network having a certain fraction of genes from the

same KEGG pathway.

(PDF)

Figure S3 Overlap between the genes within the optimal sub-

network and the KEGG Toll-like receptor signaling pathway.

(PDF)
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Figure S4 Overlap between the genes within the optimal sub-

network and the KEGG Pathways in Cancer.
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Figure S5 Overlap between the genes within the optimal sub-

network and the KEGG Chemokine Signaling Pathway.

(PDF)

Figure S6 Overlap between the genes within the optimal sub-

network and the KEGG Insulin signaling pathway.

(PDF)

Figure S7 Overlap between the genes within the optimal sub-

network and the KEGG Apoptosis pathway.

(PDF)

Figure S8 Overlap between the genes within the optimal sub-

network and the KEGG NF-Kappa B Signaling pathway.

(PDF)
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identified by the algorithm.

(XLSX)

Table S3 Regulators and TLR signature genes from Chevrier et

al. identified by the network algorithm.
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(XLSX)

Table S5 GO Biological Process terms enriched in genes with

flows greater than 1 in the predicted network.

(XLSX)

Table S6 Comparison of the enrichment and significance of the
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differential expression.

(XLSX)

Table S7 Comparison of the enrichment and significance of the

GO Biological Process terms predicted in all genes versus those

showing differential expression.

(XLSX)

Table S8 Directed paths of 3 edges or more in the optimal sub-

network matching directed paths of the same length in KEGG

pathways.

(XLSX)

Table S9 Genes and edges identified in the optimal sub-network

for activated wild-type dendritic cells by a non-temporal minimum

cost flow optimization method, ResponseNet.

(XLSX)

Table S10 Genes and edges identified in the optimal sub-

network for activated MyD88-knockout dendritic cells by the

proposed method.

(XLSX)

Table S11 Genes and edges identified in the optimal sub-

network for activated TRIF-knockout dendritic cells by the

proposed method.

(XLSX)

Table S12 KEGG pathways enriched in genes identified

exclusively in the network predicted for the TRIF-knockout

dendritic cells.

(XLSX)

Table S13 KEGG pathways enriched in genes identified

exclusively in the network predicted for the MyD88-knockout

dendritic cells.

(XLSX)

Table S14 Counts of RNA-seq reads obtained before LPS
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mapped.

(XLSX)

Table S15 Genes showing greater than two-fold change in
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LPS stimulation.

(XLSX)

Table S16 Genes showing greater than two-fold change in

expression in MyD88-knockout dendritic cells between 0.5–

8 hours after LPS stimulation.

(XLSX)

Table S17 Genes showing greater than two-fold change in

expression in TRIF-knockout dendritic cells between 0.5–8 hours

after LPS stimulation.

(XLSX)

Table S18 Number of interactions obtained from different
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