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PPARGC1A is a transcriptional coactivator that binds to and coactivates a variety of transcription factors (TFs) to regulate
the expression of target genes. PPARGC1A plays a pivotal role in regulating energy metabolism and has been implicated in
several human diseases, most notably type II diabetes. Previous studies have focused on the interplay between PPARGC1A
and individual TFs, but little is known about how PPARGC1A combines with all of its partners across the genome to
regulate transcriptional dynamics. In this study, we describe a core PPARGC1A transcriptional regulatory network op-
erating in HepG2 cells treated with forskolin. We first mapped the genome-wide binding sites of PPARGC1A using
chromatin-IP followed by high-throughput sequencing (ChIP-seq) and uncovered overrepresented DNA sequence motifs
corresponding to known and novel PPARGC1A network partners. We then profiled six of these site-specific TF partners
using ChIP-seq and examined their network connectivity and combinatorial binding patterns with PPARGC1A. Our
analysis revealed extensive overlap of targets including a novel link between PPARGC1A and HSF1, a TF regulating the
conserved heat shock response pathway that is misregulated in diabetes. Importantly, we found that different combi-
nations of TFs bound to distinct functional sets of genes, thereby helping to reveal the combinatorial regulatory code for
metabolic and other cellular processes. In addition, the different TFs often bound near the promoters and coding regions
of each other’s genes suggesting an intricate network of interdependent regulation. Overall, our study provides an
important framework for understanding the systems-level control of metabolic gene expression in humans.

[Supplemental material is available for this article.]

PPARGC1A (formerly known as PGC-1a), encoded by the PPARGC1A

gene, is a powerful transcriptional coactivator that has been impli-

cated in a wide array of human diseases including type II diabetes,

cardiovascular disease, Huntington’s disease, and other diet-related

diseases (Muller et al. 2003; Handschin et al. 2005; Soyal et al. 2006;

Sihag et al. 2009; Weydt et al. 2009). PPARGC1A is activated in re-

sponse to a number of environmental stresses and coordinates tissue-

specific programs of gene regulation that most prominently affect

the expression of genes involved in energy metabolism and mito-

chondrial function and biogenesis (Lin et al. 2005). PPARGC1A be-

longs to the PGC1 family of coactivators, along with the highly re-

lated protein PPARGC1B and the more distantly related PPRC1 (also

known as PRC), that regulate transcription by docking to transcrip-

tion factors (TFs) at the promoters of their target genes (Andersson

and Scarpulla 2001; Meirhaeghe et al. 2003; Lin et al. 2005).

PPARGC1A contains an N-terminal activation domain and addi-

tional regulatory domains that can recruit chromatin-modifying

proteins such as histone acetyltransferases as well as components of

the mediator complex (Lin et al. 2005). PPARGC1A is a highly ver-

satile protein that can interact with most members of the nuclear

receptor (NR) family of TFs as well as several non-NR TFs (Finck and

Kelly 2006). This feature enables PPARGC1A to appropriately re-

spond to diverse signaling pathways and exert precise control in

regulating distinct sets of target genes.

Numerous studies have identified an important role for

PPARGC1A in maintaining blood glucose levels by up-regulating

genes involved in gluconeogenesis and the beta-oxidation of fatty

acids in the liver (Yoon et al. 2001; Lin et al. 2004). PPARGC1A

expression is activated in response to cAMP and glucocorticoid

signaling in fasted mice (Yoon et al. 2001). In diabetic mice, it is

aberrantly up-regulated in the absence of fasting, a factor that

contributes to elevated hepatic glucose production and hypergly-

cemia (Herzig et al. 2001). Single gene studies have identified

HNF4A, NR3C1 (also known as GR), and FOXO1 as key TFs that are

coactivated by PPARGC1A in order to regulate downstream glu-

coneogenic target genes including phosphoenolpyruvate carboxy-

kinase (PCK1) and glucose 6 phosphatase (G6PC) (Puigserver et al.

2003; Rhee et al. 2003). PPARGC1A also interacts with peroxisome

proliferator-activated receptor alpha (PPARA) and estrogen-related

receptor alpha (ESRRA) to regulate the expression of genes in-

volved in fatty acid oxidation and oxidative phosphorylation in

hepatocytes (Vega et al. 2000; Mootha et al. 2004). Although pre-

vious work has identified many TFs that are coregulated by

PPARGC1A, it is likely that important TF partners remain to be

identified. In addition, the complete repertoire of PPARGC1A tar-

get genes is unknown. Uncovering how PPARGC1A cooperates

with a multitude of TFs across the genome and how it functions

within the context of transcriptional regulatory networks that

coordinate numerous biological pathways will deepen our un-

derstanding of the biological roles of PPARGC1A.

Recent advances in high-throughput DNA sequencing tech-

nology have made it possible to rapidly and efficiently study the

genome-wide activity of TFs, coregulators, and other regulatory

proteins (Farnham 2009). In the present study, we sought to use

4Corresponding author
E-mail mpsnyder@stanford.edu
Article and supplemental material are at http://www.genome.org/cgi/doi/
10.1101/gr.127761.111. Freely available online through the Genome Research
Open Access option.

1668 Genome Research
www.genome.org

22:1668–1679 � 2012, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org



next-generation DNA sequencing to investigate the global

PPARGC1A regulatory circuitry by mapping the genome-wide oc-

cupancy of PPARGC1A and several of its network partners in

a human hepatocarcinoma cell line (HepG2) under conditions that

activate PPARGC1A. HepG2 cells have been a widely used model

cell line for the study of metabolic pathways in humans (Javitt

1990). To help build this circuitry, we utilized a two-step approach

in which the genomic binding sites of PPARGC1A were first ana-

lyzed in an unbiased manner to discover DNA sequence motifs

corresponding to potential novel regulatory partners. Next, ChIP-

seq analysis of several known and novel partners was performed in

order to determine the combinatorial binding patterns that these

factors form with each other and with PPARGC1A and the likely

gene targets regulated by each combination of factors.

Results

Genome-wide identification of PPARGC1A binding sites
by ChIP-seq

In order to determine the genome-wide binding sites of

PPARGC1A, we performed chromatin immunoprecipitation with

a PPARGC1A-specific antibody in human HepG2 cells. The cells

were treated with forskolin to stimulate the cAMP signaling

pathway that activates PPARGC1A; this is the same pathway that is

normally activated by glucagon in the fasted state (Yoon et al.

2001). PPARGC1A-associated DNA was isolated by immunopre-

cipitation, and processed and subjected to high-throughput DNA

sequencing using the Illumina Genome Analyzer II platform. As

a control, input DNA isolated under the same conditions was also

sequenced. The short sequence tags (27 bp) were then mapped to

the human genome. Using two biological replicate experiments,

a total of 13.6 and 11.8 million mapped sequence tags were

obtained for PPARGC1A and input DNA, respectively (Table 1). We

generated signal maps for PPARGC1A and input DNA by extending

the sequence tags in the 39 direction to 200 bp (the average length

of DNA fragments in the sequenced samples), and counting the

number of overlapping tags at each position in the genome; 1886

PPARGC1A binding regions with significantly higher signals in the

PPARGC1A signal map relative to input DNA were identified using

the PeakSeq algorithm (Rozowsky et al. 2009) (1% false discovery

rate [FDR] threshold; Supplemental Table S1 and Supplemental

Data set S1). As shown in Figure 1A, the average signal at PPARGC1A

peak positions was highly elevated relative to both the surrounding

genomic regions (62 kb from the peak) and the same positions in

the input DNA sample. In addition, the genomic regions occupied

by PPARGC1A exhibited strong evolutionary sequence conservation

as demonstrated by their high average phastCons conservation

scores (Siepel et al. 2005) relative to the surrounding genomic re-

gions (Fig. 1B). Thus, these sites are likely to serve a functionally

important role as regulatory elements in vivo. We tested 20 puta-

tive PPARGC1A binding sites using ChIP followed by quantitative

PCR (ChIP-qPCR) and validated enrichment at 18 of these sites,

indicating that our PPARGC1A binding data set is highly specific

(Supplemental Fig. S1; Supplemental Table S3).

We next examined the distribution of PPARGC1A peaks re-

lative to transcripts in the UCSC Known Genes track (Fig. 1C;

Supplemental Table S2; Hsu et al. 2006). PPARGC1A binding sites

occurred most commonly within promoter regions, defined as 65

kb from a transcriptional start site (TSS). Binding within promoters

was observed for 715 PPARGC1A peaks, comprising 37.9% of all

PPARGC1A binding sites (Fig. 1C). These sites were predominantly

located in the upstream region within 1 kb of the TSS (Fig. 1D).

Among the remaining sites, 630 (33.4%) were located in intergenic

regions, 411 (21.8%) in intragenic regions, and 130 (6.9%) within

5 kb of a 39-end (Fig. 1C). These findings suggest that, in addition to

promoter regions, a large proportion of PPARGC1A binding events

occur at distal regulatory elements that may correspond with en-

hancer regions. Importantly, PPARGC1A peaks were found adja-

cent to numerous previously identified target genes, including

PCK1, ALAS1, ACADM, ATP5B, CYP7A1, CYP8B1, TRIB3, CYCS,

ESRRA, and SOD2, further supporting the validity of our binding

data set (Supplemental Table S2). Gene ontology (GO) analysis

(The Gene Ontology Consortium 2000) of PPARGC1A-occupied

genes revealed enrichment of several functional categories that

have been associated with PPARGC1A, such as oxidative phos-

phorylation and lipid metabolism, in addition to novel categories

such as protein folding (Supplemental Table S4). Six representative

GO categories and examples of PPARGC1A-occupied genes are

listed in Table 2.

Enriched motifs at PPARGC1A-occupied sites suggest novel
regulatory partners

Numerous studies have demonstrated that PPARGC1A interacts

with DNA-binding TFs in order to operate as a transcriptional

coactivator (Lin et al. 2005; Soyal et al. 2006). We hypothesized,

therefore, that analysis of the DNA sequences underlying

PPARGC1A peaks identified by ChIP-seq would reveal known and

novel regulatory partners of PPARGC1A based on the enrichment

of their consensus DNA binding motifs. To identify enriched se-

quence motifs in an unbiased manner, we examined the DNA se-

quences (6100 bp from the signal peak) corresponding to the top

250 PPARGC1A binding sites using the program MEME (Bailey and

Elkan 1994). MEME analysis identified three significantly enriched

DNA sequence motifs (Fig. 2A; Supplemental Table S5), each cor-

responding to a known TF motif in the TRANSFAC database (Matys

et al. 2006). Surprisingly, the motif exhibiting the highest statis-

tical significance matched the heat shock element (HSE) that

serves as the recognition site for the heat shock TF, HSF1, a TF that

has not been known previously to function with PPARGC1A. The

core HSE contains three inverted repeats of the consensus se-

quence nGAAn, as depicted in the sequence logo in Figure 2A;

however, some HSEs are known to extend beyond this core by one

or more additional nGAAn repeats. We observed the HSE motif at

344 PPARGC1A peaks (18.2%) and ;20% of these contain more

than three copies of the nGAAn motif (Supplemental Fig. S2). The

second MEME motif corresponded to a NR half-site strongly re-

sembling the consensus binding motif of estrogen-related receptor

Table 1. Summary of Illumina tag sequencing data and PeakSeq scoring results

PPARGC1A CEBPB ESRRA NR3C1 HNF4A HSF1 GABPB pol II Input

Sequence tags mapped to genome (million) 13.6 12.8 12.5 12.2 12.8 10.9 16.4 12.6 11.8
Peaks identified (FDR = 1%) 1886 38,011 3786 838 26,597 3795 6755 17,857 —
Peaks identified (FDR = 5%) 9366 54,368 8751 1597 39,712 7646 12,401 22,720 —
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alpha (ESRRA). ESRRA is one of the principal TFs that cooperate

with PPARGC1A to regulate the expression of genes involved in

mitochondrial biogenesis and oxidative phosphorylation in car-

diac and skeletal muscle and in the liver (Huss et al. 2002; Mootha

et al. 2004; Charest-Marcotte et al. 2010). In addition, expression

of the ESRRA gene is strongly induced

by PPARGC1A (Schreiber et al. 2003;

Laganiere et al. 2004; Mootha et al. 2004).

Thus, the unbiased recovery of this motif

supports the validity of our PPARGC1A

ChIP-seq data set. The third motif iden-

tified by MEME analysis matched the

consensus motif for CCAAT/enhancer-

binding protein beta (CEBPB) and its

related proteins (Osada et al. 1996). Co-

operation between CEBPB and PPARGC1A

has not been demonstrated previously;

however, several studies have suggested

a link between these factors (see Discus-

sion). The ESRRA and CEBPB motifs were

present in 403 and 338 PPARGC1A peaks,

respectively (Fig. 2B). In total, 917 out of

1886 PPARGC1A peaks (48.6%) contained

at least one of the three motifs.

To determine whether the motifs

enriched at PPARGC1A binding sites are

evolutionarily conserved, we aligned all

the occurrences of each motif and calcu-

lated the average phastCons conservation

score at each position in addition to the

surrounding genomic regions in a 200-bp

window (6100 bp from the motif start

position) (Fig. 2C). All three motifs

exhibited an increase in average conser-

vation relative to the genomic back-

ground (Fig. 2C). The HSE motif displayed the highest average

conservation; in addition, we noted that PPARGC1A signal peaks

tended to be particularly high at sites containing an HSE, and

PPARGC1A peaks were frequently located in very close proximity

to these elements. An example of PPARGC1A occupancy at an HSE

Figure 1. Genome-wide occupancy of PPARGC1A determined by ChIP-seq. (A) Plot of the mean
PPARGC1A ChIP enrichment signal (blue) in the region spanning 62 kb from the signal peak across all
1886 PPARGC1A-occupied regions. (Gray) Mean signals from input DNA in the same regions. (B) Plot of
the mean phastCons conservation scores in the region spanning 62 kb from the signal peak across all
PPARGC1A-occupied regions. The phastCons conservation score (ranging from 0 to 1) represents the
probability that a base is in a conserved element (Siepel et al. 2005). (C ) Pie chart displaying the dis-
tribution of PPARGC1A binding sites relative to UCSC Known Genes transcript annotations (Hsu et al.
2006). Each PPARGC1A binding site was mapped to one of four annotation categories in the following
order of preference: TSS (peak within 5 kb), 39-end (peak within 5 kb), intragenic, intergenic. The total
number of sites mapping to each category is displayed within the corresponding portion of the pie
chart. (D) Distribution of all 715 TSS-associated PPARGC1A binding sites relative to the position of the
nearest TSS. As demonstrated in the transcript diagram below the plot, binding positions are plotted
with respect to the orientation of the associated transcript; negative positions indicate binding in the
upstream region and positive positions indicate binding in the downstream region.

Table 2. Summary of Gene Ontology analysis of genes occupied by PPARGC1A

GO category
Oxidative

phosphorylation
Protein
folding

Cellular catabolic
process

Lipid metabolic
process

Response to
stress

Cellular amino acid
and derivative

metabolic process

GO ID GO:0006119 GO:0006457 GO:0044248 GO:0006629 GO:0006950 GO:0006519
P-value 6.93 3 10�8 1.86 3 10�6 1.27 3 10�5 1.86 3 10�3 4.39 3 10�3 5.87 3 10�3

No. genes 19 25 83 58 96 26
Example genes ATP5A1 CCT3 ABAT ACOX2 AGT AARSD1

ATP5B CCT4 ACADM ACSL3 CCL16 CPS1
ATP5D CCT5 ACOX2 ACSL5 CLU CTPS
ATP5E CCT7 AKR1A1 ACSS2 CYGB DARS
ATP5G3 DNAJA1 ALDOA AGT DUSP1 GCAT
ATP6V1A DNAJB1 CYCS APOA2 GPX7 HPD
ATP5O DNAJB4 DLAT APOB GSK3B IARS2
COX10 DNAJB6 ENO1 APOC2 HSPB9 MAT2A
NDUFA1 FKBP4 GIG18 DGAT2 MAP4K4 NFS1
NDUFA2 HSP90AA1 GLA DHRS2 SGK2 P4HB
NDUFB2 HSP90AB1 GLS DHRS3 SRXN1 PCYOX1
NDUFB3 HSPA8 GPI ELOVL2 STIP1 PHGDH
NDUFB9 HSPD1 MPST HNF4A SYVN1 PSPH
NDUFS1 HSPE1 OGDH INSIG2 TAOK2 QARS

MKKS OGDHL LPIN1 TRIB3 SLCO4A1
PPIA PAH MOGAT2
PPID PGK1 NR0B2
ST13 SPHK1 PCK1
TCP1 UBB PGS1

PLA2G3
SLC27A4
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within the promoter of the known HSF1 target gene, HSP90AA1

(Hickey et al. 1989), is displayed in Figure 2D.

ChIP-seq reveals genome-wide patterns of TF binding and
colocalization of PPARGC1A and its network partners

Our initial ChIP-seq studies suggested that PPARGC1A functions

with known and novel partners in HepG2 cells. To better un-

derstand how PPARGC1A and its network partners cooperate to

regulate their target genes across the genome in response to met-

abolic signals, we performed ChIP-seq experiments to map the

genome-wide occupancy of the three regulators identified in the

unbiased motif analysis—HSF1, ESRRA, and CEBPB. To place these

factors within a wider context, we also selected three additional TFs

that have been shown to function with PPARGC1A, namely he-

patocyte nuclear factor 4 alpha (HNF4A), glucocorticoid receptor

(NR3C1), and GA-binding protein (GABP, also known as nuclear

respiratory factor 2, NRF2) (Knutti et al. 2000; Rhee et al. 2003;

Mootha et al. 2004). DNA binding motifs for both HNF4A and

GR were found to be enriched when PPARGC1A-occupied sites

were analyzed using the complete set of motifs in the TRANSFAC

database with the program TFM-explorer (Defrance and Touzet

Figure 2. Discovery of enriched sequence motifs in PPARGC1A-occupied regions. (A) (Left panel) The top three DNA sequence motifs identified in an
unbiased analysis of PPARGC1A-occupied regions using MEME. The MEME E-value, a measure of statistical significance (Bailey and Elkan 1994), is dis-
played above each motif. (Right panel) The most similar motif in the TRANSFAC database is displayed for each MEME motif (Matys et al. 2006). Comparison
with the TRANSFAC database was performed using Tomtom (Gupta et al. 2007). The motif accession number and name from TRANSFAC and P-value from
Tomtom are listed above each TRANSFAC motif. Motif logos were generated using the WebLogo tool (http://weblogo.berkeley.edu/). (B) The genomic
DNA sequences of all PPARGC1A-occupied regions (6100 bp from each peak) were scanned for matches to each of the three motifs identified by MEME
analysis. Colored wedges within each pie chart represent the fraction of all PPARGC1A binding sites that contain at least one match to the indicated DNA
sequence motif. The number of regions in which a match is present or absent is indicated. Motif matches were identified using FIMO with a similarity
P-value threshold of 0.01 (Bailey et al. 2009). (C ) The mean phastCons conservation score (Siepel et al. 2005) across all motif-containing PPARGC1A
binding sites is plotted in a 200-bp window centered on the start position of the motif. (Black boxes) Position of the corresponding motif. (Open circles)
Points in each plot that correspond to base pairs constituting the motif. (D) PPARGC1A binds in close proximity to HSEs in a subset of occupied regions.
A PPARGC1A binding site in the promoter of the HSP90AA1 gene is shown as an example. The genomic position of the HSE in the HSP90AA1 promoter is
indicated as a red box beneath the PPARGC1A signal map. The sequence of the HSE, containing six inverted repeats of the consensus sequence nGAAn
(Hickey et al. 1989; Mathur et al. 1994), is displayed in the expanded view. (X-axis) Chromosomal positions. Gene structure is shown to scale above the
signal plot. (Arrow) Genomic coordinate of the PPARGC1A signal peak.
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2006). HNF4A and NR3C1 are NRs that bind to PPARGC1A directly

through LXXLL motifs in the PPARGC1A N terminus (Rodgers

et al. 2008). GABP, an ETS-family TF consisting of alpha and beta

subunits, is coactivated by PPARGC1A at mitochondrial genes in

muscle (Mootha et al. 2004). In addition to these six factors, we

also determined the genome-wide occupancy of the unphos-

phorylated form of RNA polymerase II, a marker of transcription

initiation. Biological replicate experiments were performed for each

TF. We obtained approximately a total of 10.9–16.4 million mapped

sequence tags. Using an FDR threshold of 1% and the program

PeakSeq, high-confidence TF binding sites were obtained (Table 1).

The binding results of the six site-specific TFs and RNA pol II

in HepG2 cells treated with forskolin are listed in Table 1. The

number of binding sites was highest for CEBPB and HNF4A (38,011

and 26,597, respectively), suggesting more general roles for these

factors in maintaining hepatocyte gene expression. ESRRA, GABP,

and HSF1 each localized to an intermediate number of sites (3786,

6755, and 3795, respectively). NR3C1 occupied 838 sites, likely

a small number relative to the full complement of target sites that

are bound in the presence of a glucocorticoid ligand such as

dexamethasone (Reddy et al. 2009). ChIP-qPCR experiments di-

rected against selected targets of CEBPB and HSF1 confirmed that

the majority (;95%) of binding sites identified by ChIP-seq are

bound in vivo (Supplemental Fig. S1; Supplemental Table S3). In

addition, the binding sites of all six TFs exhibited elevated se-

quence conservation based on their average phastCons scores

(Supplemental Fig. S3). Our results are consistent with several

previous studies that have examined the genomic binding of sev-

eral of these factors in various cell types (Wallerman et al. 2009;

Charest-Marcotte et al. 2010; Schmidt et al. 2010). For example,

Schmidt and colleagues recently identified a similar number of

HNF4A binding sites (;27,800) in primary human hepatocytes

(Schmidt et al. 2010). Peak signals tended to be higher overall for

the six TFs than for PPARGC1A, likely due to their direct binding to

DNA compared with the indirect binding of PPARGC1A. For ex-

ample, although similar numbers of sequence reads were obtained

for each factor, only 12 PPARGC1A peaks contained >100 over-

lapping sequence tags, compared with 5673 peaks for CEBPB and

2271 for GABP (Supplemental Table S1; Supplemental Data set S1).

It is important to note that some of the variation we observed

among these factors in binding site frequency and peak signal

may be due to technical limitation of ChIP, such as differences in

antibody efficiency.

To examine the overlap among all seven regulators, we first

identified genomic regions that contain clusters of adjacent

binding sites by extending each peak 6200 bp and merging re-

gions that overlapped. This analysis revealed 16,712 genomic re-

gions that are occupied by two or more regulators (Supplemental

Table S6). We refer to these regions as multiple regulatory factor

binding regions (multi-RFBRs). We next determined the number

of multi-RFBRs co-occupied by each distinct pair of regulators

(Fig. 3A). The patterns of overlap at multi-RFBRs suggested that

Figure 3. Genome-wide patterns of binding and colocalization of PPARGC1A and its network partners. (A) Pairwise colocalization of transcriptional
regulators within multi-RFBRs. Numbers in each cell represent the number of multi-RFBRs that are co-occupied by the corresponding pair of regulators. The
first cell in each column indicates the total number of multi-RFBRs bound by each regulator. Cells are colored by the fraction of all 16,712 multi-RFBRs
identified in the genome. Factors are ordered by decreasing number of multi-RFBRs bound. (B) Heatmap depicting the clustering of transcriptional
regulators based on the similarity of their colocalization patterns. Colors in the heatmap indicate the strength of association between each pair of
regulators (odds ratio from a Fisher’s exact test; see Methods). Two groups of regulators exhibiting highly similar colocalization patterns based on the
results of clustering are outlined in blue boxes. (C ) Distribution of transcriptional regulator binding sites relative to UCSC Known Genes transcript
annotations (Hsu et al. 2006). Factors are ordered by increasing proportion of TSS-adjacent binding sites. (D) Bar graph depicting the fraction of binding
sites within 5 kb of an RNA pol II peak for each regulator.
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these different factors co-occur with distinct preferences. For ex-

ample, although ESRRA and HSF1 occupy nearly identical num-

bers of multi-RFBRs (3193 and 3198, respectively), ESRRA is much

more frequently found at multi-RFBRs that contain HNF4A (2806

ESRRA-HNF4A multi-RFBRs vs. 2077 HSF1-HNF4A multi-RFBRs)

(Fig. 3A). To determine which groups of regulators associate most

strongly throughout the genome, we next clustered all seven reg-

ulators based on the similarity of their colocalization patterns (Fig.

3B). For this analysis, we computed a colocalization score (odds

ratio from a Fisher’s exact test) for each pair of regulators based on

the observed versus expected number of co-occupied multi-RFBRs.

As depicted in the heatmap in Figure 3B, two groups emerged with

high levels of association—Group 1, consisting of PPARGC1A,

ESRRA, and HSF1, and Group 2 consisting of GABP and NR3C1.

The strong association observed among the regulators in each of

these groups indicates that they share an especially high number

of binding sites and potentially function in a modular fashion to

regulate the expression of their target genes.

Comparison of the binding sites of each factor with tran-

scripts in the UCSC Known Genes track also revealed similarities

and differences in their binding properties (Fig. 3C). For example,

binding outside of promoter regions was quite prevalent for CEBPB

and HNF4A (68.0% and 63.3% of sites, respectively), similar to our

results with PPARGC1A (Fig. 3C). In contrast, GABP and NR3C1

were much more common at promoters (72.0% and 91.3% of sites,

respectively) and most similar in their binding distribution to RNA

pol II (Fig. 3C). To examine the relationship of each factor with

RNA pol II in more detail, we also determined the fraction of sites

that was adjacent to an RNA pol II binding site (Fig. 3D). These

results were consistent with the patterns we observed relative to

TSSs, indicating that the subset of promoter-proximal binding sites

of each factor is associated with sites of transcription initiation in

the genome (Fig. 3D).

Correlation of binding with gene expression suggests
that many of the binding sites are functional

To determine whether these factors are associated with genes that

are differentially expressed in the fasted state, we measured gene

expression using Illumina BeadArrays before and after 6 h treat-

ment with forskolin. Genes were ranked by fold-induction and

compared with the binding site information for the different fac-

tors. As shown in the heatmap in Figure 4, PPARGC1A and its

network partners are strongly associated with both the top and

bottom of the ranked gene list, indicating that the binding of these

factors may promote the up- or down-regulation of their target

genes. The biased representation of target genes at the top and

bottom of the ranked list was statistically significant for each factor

(P < 10�3) based on the results of gene set enrichment analysis

(Subramanian et al. 2005), with the exception of NR3C1, which

was significantly associated only with the top ranking genes

(Fig. 4).

PPARGC1A functions with different combinations of TFs
at distinct types of gene targets

In order to examine the combinatorial binding patterns of

PPARGC1A with each of its network partners, we next analyzed the

subset of interactions involving PPARGC1A in more detail. We first

grouped the entire set of PPARGC1A binding sites based on the

number of regulators bound (Supplemental Table S8); these in-

teractions are visualized as a heatmap in Figure 5A. Notably, 1741

PPARGC1A binding sites (92.3%) are located in multi-RFBRs, the

highest proportion among all of the regulators that we examined.

This finding is consistent with the requirement of PPARGC1A to

localize to its genomic targets through TFs that directly bind DNA;

it likely also reflects the fact that factors were chosen based on

association with PPARGC1A. PPARGC1A also likely interacts with

TFs not included in the present study at the remaining 145 sites

located outside of multi-RFBRs. Another intriguing finding is that

PPARGC1A binding sites are typically co-occupied by more than

one additional TF. Indeed the two largest groups of PPARGC1A-

bound multi-RFBRs contain two to three additional TFs (Fig. 5A).

The top three unique regulator combinations within each group

are displayed in Figure 5B. Overall, the most prevalent combina-

tion was PPARGC1A–HNF4A–CEBPB, observed at 350 multi-RFBRs

(Fig. 5B). Other examples of frequently observed combinations

are PPARGC1A–HNF4A–CEBPB–HSF1 (188 multi-RFBRs) and

PPARGC1A–HNF4A–CEBPB–ESRRA (160 multi-RFBRs) (Fig. 5B).

One challenge in genomics has been to understand how dif-

ferent combinations of regulators work together to target specific

sets of genes involved in distinct biological pathways (Blais and

Dynlacht 2005). To explore this problem in the context of

PPARGC1A and its network partners, we identified the set of genes

occupied by each distinct PPARGC1A–TF pair and functionally

categorized these genes using GO (The Gene Ontology Consor-

tium 2000). We then determined the level of over- or under-

representation of each GO category for each PPARGC1A–TF pair

and used this information to cluster GO categories based on the

similarity of their enrichment profiles (Supplemental Table S9).

Figure 4. Regulator occupancy corresponds with gene expression
changes in forskolin-treated HepG2 cells. (Left panel) Replicate gene ex-
pression measurements from Illumina BeadArrays were used to rank
18,000 genes by fold induction after 6 h treatment with forskolin. (Right
panel) The distribution of regulator-occupied genes within the ranked list
is depicted as a heatmap. The ranked list was divided into 18 rank groups
containing 1000 genes each and genes containing 59-proximal, 39-prox-
imal, or intragenic binding sites were identified for each factor. Within
each rank group, the fraction of genes that are occupied by a given factor
was compared with the fraction expected from a random distribution.
Colors in the heatmap represent the level of over- or under-representation
of regulator-occupied genes. Association of regulator-occupied genes
with both the top and bottom of the ranked list was determined to be
statistically significant (P < 10�3) for CEBPB, HNF4A, GABP, HSF1,
PPARGC1A, and ESRRA using gene set enrichment analysis (Subramanian
et al. 2005). NR3C1-occupied genes were significantly associated with the
top of the ranked list only (P < 10�3).
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Representative differentially enriched GO categories are displayed

in the heatmap in Figure 5C. Our results suggest that several im-

portant pathways are preferentially regulated by distinct TF com-

binations. For example, genes involved in mitochondrial metab-

olism, including GO categories such as oxidative phosphorylation

and the respiratory electron transport chain, were preferentially

occupied by both the regulator combinations of PPARGC1A–

ESRRA and PPARGC1A–GABP, in agreement with previous studies

of these TFs (Mootha et al. 2004; Charest-Marcotte et al. 2010). In

contrast, genes involved in lipid catabolism were enriched among

genes occupied by PPARGC1A–ESRRA but under-represented

among those occupied by PPARGC1A–GABP (Fig. 5C). Genes in-

volved in protein folding and related categories were enriched

among PPARGC1A–HSF1-occupied genes (Fig. 5C; Supplemental

Table S9). Surprisingly, the protein folding categories were also

enriched among PPARGC1A–GABP-occupied genes, suggesting

that these three factors work together to regulate protein folding

and other pathways associated with the heat shock response. Lipid

metabolic pathways were slightly over-represented among genes

occupied by PPARGC1A in combination with HNF4A or CEBPB

(Fig. 5C). PPARGC1A–HNF4A- and PPARGC1A–CEBPB-occupied

genes exhibited less distinct patterns of differential enrichment,

presumably reflecting the broad binding of these TFs to the ge-

nome (Supplemental Table S9). Overall, these results indicate that

distinct combinations of TFs bind distinct gene targets.

Transcriptional regulatory circuitry of PPARGC1A
and its network partners

We next sought to explore the regulatory circuitry formed by

PPARGC1A and its network partners by investigating their binding

relationships with each other and with other TFs. We first exam-

Figure 5. Recruitment of PPARGC1A to distinct clusters of TF binding sites. (A) Combinatorial binding patterns of PPARGC1A with its network partners
displayed as a heatmap. PPARGC1A binding sites were grouped based on the number of bound factors, as indicated to the left of each group. Sites
containing two or more factors correspond to PPARGC1A-bound multi-RFBRs. Within each group, binding sites were sorted by decreasing intensity of
PPARGC1A binding, based on the number of sequence tags mapping to multi-RFBRs or within 200 bp of the PPARGC1A peak for sites bound by PPARGC1A
only. Colors from yellow to red reflect increasing tag count. (Gray) Sites that are not bound by a given TF. TFs are ordered from left to right by decreasing
colocalization with PPARGC1A. RNA pol II binding is included for reference in the last column. (B) Predominant regulator combinations at PPARGC1A-
bound multi-RFBRs. PPARGC1A-bound multi-RFBRs were grouped based on the number of bound factors as in A. For each group, the total number of
multi-RFBRs is listed, along with the top three distinct regulator combinations and the number of times each combination is observed. (Colored boxes)
Binding by the respective regulator. (C ) Differential enrichment of GO categories among genes occupied by PPARGC1A and each of its network partners.
Relative fold enrichment is displayed as a heatmap with columns clustered by similarity. Representative GO categories are shown; the complete set of
differentially enriched GO categories is listed in Supplemental Table S9. NR3C1 is excluded due to the small number of targets overlapping with
PPARGC1A.
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ined the genes encoding each transcriptional regulator and de-

termined which regulators were bound. As shown for the

PPARGC1A gene in Figure 6A, we frequently observed binding of

different combinations of regulators not only at promoter regions,

but also at multiple sites within the gene body and adjacent to

the 39-end. Thus, we considered any such binding event to be

a potential regulatory connection and used this information to

construct a transcriptional regulatory network. In this network,

‘‘nodes’’ represent each transcriptional regulator and ‘‘edges’’

connecting nodes represent binding of one regulator to the gene

encoding another regulator. As diagrammed in Figure 6B, the seven

regulators form a highly connected network suggesting complex

patterns of interdependent regulation. Various network motifs

(the smallest units of network structure) are abundant in this

network, including feed-forward loops, multi-component loops,

and multi-input motifs (Blais and Dynlacht 2005). One particu-

larly striking feature of this network is that every transcriptional

regulator exhibits autoregulation, a motif that characterizes master

regulators of important cellular pathways in various cell types

(Boyer et al. 2005; Odom et al. 2006; Reed et al. 2008). Notably, an

autoregulatory interaction occurs in intron 2 of the PPARGC1A

gene (Fig. 6A), a region in which single nucleotide polymorphisms

(SNPs) have been associated with the age at onset of Huntington’s

disease (Taherzadeh-Fard et al. 2009; Weydt et al. 2009).

The factors in this network also exhibit a hierarchical re-

lationship in terms of the number of transcriptional regulators that

they occupy, represented by the number of outgoing edges of each

node (Fig. 6C). CEBPB and HNF4A, for example, are highly con-

nected nodes, forming direct regulatory connections with all seven

regulators that we examined. These findings indicate that CEBPB

and HNF4A can influence the expression of a large assortment of

genes both by direct interactions and by interactions mediated by

multiple downstream regulators, and are consistent with the ob-

served roles of HNF4A and CEBP family members in specifying and

maintaining the hepatocyte transcriptional program (Lekstrom-

Himes and Xanthopoulos 1998; Odom et al. 2004; Kyrmizi et al.

2006). ESRRA, GABP, HSF1, and PPARGC1A, on the other hand,

occupy lower positions in the hierarchy, as each of these factors

Figure 6. Transcriptional regulatory circuitry of PPARGC1A and its network partners. (A) Regulator binding at the PPARGC1A locus. Signal maps are
displayed for four factors that occupy PPARGC1A. Significant peaks (q < 0.01) are indicated by colored lines under each signal map. (X-axis) Chromosomal
positions. Gene structure is shown to scale below the signal maps. (B) Transcriptional regulatory network diagram displaying interactions among CEBPB,
ESRRA, GABP, NR3C1, HNF4A, HSF1, and PPARGC1A. (Arrows) Direct binding of one regulator to the 59-proximal, 39-proximal, or intragenic region of the
gene encoding another regulator (or the same regulator in the case of autoregulatory loops). (C ) Regulatory hierarchy among the seven regulators
depicted in B. Factors are ranked first by the number of incoming network connections (‘‘kin’’) then by the number of outgoing network connections
(‘‘kout’’) (Borneman et al. 2006). (D) Expanded transcriptional regulatory network. Additional TFs were added to the core network shown in B, represented
here by the circle in the center of the diagram, if they contained four or more incoming network connections. The number of incoming connections is
indicated by arrow types according to the legend. Fifteen representative TFs are shown; the complete list of 155 TFs in the expanded network and their
bound regulators is available in Supplemental Table S10.
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binds to a more limited subset of three to four regulators, sug-

gesting that they influence the expression of genes that are in-

volved in more focused biological pathways. One basic property of

transcriptional regulatory networks is that edges are directional;

thus, each node can contain differing numbers of incoming and

outgoing connections (Barabasi and Oltvai 2004; Borneman et al.

2006). In the network formed by PPARGC1A and its partner TFs,

both ESRRA and HNF4A contain six incoming connections, com-

pared with only three to four for the remaining regulators (Fig. 6C).

These findings indicate that the ESRRA and HNF4A genes are

subject to greater regulatory input and potentially responsive to

a wider array of biological stimuli. Previous work in yeast suggests

that TFs that are downstream targets of many regulators can serve

as ‘‘target hubs’’ in regulatory networks whose activity represents

the combined output of multiple upstream signals (Borneman

et al. 2006; Zhu et al. 2007). These factors often serve as master

regulators of important cellular pathways (Borneman et al. 2006;

Zhu et al. 2007).

To identify additional regulators that might form important

connections with the seven factors in our ‘‘core’’ network, we ex-

panded our network by including target genes encoding other

transcriptional regulators that were occupied by at least four fac-

tors (Fig. 6D; Supplemental Table S10). The expanded network

contains 155 additional regulators (Supplemental Table S10),

many of which have demonstrated roles in critical cellular pro-

cesses related to the function of PPARGC1A. Indeed, several of

these regulators are known targets of PPARGC1A coactivation,

including RXRA, RXRB, YY1, PPARD, and NR1H3 (also known as

LXRA) (Fig. 6D; Delerive et al. 2002; Oberkofler et al. 2003; Wang

et al. 2003; Cunningham et al. 2007). Intriguingly, YY1, one

of the TFs with the most connections to the core network, has

been shown to bind directly to the PPARGC1A promoter in skeletal

muscle, and YY1 DNA binding motifs are highly enriched in

the promoters of mitochondrial genes regulated by PPARGC1A

(Cunningham et al. 2007). Another factor in the expanded

network, NR0B2 (also known as SHP), negatively regulates the

expression of PPARGC1A in brown adipocytes (Wang et al. 2005).

The presence of regulators such as YY1 and NR0B2 and other TFs

in our expanded network not only implicates these factors as

players in the PPARGC1A regulatory network in the liver, but also

suggests that a broad transcriptional network is influenced by

PPARGC1A and its associated factors.

Discussion
In this study, we have utilized a genomic approach to identify

potential regulatory partners of the transcriptional coactivator

PPARGC1A. Using ChIP-seq, we mapped PPARGC1A binding sites

across the genome in human hepatocytes under conditions sim-

ulating the fasted state. MEME analysis of the underlying se-

quences at these sites revealed an enrichment of consensus motifs

corresponding to known TFs, suggesting PPARGC1A coactivation

or cooperation with these factors in the liver. Of the three motifs

discovered in an unbiased manner, two motifs, corresponding to

HSF1 and CEBPB, represent novel associations with PPARGC1A.

Subsequent mapping of these TFs revealed a high degree of overlap

throughout the genome. Although direct binding of PPARGC1A

with these TFs may account for the strong motif enrichment and

target overlap that we observed, it is also possible that these factors

interact indirectly within larger multi-protein complexes that form

at regulatory elements in the genome. Regardless, PPARGC1A

mediates its activity by working with a number of other TFs. Our

selection of additional TFs for ChIP-seq analysis was guided by

searches for known consensus motifs, knowledge of PPARGC1A

binding partners from the literature, expression in HepG2 cells,

and the availability of suitable antibodies for ChIP-seq.

The highly significant enrichment of conserved HSEs, ele-

vated PPARGC1A peak signals at these sites, and strong tendency

of PPARGC1A and HSF1 to associate within multi-RFBRs are par-

ticularly striking and may have important implications for un-

derstanding the role of PPARGC1A in normal metabolic function

and human disease. HSF1 regulates the expression of chaperone

proteins that aid in the repair of protein damage in response to

cellular stress (Hooper 2009). Like PPARGC1A, HSF1 and its

downstream chaperones have been implicated in the pathogen-

esis of type II diabetes. For example, the HSF1 target gene HSP72

exhibits reduced levels in the skeletal muscle of patients with

insulin resistance and diabetes (Kurucz et al. 2002; Bruce et al.

2003; Chung et al. 2008). Furthermore, studies in diabetic non-

human primates suggest that HSF1 and heat shock protein

deficiency in the liver contributes to insulin resistance (Kavanagh

et al. 2009). Intriguingly, the diet-responsive NAD-dependent

deacetylase SIRT1, a critical regulator of PPARGC1A activity in the

fasted liver (Rodgers et al. 2005), was recently shown to interact

with and deacetylate HSF1 (Westerheide et al. 2009). Our results

suggest that PPARGC1A functions closely with HSF1 and that HSF1

activity may be linked to dietary conditions such as fasting and

calorie restriction. Our results also suggest novel combinatorial

relationships between HSF1 and the other TFs that we examined.

For example, HSF1 and ESRRA (along with PPARGC1A) were found

to be strongly associated when we clustered TFs based on their

pairwise colocalization patterns (Fig. 3B). HSF1 and ESRRA were

also found to participate in a multicomponent loop in which each

factor binds to the gene encoding the other (Fig. 6B). In another

example, we found that genes involved in the response to un-

folded protein were enriched in the binding data sets of both HSF1

and GABP (Fig. 5C). Although PPARGC1A and HSF1 appear to bind

in close proximity, we have so far been unable to detect a stable

complex by co-immunoprecipitation of the native proteins in

HepG2 cells. One possibility is that they may only form a stable

complex in the presence of DNA, a phenomenon that we have

previously observed in yeast (Borneman et al. 2006). Alternatively,

they may exist in separate complexes that localize to a common set

of regulatory regions.

The finding of CEBPB motif enrichment in our PPARGC1A

binding data set is also intriguing since several previous studies

have identified links in the expression and regulation of these two

factors. For example, CEBPB activity was found to be highly ele-

vated in the livers of PPARGC1A knockout mice (Lin et al. 2004)

and CEBPB has been shown to regulate the expression of the

PPARGC1A gene by binding to a cAMP response element in the

PPARGC1A promoter (Karamanlidis et al. 2007; Wang et al. 2008).

In addition, C/EBP-family proteins participate in a number of

cellular pathways that are also regulated by PPARGC1A, such as

gluconeogenesis (Roesler 2001).

Our findings demonstrate that PPARGC1A and its network

partners localize to the genome in a combinatorial manner with

distinct preferences for genes involved in different functional

pathways. The genomic binding sites of these factors typically

occur in clusters (i.e., multi-RFBRs) that are found at both TSS

proximal and distal regulatory regions. Indeed, PPARGC1A typi-

cally co-occupies sites containing two to three additional TFs and

the majority of PPARGC1A binding sites are located outside of

promoter regions. The manner in which PPARGC1A associates
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with TFs at multi-RFBRs is likely to be complex. For example,

a single PPARGC1A protein may interact with several TFs simul-

taneously in a protein complex, an arrangement that would be

facilitated by the multiple interfaces for protein–protein in-

teractions contained on PPARGC1A (Rodgers et al. 2008). Alter-

natively, PPARGC1A may physically interact with one or more TFs

independently; such an arrangement may occur when the DNA

binding sites of these TFs are not located in close proximity. Overall

our mapping experiments suggest a complex code in which dis-

tinct combinations of factors work together to activate distinct

types of gene targets. The mapping of seven key factors involved in

metabolism is likely to be a valuable resource in elucidating the

metabolic transcriptional code. Given the importance of tran-

scriptional regulatory networks in diabetes, our work is likely to

form an important foundation for understanding basic mecha-

nisms of human disease.

Methods

Cell culture
HepG2 cells were cultured in DMEM supplemented with 10% FBS
and 100 U/mL penicillin/streptomycin. For ChIP-seq experiments
reflective of the low glucose state, cells were cultured for 12 h in
DMEM with 0.5% BSA then treated for 6 h with forskolin (1 mM) in
low-glucose DMEM containing 1 mM pyruvate.

ChIP and ChIP-seq

ChIP was performed as described using two to three independent
biological replicate experiments (Reed et al. 2008). Antibodies used
were rabbit anti-PGC1 (sc-13067), rabbit anti-C/EBP b (sc-150),
rabbit anti-ERRa (sc-66882), rabbit anti-GABP-a (sc-22810), rabbit
anti-GR (sc-1002), rabbit anti-HNF-4a (sc-6556), and rabbit anti-
HSF1 (sc-9144) from Santa Cruz Biotechnology, and mouse anti-
POLR2A (RNA pol II) (MMS-126R) from Covance. ChIP and input
DNA samples were prepared in parallel and sequenced on an Illu-
mina Genome Analyzer II according to the manufacturer’s pro-
tocol (Illumina).

Data analysis

Raw images generated from Illumina Genome Analyzer II runs
were analyzed using Illumina’s recommended software pipeline
to generate lists of base-called sequence tags. Sequence tags
(27 bp) were mapped to the human genome (hg18/NCBI Build
36.1) downloaded from the UCSC Genome Browser (http://
genome.ucsc.edu/) (Kent et al. 2002) using the program ELAND.
Sequence tags from independent replicates were combined into
a single data set, then extended in the 39 direction to 200 bp and
converted to signal map files representing the integer count of
mapped tags overlapping at each genomic position. The signal
maps were scored using the program PeakSeq (Rozowsky et al.
2009) in order to identify factor binding sites. Statistical significance
was calculated using a binomial test followed by the Benjamini-
Hochberg correction for multiple hypothesis testing to yield a
q-value for each candidate region. High confidence bound regions
were selected with a q-value cutoff of 0.01, corresponding to an
overall FDR of 1%. A q-value cutoff of 0.05 was also used to identify
a set of lower confidence regions.

Target validation

To validate binding targets quantitative PCR with site-specific
primers was performed in duplicate on a BioRad MyiQ real-time

PCR cycler with BioRad iQ SYBR Green supermix. Primers for ChIP-
qPCR were designed for 20–23 genomic binding sites selected to
represent the distribution of peak intensities for PPARGC1A, CEBPB,
and HSF1, and for a negative control unbound region. Normalized
Ct (dCt) values for each sample were calculated by subtracting the Ct
value obtained using input DNA from the Ct value obtained using
ChIP DNA (dCt = CtChIP – Ctinput). Fold enrichment was then cal-
culated using the formula 2�(dCt[target] – dCt[control]). For the purpose of
estimating specificity, targets with mean qPCR fold enrichment >2
were considered enriched (Supplemental Fig. S1). Primer sequences
are listed in Supplemental Table S3.

Motif analysis

The motif discovery program MEME (Bailey and Elkan 1994) was
used to identify candidate protein–DNA interaction motifs in an
unbiased manner. Input to the MEME program consisted of 200-bp
sequences centered at the peak position for the top 250 bound
regions (ranked by q-value). The results of MEME analysis are in
Supplemental Table S5. No additional motifs were identified be-
yond the three listed in Figure 2A. The top-scoring motifs from
MEME were queried against the TRANSFAC database (Matys et al.
2006) using Tomtom (Gupta et al. 2007) to identify the best
matching known motifs. Locations of matches to MEME motifs
were determined using the program FIMO (Bailey et al. 2009) with
a similarity P-value threshold of 10�4. The mammalian phastCons
conservation scores (Siepel et al. 2005) at motif matches within
PPARGC1A-bound regions were obtained from the UCSC Genome
Browser (Karolchik et al. 2008). Enrichment of known motifs was
determined using the program TFM-explorer (Defrance and Touzet
2006).

Functional classification

Statistical analysis of the enrichment of GO categories (The Gene
Ontology Consortium 2000) was performed using the GOstats
package in R (Falcon and Gentleman 2007). To identify differen-
tially enriched GO categories among genes occupied by each
PPARGC1A–TF pair, categories exhibiting significant enrichment
(P < 0.01, hypergeometric test) in at least one PPARGC1A–TF pair
and containing at least 20 member genes were identified. Next, an
enrichment score was determined by calculating the ratio of ob-
served/expected genes for each category and retaining categories
with a standard deviation of at least 0.5 across all PPARGC1A–TF
pairs (Supplemental Table S9). Enrichment scores of example cat-
egories in Figure 5C were log-transformed, mean-centered, and
hierarchically clustered using Cluster 3.0 (de Hoon et al. 2004) and
visualized using Java Treeview (Saldanha 2004).

Gene expression analysis

Total RNA from 5 3 106 forskolin-treated and untreated HepG2
cells was collected using TRIzol-containing buffer (Invitrogen) and
further purified using a Qiagen RNeasy kit. Purified total RNA was
submitted to the Microarray Resource at the Yale W.M. Keck
Foundation Biotechnology Resource Laboratory for labeling and
hybridization to Illumina HumanRef-8 Expression BeadChips.
Raw intensities were log2-transformed and quantile-normalized,
and probe sequences were remapped to Entrez GeneIDs using the
lumi package in R (Du et al. 2008). The complete expression data
set is summarized in Supplemental Table S7.

Multi-RFBR identification and clustering

Multi-RFBRs were identified by combining the peaks of all seven
regulators into one data set, extending these peaks 6200 bp, and
merging regions that overlapped. This analysis identified 57,436
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unique regions, of which 16,712 were occupied by more than one
factor and designated multi-RFBRs (Supplemental Table S6). The
remaining 40,724 regions consisted almost entirely of single
binding sites for CEBPB (24,123 regions) and HNF4A (12,533
regions). To cluster regulators based on the similarity of their
colocalization patterns, the observed and expected numbers of
multi-RFBRs co-occupied by each pair of regulators were compared
using a Fisher’s exact test in order to derive an odds ratio repre-
senting the strength of association of each pair. Hierarchical clus-
tering was then performed on the 7 3 7 matrix of odds ratios using
the ‘‘heatmap’’ function in R with default parameters.

Data access
Sequence reads, quality scores, alignment coordinates, and Peak-
Seq results for factors in this study have been submitted to the
Encyclopedia of DNA elements (ENCODE) project (The ENCODE
Project Consortium 2007), and are available for download or visu-
alization as genome browser tracks at the UCSC ENCODE Data
Coordination Center website (http://genome.ucsc.edu/ENCODE/).
Sequence reads have been submitted to the NCBI Sequence Read
Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under accession
number SRA050697.

Acknowledgments
This work was supported by grants from the NHGRI (F31HG004299).

References

Andersson U, Scarpulla RC. 2001. Pgc-1-related coactivator, a novel, serum-
inducible coactivator of nuclear respiratory factor 1-dependent
transcription in mammalian cells. Mol Cell Biol 21: 3738–3749.

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst
Mol Biol 2: 28–36.

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW,
Noble WS. 2009. MEME SUITE: Tools for motif discovery and searching.
Nucleic Acids Res 37: W202–W208.

Barabasi AL, Oltvai ZN. 2004. Network biology: Understanding the cell’s
functional organization. Nat Rev Genet 5: 101–113.

Blais A, Dynlacht BD. 2005. Constructing transcriptional regulatory
networks. Genes Dev 19: 1499–1511.

Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M. 2006.
Target hub proteins serve as master regulators of development in yeast.
Genes Dev 20: 435–448.

Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG,
Kumar RM, Murray HL, Jenner RG, et al. 2005. Core transcriptional
regulatory circuitry in human embryonic stem cells. Cell 122: 947–
956.

Bruce CR, Carey AL, Hawley JA, Febbraio MA. 2003. Intramuscular heat
shock protein 72 and heme oxygenase-1 mRNA are reduced in patients
with type 2 diabetes: Evidence that insulin resistance is associated with
a disturbed antioxidant defense mechanism. Diabetes 52: 2338–2345.

Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow
DH, Mootha VK, Giguere V. 2010. The homeobox protein Prox1 is
a negative modulator of ERRa/PGC-1a bioenergetic functions. Genes
Dev 24: 537–542.

Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL,
Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, et al. 2008. HSP72
protects against obesity-induced insulin resistance. Proc Natl Acad Sci
105: 1739–1744.

Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P.
2007. mTOR controls mitochondrial oxidative function through a YY1-
PGC-1a transcriptional complex. Nature 450: 736–740.

de Hoon MJ, Imoto S, Nolan J, Miyano S. 2004. Open source clustering
software. Bioinformatics 20: 1453–1454.

Defrance M, Touzet H. 2006. Predicting transcription factor binding sites
using local over-representation and comparative genomics. BMC
Bioinformatics 7: 396. doi: 10.1186/1471-2105-7-396.

Delerive P, Wu Y, Burris TP, Chin WW, Suen CS. 2002. PGC-1 functions as
a transcriptional coactivator for the retinoid X receptors. J Biol Chem
277: 3913–3917.

Du P, Kibbe WA, Lin SM. 2008. lumi: A pipeline for processing Illumina
microarray. Bioinformatics 24: 1547–1548.

The ENCODE Project Consortium. 2007. Identification and analysis of
functional elements in 1% of the human genome by the ENCODE pilot
project. Nature 447: 799–816.

Falcon S, Gentleman R. 2007. Using GOstats to test gene lists for GO term
association. Bioinformatics 23: 257–258.

Farnham PJ. 2009. Insights from genomic profiling of transcription factors.
Nat Rev Genet 10: 605–616.

Finck BN, Kelly DP. 2006. PGC-1 coactivators: Inducible regulators of energy
metabolism in health and disease. J Clin Invest 116: 615–622.

The Gene Ontology Consortium. 2000. Gene ontology: Tool for the
unification of biology. Nat Genet 25: 25–29.

Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying
similarity between motifs. Genome Biol 8: R24. doi: 10.1186/gb-2007-8-
2-r24.

Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, Meyer UA, Spiegelman
BM. 2005. Nutritional regulation of hepatic heme biosynthesis and
porphyria through PGC-1a. Cell 122: 505–515.

Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz
G, Yoon C, Puigserver P, et al. 2001. CREB regulates hepatic
gluconeogenesis through the coactivator PGC-1. Nature 413: 179–183.

Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA. 1989. Sequence and
regulation of a gene encoding a human 89-kilodalton heat shock
protein. Mol Cell Biol 9: 2615–2626.

Hooper PL. 2009. Inflammation, heat shock proteins, and type 2 diabetes.
Cell Stress Chaperones 14: 113–115.

Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. 2006. The
UCSC known genes. Bioinformatics 22: 1036–1046.

Huss JM, Kopp RP, Kelly DP. 2002. Peroxisome proliferator-activated
receptor coactivator-1a (PGC-1a) coactivates the cardiac-enriched
nuclear receptors estrogen-related receptor-a and -g. Identification of
novel leucine-rich interaction motif within PGC-1a. J Biol Chem 277:
40265–40274.

Javitt N. 1990. Hep G2 cells as a resource for metabolic studies: Lipoprotein,
cholesterol, and bile acids. FASEB J 4: 161–168.

Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA. 2007.
C/EBPb reprograms white 3T3-L1 preadipocytes to a Brown adipocyte
pattern of gene expression. J Biol Chem 282: 24660–24669.

Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, Diekhans M,
Giardine B, Harte RA, Hinrichs AS, Hsu F, et al. 2008. The UCSC Genome
Browser Database: 2008 update. Nucleic Acids Res 36: D773–D779.

Kavanagh K, Zhang L, Wagner JD. 2009. Tissue-specific regulation and
expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress
Chaperones 14: 291–299.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler
D. 2002. The human genome browser at UCSC. Genome Res 12: 996–
1006.

Knutti D, Kaul A, Kralli A. 2000. A tissue-specific coactivator of steroid
receptors, identified in a functional genetic screen. Mol Cell Biol 20:
2411–2422.

Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, Koranyi L. 2002.
Decreased expression of heat shock protein 72 in skeletal muscle of
patients with type 2 diabetes correlates with insulin resistance. Diabetes
51: 1102–1109.

Kyrmizi I, Hatzis P, Katrakili N, Tronche F, Gonzalez FJ, Talianidis I. 2006.
Plasticity and expanding complexity of the hepatic transcription factor
network during liver development. Genes Dev 20: 2293–2305.

Laganiere J, Tremblay GB, Dufour CR, Giroux S, Rousseau F, Giguere V. 2004.
A polymorphic autoregulatory hormone response element in the
human estrogen-related receptor a (ERRa) promoter dictates
peroxisome proliferator-activated receptor g coactivator-1a control of
ERRa expression. J Biol Chem 279: 18504–18510.

Lekstrom-Himes J, Xanthopoulos KG. 1998. Biological role of the CCAAT/
enhancer-binding protein family of transcription factors. J Biol Chem
273: 28545–28548.

Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK,
Jager S, Vianna CR, Reznick RM, et al. 2004. Defects in adaptive energy
metabolism with CNS-linked hyperactivity in PGC-1a null mice. Cell
119: 121–135.

Lin J, Handschin C, Spiegelman BM. 2005. Metabolic control through the
PGC-1 family of transcription coactivators. Cell Metab 1: 361–370.

Mathur SK, Sistonen L, Brown IR, Murphy SP, Sarge KD, Morimoto RI. 1994.
Deficient induction of human hsp70 heat shock gene transcription in
Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc
Natl Acad Sci 91: 8695–8699.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter
I, Chekmenev D, Krull M, Hornischer K, et al. 2006. TRANSFAC and its
module TRANSCompel: Transcriptional gene regulation in eukaryotes.
Nucleic Acids Res 34: D108–D110.

Charos et al.

1678 Genome Research
www.genome.org



Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A, Hart
K, Schinner S, Sethi JK, Yeo G, et al. 2003. Characterization of the
human, mouse and rat PGC1 b (peroxisome-proliferator-activated
receptor-g co-activator 1 b) gene in vitro and in vivo. Biochem J 373:
155–165.

Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W,
Altshuler D, Puigserver P, Patterson N, et al. 2004. Erra and Gabpa/
b specify PGC-1a-dependent oxidative phosphorylation gene
expression that is altered in diabetic muscle. Proc Natl Acad Sci 101:
6570–6575.

Muller YL, Bogardus C, Pedersen O, Baier L. 2003. A Gly482Ser missense
mutation in the peroxisome proliferator-activated receptor g

coactivator-1 is associated with altered lipid oxidation and early insulin
secretion in Pima Indians. Diabetes 52: 895–898.

Oberkofler H, Schraml E, Krempler F, Patsch W. 2003. Potentiation of liver X
receptor transcriptional activity by peroxisome-proliferator-activated
receptor g co-activator 1 a. Biochem J 371: 89–96.

Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL,
Volkert TL, Schreiber J, Rolfe PA, Gifford DK, et al. 2004. Control of
pancreas and liver gene expression by HNF transcription factors. Science
303: 1378–1381.

Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW,
Gifford DK, Fraenkel E, Bell GI, Young RA. 2006. Core transcriptional
regulatory circuitry in human hepatocytes. Mol Syst Biol 2: 2006.0017.
doi: 10.1038/msb4100059.

Osada S, Yamamoto H, Nishihara T, Imagawa M. 1996. DNA binding
specificity of the CCAAT/enhancer-binding protein transcription factor
family. J Biol Chem 271: 3891–3896.

Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y,
Altomonte J, Dong H, Accili D, et al. 2003. Insulin-regulated hepatic
gluconeogenesis through FOXO1-PGC-1a interaction. Nature 423: 550–
555.

Reddy PH, Mao P, Manczak M. 2009. Mitochondrial structural and
functional dynamics in Huntington’s disease. Brain Res Brain Res Rev
61: 33–48.

Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M. 2008. Genome-
wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel
functional roles and combinatorial regulation of distinct classes of
genes. PLoS Genet 4: e1000133. doi: 10.1371/journal.pgen.1000133.

Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM.
2003. Regulation of hepatic fasting response by PPARg coactivator-1a

(PGC-1): Requirement for hepatocyte nuclear factor 4a in
gluconeogenesis. Proc Natl Acad Sci 100: 4012–4017.

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005.
Nutrient control of glucose homeostasis through a complex of PGC-1a

and SIRT1. Nature 434: 113–118.
Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. 2008. Metabolic adaptations

through the PGC-1 a and SIRT1 pathways. FEBS Lett 582: 46–53.
Roesler WJ. 2001. The role of C/EBP in nutrient and hormonal regulation of

gene expression. Annu Rev Nutr 21: 141–165.
Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R,

Carriero N, Snyder M, Gerstein MB. 2009. PeakSeq enables systematic
scoring of ChIP-seq experiments relative to controls. Nat Biotechnol
27: 66–75.

Saldanha AJ. 2004. Java Treeview—extensible visualization of microarray
data. Bioinformatics 20: 3246–3248.

Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A,
Kutter C, Watt S, Martinez-Jimenez CP, Mackay S, et al. 2010. Five-

vertebrate ChIP-seq reveals the evolutionary dynamics of transcription
factor binding. Science 328: 1036–1040.

Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A. 2003. The
transcriptional coactivator PGC-1 regulates the expression and activity
of the orphan nuclear receptor estrogen-related receptor a (ERRa). J Biol
Chem 278: 9013–9018.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LW, Richards S, et al. 2005. Evolutionarily
conserved elements in vertebrate, insect, worm, and yeast genomes.
Genome Res 15: 1034–1050.

Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. 2009. PGC-1a and ERRa

target gene downregulation is a signature of the failing human heart.
J Mol Cell Cardiol 46: 201–212.

Soyal S, Krempler F, Oberkofler H, Patsch W. 2006. PGC-1a: A potent
transcriptional cofactor involved in the pathogenesis of type 2 diabetes.
Diabetologia 49: 1477–1488.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. 2005. Gene set
enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci 102: 15545–15550.

Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L. 2009. PGC-1a

as modifier of onset age in Huntington disease. Mol Neurodegener 4: 10.
doi: 10.1186/1750-1326-4-10.

Vega RB, Huss JM, Kelly DP. 2000. The coactivator PGC-1 cooperates with
peroxisome proliferator-activated receptor a in transcriptional control
of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.
Mol Cell Biol 20: 1868–1876.

Wallerman O, Motallebipour M, Enroth S, Patra K, Bysani MS, Komorowski
J, Wadelius C. 2009. Molecular interactions between HNF4a, FOXA2 and
GABP identified at regulatory DNA elements through ChIP-sequencing.
Nucleic Acids Res 37: 7498–7508.

Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM. 2003.
Peroxisome-proliferator-activated receptor d activates fat metabolism to
prevent obesity. Cell 113: 159–170.

Wang L, Liu J, Saha P, Huang J, Chan L, Spiegelman B, Moore DD. 2005. The
orphan nuclear receptor SHP regulates PGC-1a expression and energy
production in brown adipocytes. Cell Metab 2: 227–238.

Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, Li S, Chan
AW, Li XJ. 2008. Accumulation of N-terminal mutant huntingtin in
mouse and monkey models implicated as a pathogenic mechanism in
Huntington’s disease. Hum Mol Genet 17: 2738–2751.

Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI. 2009.
Stress-inducible regulation of heat shock factor 1 by the deacetylase
SIRT1. Science 323: 1063–1066.

Weydt P, Soyal SM, Gellera C, Didonato S, Weidinger C, Oberkofler H,
Landwehrmeyer GB, Patsch W. 2009. The gene coding for PGC-1a

modifies age at onset in Huntington’s Disease. Mol Neurodegener 4: 3.
doi: 10.1186/1750-1326-4-3.

Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G,
Stafford J, Kahn CR, Granner DK, et al. 2001. Control of hepatic
gluconeogenesis through the transcriptional coactivator PGC-1.
Nature 413: 131–138.

Zhu X, Gerstein M, Snyder M. 2007. Getting connected: Analysis and
principles of biological networks. Genes Dev 21: 1010–1024.

Received June 16, 2011; accepted in revised form March 27, 2012.

The PPARGC1A TF network

Genome Research 1679
www.genome.org


