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Abstract

Clinical isolates of Treponema pallidum subspecies pallidum (T. pallidum) would facilitate

study of prevalent strains. We describe the first successful rabbit propagation of T. pallidum

from cryopreserved ulcer specimens. Fresh ulcer exudates were collected and cryopre-

served with consent from syphilis-diagnosed patients (N = 8). Each of eight age-matched

adult male rabbits were later inoculated with a thawed specimen, with two rabbits receiving

1.3 ml intratesticularly (IT), and six receiving 0.6 ml intravenously (IV) and IT. Monitoring of

serology, blood PCR and orchitis showed that T. pallidum grew in 2/8 rabbits that were inoc-

ulated IV and IT with either a penile primary lesion specimen (CDC-SF003) or a perianal

secondary lesion specimen (CDC-SF007). Rabbit CDC-SF003 was seroreactive by T. palli-

dum Particle Agglutination (TP-PA) and Rapid Plasma Reagin (RPR) testing, PCR+, and

showed orchitis by week 6. Euthanasia was performed in week 7, with treponemal growth in

the testes confirmed and quantified by qPCR and darkfield microscopy (DF). Serial passage

of the extract in a second age-matched rabbit also yielded treponemes. Similarly, rabbit

CDC-SF007 showed negligible orchitis, but was seroreactive and PCR+ by week 4 and

euthanized in week 6 to yield T. pallidum, which was further propagated by second passage.

Using the 4-component molecular typing system for syphilis, 3 propagated strains (CDC-

SF003, CDC-SF007, CDC-SF008) were typed as 14d9f, 14d9g, and 14d10c, respectively.

All 3 isolates including strain CDC-SF011, which was not successfully propagated, had the

A2058G mutation associated with azithromycin resistance. Our results show that immediate

cryopreservation of syphilitic ulcer exudate can maintain T. pallidum viability for rabbit

propagation.
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Introduction

For the past several decades, the rabbit has been the primary animal model for the study of

syphilis pathogenesis and its causative agent, Treponema pallidum subspecies pallidum (here-

after referred to as T. pallidum). Research on the utility of various culture media and methods

for in vitro propagation have yielded inconsistent results over the years. Sustained passage has

been limited or unattainable, with low yields, contamination, and/or loss of viability, virulence

and pathogenicity being reported [1–7]. However, a recent study suggests that in vitro propa-

gation of T. pallidum is possible using a microaerobic, nutrient-defined rabbit cell culture sys-

tem, with sustained propagation of viable treponemes for>6 months [8]. Further refinement

of the culture system is ongoing to determine its applicability for propagation of T. pallidum
strains directly from clinical specimens. In the interim, the in vivo rabbit model remains the

standard method for propagating viable treponemes and/or testing treponemal infectivity via

intra-testicular (IT), intravenous (IV), intradermal or intracisternal inoculation routes [9].

Orchitis, serology and/or polymerase chain reaction (PCR) of blood specimens are performed

to provide qualitative and quantitative measures of infection. Similar to humans, treponemal

and non-treponemal antibody responses develop in rabbits following T. pallidum infection

and can be detected using many of the same serology assays used for patient screening that

include Rapid Plasma Reagin (RPR) and Treponema pallidum particle agglutination (TP-PA)

[10–12].

The study of T. pallidum is particularly relevant today, given the rise in syphilis rates among

both men and women and most age groups across the United States, as well as the emergence

of ocular syphilis clusters in recent years [13–15]. Indeed, the syphilis rabbit model has pro-

vided much insight on ocular and neuroinvasive T. pallidum strains and their clinical manifes-

tations, and has also facilitated study of syphilis vaccines and the efficacy and/or resistance

profiles of antibiotics used for syphilis treatment [16–26]. Research, diagnostics and surveil-

lance studies would benefit from a sustained supply of T. pallidum stocks, as sufficient biologi-

cal material is necessary for assay development, whether as a source of antigen(s) for serology

tests, or gene targets for molecular assays. Indeed, molecular amplification techniques have

facilitated the study of specific T. pallidum genes linked to antibiotic resistance, virulence, and

pathogenicity [5, 21, 27–34]. Species subtyping in particular differentiates among strains of T.

pallidum which is important for syphilis epidemiological investigations, where information

about related or new emerging strains may prove useful for surveillance, diagnosis, prevention

and treatment [5, 35–37]. The availability of the complete sequence of the T. pallidum genome

and the advent of automated whole genome sequencing (WGS) [5, 28, 37–46] have created

opportunities to develop new and/or improved molecular genetic methods for syphilis diagno-

sis and genotyping, and requires clinical isolates of T. pallidum to further develop and refine

these techniques. DNA Enrichment methods and phylogenomic analyses of T. pallidum from

either direct patient specimens or strains propagated in rabbits have in recent years shed light

on the evolutionary origins, antibiotic resistant profiles, and immune evasion mechanisms of

circulating strains [31, 43, 47–49]. As some of these studies have shown, PCR analysis can be

performed directly on DNA extracted from clinical specimens, but sample weights and/or vol-

umes are often limited, hindering expanded testing, specimen archiving, and study of disease

in animal models. Fresh specimens that include blood, cerebrospinal fluid (CSF), and lesion

exudate from patients diagnosed with syphilis have been successfully passaged in rabbits to

yield viable stocks of T. pallidum [9, 27, 31, 50] but the propagation of T. pallidum in the rabbit

model is not without its challenges, as it is labor and time intensive with varying levels of suc-

cess depending on strain, specimen quality, and conditions such as ambient temperature.

Another major limiting factor is the need for proximity of animal research laboratories to
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clinics and hospitals for fresh patient specimen collection and inoculation into rabbits. A

method to grow T. pallidum from frozen specimens would be ideal and is the objective of this

study, as it would considerably widen the scope of syphilis research by eliminating the neces-

sity for fresh specimens and proximity of animal laboratories to clinical specimen collection

sites. We describe here the first successful rabbit propagation of T. pallidum from patients’

cryopreserved syphilitic ulcer specimens as part of a CDC advanced molecular detection

(AMD) funded initiative.

Materials and methods

Patient cohort and specimen collection

Specimens utilized in this study were collected from the San Francisco Municipal STD Clinic

in San Francisco, CA. At the clinic, which performs darkfield (DF) microscopy, 16 DF+ speci-

mens were collected from January to August 2017. Each specimen was from a different patient.

Project Determination Approval at CDC (PD# 6857) and local IRB approvals at San Francisco

(IRB# 16–20056) were obtained prior to study initiation. Eligible subject populations included

adults with a case of primary or secondary syphilis, presenting with exudative syphilitic lesions

amenable to specimen collection. Participation was voluntary, required informed patient con-

sent, and involved interpreters if requested by the patient. All patients received routine evalua-

tion and care for syphilis regardless of study participation. During the physical examination,

lesion exudate was collected from genital or anal ulcers, or condyloma lata that were DF+. For

lesion exudate collection, the ulcer or lesion was first cleaned with a gauze pad moistened with

sterile saline. The chancre was gently squeezed to release serous exudate while taking precau-

tions to avoid blood contamination. A sterile Dacron swab was used to collect ulcer exudate by

gently rolling the swab along the base of the ulcer and then immediately placing it into a cryo-

vial containing storage medium warmed to room temperature after storage at -20˚C. The stor-

age medium consisted of 1 ml 50% v/v sterile glycerol and normal rabbit serum (NRS). The

swab was then gently agitated in the cryovial and discarded. Cryovials containing exudate

specimens were snap frozen in liquid nitrogen. All specimens were stored at -80˚C until ship-

ment on dry ice to the CDC. Specimens were stored in liquid nitrogen vapor phase at the CDC

until use in rabbit model experiments.

Rabbit experiments and specimen collection

A total of 13 adult age-matched (8–9 months) male New Zealand White rabbits (Oryctolagus
cuniculus) with an average body mass of 3 kg were utilized in this study (Fig 1). All rabbits

were prescreened to confirm negative treponemal and nontreponemal antibodies status. Rab-

bits were housed under approved biosafety level 2 containment conditions at the CDC. Their

diet, care, and maintenance conformed to the Guide for the Care and Use of Laboratory Ani-
mals guidelines [51]. All procedures outlined in this study were approved by the CDC Institu-

tional Animal Care and Use Committee (IACUC Protocol #2979). Prior to procedures,

animals were sedated with acepromazine (0.5–2 mg/kg body weight) intramuscularly. Eight

patient specimens were selected for propagation (Fig 1, Table 1), with each rabbit being inocu-

lated with a single specimen. Each inoculum was prepared by gently mixing 1 ml of frozen

exudate specimen with 0.5 ml of pre-warmed (37˚C) NRS. For two of the specimens, approxi-

mately 1.3 ml was injected in the left testicle of a rabbit, while for the remaining specimens, an

equal volume of inoculum was injected intravenously (IV, 0.6ml) and intratesticularly (IT,

0.6ml, left testicle) as shown in Fig 1. The backs of the rabbits that were injected IV and IT

were shaved to facilitate monitoring of disseminated skin lesions, if any, with clipping per-

formed as needed to clear fur growth during the monitoring period [9]. Residual volume of

Treponema pallidum clinical isolate propagation in rabbits
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each inoculum was retained for further analysis by quantitative PCR (qPCR) and DF micros-

copy at CDC. Blood was collected from each animal at baseline, once weekly thereafter, and at

euthanasia for serology and PCR analysis using serum separation tubes (BD Biosciences, San

Jose CA) and PAXgene blood DNA tubes (Qiagen, Germantown MD), respectively. Orchitis

was monitored up to twice weekly. The animals were also monitored for the development of

Fig 1. Schematic summarizing propagation of T. pallidum from patients’ lesion exudate specimens. Each of eight rabbits was inoculated with one of the specimens

listed, and the injection was either administered IT in the left testis, or both IV and IT (left testis) at the volumes indicated. Each rabbit was then monitored once weekly

for up to three months until results indicated a positive infection status by the parameters shown, at which time euthanasia was performed. If propagation occurred, up

to two serial passage(s) were performed using fresh or frozen extract from the previous passage rabbit. Rabbits that remained negative by all three measures of infection

were euthanized at the three-month mark with no further passage.

https://doi.org/10.1371/journal.pone.0227769.g001

Table 1. Clinical and laboratory data for patient specimens used for in vivo rabbit propagation.

Specimen ID1 San Francisco Municipal STD Clinic CDC Laboratory

Syphilis stage Site of lesion, ulcer/chancre/lesion DF Antibody titer2 (assay) qPCR (genomic copies/ml)

CDC-SF011 Primary Penile, sore Positive 1:4 (RPR) 7.00 x 104

CDC-SF002 Primary Penile (glans), lesion Positive Weakly reactive (VDRL) 6.44 x 102

CDC-SF0033 Primary Penile (coronal sulcus), ulcer Positive 1:4 (VDRL) 1.14 x 104

CDC-SF004 Secondary Scrotum, lesion Positive 1:16 (VDRL) 7.58 x 104

CDC-SF005 Primary Penile (coronal sulcus), multiple chancres Positive 1:4 (VDRL) 1.27 x 107

CDC-SF006 Primary Penile, multiple chancres Positive 1:2 (VDRL) 4.59 x 103

CDC-SF0073 Secondary Perianal, ulcer Positive 1:8 (VDRL) 4.43 x 104

CDC-SF008 Primary Penile (coronal sulcus), chancre Positive 1:1 (VDRL) 4.50 x 104

1 Each specimen is from a different patient.
2 Clinic reported non-treponemal antibody titers.
3 Clinical specimens that consistently propagated in rabbits.

https://doi.org/10.1371/journal.pone.0227769.t001
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any non-syphilitic disease manifestation due to the potential presence of other infectious

agents in the lesion exudates; none were observed over the course of the study. Endpoints for

euthanasia were seroreactivity, development of orchitis, and/or positive blood PCR results.

Rabbits were euthanized when these criteria were met, or at the end of 3 months if results

remained negative; whichever occurred first [9]. Euthanasia (150 mg/kg beuthanasia IV) was

performed according to AVMA Guidelines on Euthanasia [52]. T. pallidum was obtained from

rabbit testes tissues and processed as previously described [9]. Testes tissues were immediately

processed for PCR analysis and to extract treponemes for cryopreservation and further passage

in rabbits. For rabbits that yielded viable T. pallidum, fresh or frozen extract (1.5 ml) from

the first passage rabbit was serially propagated (IT, left testis) to generate more treponemes

(Fig 1).

Serology

Fresh serum specimens from the rabbits were tested using the ASI RPR card test (Arlington

Scientific, Springville, UT) and Serodia TP-PA (Fujirebio US Inc., Malvern, PA) to detect non-

treponemal and treponemal antibodies, respectively. Assays were performed according to

manufacturer protocols. Residual sera were stored at -80˚C.

qPCR, molecular typing and azithromycin resistance assays

DNA was extracted from remnant swab specimens from the patients’ lesion exudate using the

Qiagen DNA Mini Kit as described previously [53, 54]. qPCR was performed on a Rotorgene

6000 instrument in a 50 μL final volume consisting of 20 μL extracted DNA, 25 μL of PerfeCTa

qPCR Supermix (Quanta Biosciences, Beverly, MA), and 0.2 μL each of forward (TP-polA-FP

5’–CAGGATCCGGCATATGTCC– 3’) and reverse (TP-polA-RP 5’–AAGTGTGAGCGTCTC

ATCATTCC– 3’) primers at a final concentration of 300 nM and 0.2 μL probe (TP-polA-

probe 5’–CTGTCATGCACCAGCTTCGACGTCTT– 3’) at a final concentration of 200 nM.

Primers and probe were designed to be specific to the DNA polymerase I gene (polA) in T. pal-
lidum. Positive (T. pallidum Nichols DNA) and no template controls were included in each

run. A 10-fold serial dilution of DF-quantified T. pallidum Nichols organisms was used to con-

struct a standard curve for quantitation of treponemes in the original patient specimens. Each

rabbit isolate of T. pallidum obtained from testis extracts and tissues was tested by qPCR in

triplicate. The results are stated as the mean ± standard error (SE). Molecular typing of T. palli-
dum isolates and azithromycin resistance marker detection were performed on the rabbit

propagated isolates, as previously described, with the exception of CDC-SF008 which had a

low number of spirochetes and typing was performed on the residual swab specimen[55, 56].

Results

Propagation of T. pallidum from cryopreserved penile ulcer specimens

The eight specimens that were used in this study were sourced from the San Francisco Munici-

pal STD Clinic in San Francisco, CA. Clinical and CDC laboratory-derived data associated

with these specimens are indicated in Table 1. Upon thawing of the cryopreserved specimens

for rabbit studies at the CDC, additional qPCR and DF microscopy analyses were performed

(Table 1). Examination of residual specimens by DF microscopy yielded inconclusive results

due to the presence of swab material which obscured visualization. Of the eight rabbits that

were initially inoculated, the two that received 1.3 ml CDC-SF011 IT or 1.3 ml CDC-SF002 IT

did not develop orchitis or seroreactivity for the duration of the three-month experimental

period and at necropsy (Table 2). Whole blood specimens also tested negative by PCR for both

Treponema pallidum clinical isolate propagation in rabbits
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rabbits. Testes specimens at necropsy showed positive qPCR results for the rabbit inoculated

with CDC-SF011, indicating an observed T. pallidum genomic equivalent of 64.29 ± 9.22 cop-

ies/ml and 0.55 ± 0.13 copies/mg in the left testis extract and tissue, respectively (Table 2). T.

pallidum genomic equivalents in the right testis indicated a copy number of 192.86 ± 29.74 per

ml and 1.88 ± 0.29 per mg in the extract and tissue. However, there was no evidence of T. palli-
dum in CDC-SF002 by PCR. Left testis extract from the CDC-SF011 inoculated rabbit, was

serially blind passaged (IT) in two age-matched rabbits. However, neither rabbit yielded trepo-

nemes and although weakly positive by serology (+/-1:80 TP-PA) at the terminal end of the

second passage, the rabbit remained negative for orchitis and specimens were negative by DF

and PCR for both rabbits during the three-month period and at necropsy.

Of the remaining six specimens that were inoculated IV and IT (left testis), two specimens

CDC-SF003 and CDC-SF007 successfully grew in vivo, while results for a third specimen,

CDC-SF008, indicated infection but poor replication. None of the rabbits that were inoculated

IV and IT developed disseminated skin lesions during the three-month monitoring period.

The specimen CDC-SF008 resulted in seroreactivity in a rabbit 10 weeks after inoculation

(TP-PA 1:5120; RPR 1:16) and was euthanized in week 12 (TP-PA 1:5120; RPR 1:64). How-

ever, whole blood yielded negative PCR results, and the animal showed negligible signs of

orchitis during the entire 12-week experimental period. Processing of fresh testes tissues

immediately after euthanasia and analysis by qPCR showed a T. pallidum genomic equivalent

of 1.06 x 104 ± 583 copies/ml and 5.71 x 103 ± 1.27 x 103 copies/mg in the left testis extract and

tissue (Table 2), respectively. T. pallidum genomic equivalents in the right testis indicated a

copy number of 288 ± 58.06 per ml and 3 ± 0.52 per mg in the extract and tissue, respectively.

No treponemes were evident by DF microscopy in extracts from both testes. Serial passage in a

second rabbit yielded similar results, with seronegative and PCR negative outcomes for blood

during the monitoring period, and DF negative extract from the left and right testes obtained

Table 2. Summary of end point measurements and T. pallidum yield where applicable for in vivo rabbit propagation of patient specimens.

Specimen ID Inoculationroute1 Passage number2 Measurement T. pallidum yield3 (qPCR) DF T. pallidum strain type4

Orchitis Serology PCR (blood) PCR (testes)

CDC-SF011 IT 1 - - - + 64.29/ml - ND6

IT 2 - +5 - - - -

CDC-SF002 IT 1 - - - - - - N/A

CDC-SF003 IV and IT 1 + + + + 4.84 x 106/ml + 14d9f

IT 2 + + + + 1.62 x 106/ml +

CDC-SF004 IV and IT 1 - - - - - - N/A

CDC-SF005 IV and IT 1 - - - - - - N/A

CDC-SF006 IV and IT 1 - - - - - - N/A

CDC-SF007 IV and IT 1 - + + + 6.91 x 105/ml + 14d9g

IT 2 - + + + 3.11 x 104/ml +

CDC-SF008 IV and IT 1 - + - + 1.06 x 104/ml - 14d10c7

IT 2 - - - + 1.1 x 103/ml -

1 IT–intratesticular, left testis; IV–intravenous.
2 Indicates passage number for serial passages performed.
3 T. pallidum yield expressed as genomic equivalents in left testis extract.
4 Strain typing was performed on testes samples that yielded PCR+ results.
5 Weakly positive TP-PA titer +/- 1:80
6 Isolate could not be typed due to low number of spirochetes after rabbit propagation
7 Strain type observed with residual lesion swab specimen in NRS

https://doi.org/10.1371/journal.pone.0227769.t002
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at euthanasia in week 4. However, the left testis tissue and extract yielded positive results by

qPCR with a T. pallidum genomic equivalent of 1.85 x 102 ± 56.25 copies/mg and 1.1 x 103 ±
202 copies/ml, respectively (Table 2), with none detected in the right testis.

The rabbit that was inoculated IV and IT with an equal volume (0.6 ml) of CDC-SF003 per

site began to show signs of orchitis in the left testis in week 6. Serum testing indicated a weak,

minimum reactive status by RPR and a treponemal antibody titer of 1:160 by TP-PA (Fig 2A).

Orchitis progressed further in the following week (week 7), with antibody titers increasing to

1:16 (RPR) and 1:2560 (TP-PA). Euthanasia and necropsy were performed three days later

during week 7, and the left and right testes were processed to obtain extract for further analy-

sis. The presence and viability of treponemes in the left testis were confirmed by examination

of fresh testis extract by DF microscopy, while extract from the right testis was confirmed to be

DF negative. Analysis by qPCR of fresh extract yielded a genomic equivalent of 4.84 x 106 ±
1.41 x 105 copies/ml and 2.17 x 105 ± 2.49 x 104 copies/mg in the left testis extract and tissue

(Table 2), respectively, while T. pallidum was also detected in the right testis extract (306 ± 32

copies/ml) and in the right testis tissue (3 ± 0.44 copies/mg). Antibody titers (Fig 2A) on the

Fig 2. Serology results for successfully propagated specimens. Treponemal (TP-PA, black line, left axis) and nontreponemal (RPR, grey line, right axis) antibody titers

in rabbits (N = 1 per passage) that were (A) inoculated IV and IT (0.6 ml inoculum per site) with the patient specimen CDC-SF003 and (B) inoculated IV and IT (0.6 ml

inoculum per site) with the patient specimen CDC-SF007. Second passage was then performed for (C) CDC-SF003 inoculated IT with fresh testicular extract (1.5 ml)

from the first passage rabbit and (D) CDC-SF007 inoculated IT with previously frozen and thawed testicular extract (1.5 ml) from the first passage rabbit. Whole blood

was also analyzed weekly by PCR, with results shown in the grey bars for each time point.

https://doi.org/10.1371/journal.pone.0227769.g002
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day of euthanasia were 1:32 (RPR) and 1:2560 (TP-PA). Whole blood analysis showed that the

rabbit was positive for T. pallidum by PCR from week 5 and remained as such through week 7

(Fig 2A).

Similarly, for the other isolate that was successfully propagated, the rabbit that was inocu-

lated with an equal volume (0.6 ml) of CDC-SF007 IT and IV became seroreactive in week 4

post-inoculation, with a TP-PA titer of 1:80 that increased to 1:1280 on the day of euthanasia

in week 6, which is when an RPR titer of 1:4 was also observed (Fig 2B). Blood collection in

week 5 was not possible due to scar tissue at the ear vein sites, and blood draw resumed the fol-

lowing week. Whole blood was shown to be positive by PCR in week 6, and the animal showed

negligible signs of orchitis during the entire six-week experimental period. Processing of fresh

testes tissues immediately after euthanasia confirmed the presence of viable treponemes in the

left testis via DF microscopy, with none visible in the extract from the right testis. Analysis by

qPCR showed a T. pallidum genomic equivalent of 6.91 x 105 ± 6.92 x104 copies/ml and 2.40 x

105 ± 2.51 x 104 copies/mg in the left testis extract and tissue, respectively (Table 2). No T. pal-
lidum was detected in the right testes extracts and tissues by qPCR.

Second passage of CDC-SF003 and CDC-SF007

To further confirm that the viability of the propagated treponemes is sustainable, live T. palli-
dum obtained from the left testis of the rabbit inoculated with the CDC-SF003 specimen was

passaged through a second naïve, age-matched rabbit by injecting its left testis with 1.5 ml of

fresh testis extract within 1 hour of the tissue processing that was performed for the first pas-

sage rabbit. The remaining fresh extract from the first passage rabbit was cryopreserved. Seror-

eactivity in the second passage rabbit was evident in week 1, with TP-PA titers being 1:80

while RPR was negative (Fig 2C). Orchitis was apparent in week 2 post infection, with whole

blood also beginning to test positive by PCR at this time. Treponemal antibody titers (TP-PA)

continued to increase to 1:320 and 1:2560 over the next two weeks, though nontreponemal

titers (RPR) were minimal with a weakly reactive 1:2 titer observed in week 3 when the animal

was euthanized. Testes tissue harvest and processing from the second passage rabbit were per-

formed as described above, yielding extract from the left testis which confirmed the presence

of live treponemes by DF microscopy. Analysis by qPCR showed a T. pallidum genomic equiv-

alent of 1.62 x 106 ± 2.30 x 104 copies/ml and 2.32 x 104 ± 695 copies/mg in the left testis extract

and tissue, respectively (Table 2). As observed for the first passage rabbit, T. pallidum was also

detected in the right testis extract (589 ± 54 copies/ml) and its tissue (36 ± 6 copies/mg) at the

time of necropsy. Left and right testes extracts and tissues were cryopreserved as detailed

above.

The second passage of CDC-SF007 also successfully yielded treponemes. The left testis

extract containing live treponemes from the first passage rabbit had been cryopreserved, later

thawed and inoculated into the left testis of a second rabbit. Seroreactivity was evident in week

2 (1:320 TP-PA), with treponemal titers increasing to 1:640 in week 3 when the rabbit was

euthanized, though nontreponemal RPR titers remained negative (Fig 2D) and there was no

indication of orchitis. Whole blood was PCR-negative while left testis tissue and extract were

positive, yielding genomic equivalents of 1.23 x 104 ± 2.4 x 103 copies/mg and 3.11 x 104 ± 2.57

x 103 copies/ml, respectively (Table 2). Extract from the left testis was DF positive. The right

testis was negative by both PCR and DF.

Molecular typing and azithromycin resistance assays

Strains CDC-SF003, CDC-SF007, and CDC-SF008 were characterized as type 14d9f, 14d9g,

and 14d10c using the 4-component molecular typing system (Table 2). All three isolates and
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CDC-SF011 had the A2058G mutation associated with azithromycin resistance. Due to the

reduced presence of T. pallidum in the rabbit testis extract of CDC-SF011, strain typing could

not be confirmed.

Discussion

Described in this study is the successful propagation of T. pallidum from two patients’ cryopre-

served syphilitic ulcer exudate using the rabbit model, with two additional patient specimens

showing initial albeit unsustainable growth in vivo. Strain isolation in recent years has been

particularly challenging, as evidenced by the limited number of published studies to date. To

the best of our knowledge, while T. pallidum has been grown in rabbits using fresh blood,

fresh CSF and fresh primary chancre exudate [9, 27, 31, 50] from patients diagnosed with

syphilis, there have been no prior reports of adapting this method for cryopreserved lesion

exudate. In addition to orchitis monitoring [9, 21, 26, 30, 57–62], FDA-cleared syphilis serol-

ogy tests and a CDC-developed investigational PCR assay [63] were also performed in parallel

to track infection, since these clinical specimens contain uncharacterized T. pallidum strains

with unknown or unpredictable disease manifestation(s) in rabbits. Indeed, the rabbit that was

injected with CDC-SF007, which successfully grew in vivo, did not show any discernible orchi-

tis even when seroreactive and PCR+, while the rabbit with CDC-SF003 developed orchitis

beginning in week 6 when an increase in antibody titers was first noted. Consistent with previ-

ous studies [9, 26, 61, 64, 65], these observations indicate that including additional detection

methods for treponemal propagation in rabbits can avoid overlooking an active infection that

could inadvertently be cleared by the immune response before treponemal harvest can be per-

formed. Of note, when comparing serology and PCR, both methods generally showed a reac-

tive or positive result at comparable time points post infection for a given rabbit, which aligns

with a previous study [61]. Furthermore, T. pallidum was detected by PCR in whole blood, tes-

tis tissues and extracts, suggesting that a broad range of specimen types can be successfully

evaluated using this molecular method.

Both rabbits that were inoculated with CDC-SF003 and CDC-SF007 developed treponemal

antibodies first as shown by TP-PA when compared to the nontreponemal antibodies mea-

sured by RPR. This observation is in agreement with previous reports for both the rabbit

model and patients diagnosed with syphilis, where treponemal antibodies have been shown to

develop prior to nontreponemal antibodies [10–12, 66–68], albeit treponemal antibody detec-

tion in patients does not always distinguish among recent, past, and previously treated infec-

tion. The relatively rapid development of orchitis and/or seroreactivity in the second passage

rabbits for CDC-SF003 and CDC-SF007 compared to the first is consistent with serial passage

described in previous studies and is attributed in part to a more concentrated starting inocu-

lum, and genetic diversification and adaptation of T. pallidum in the rabbit model [9, 27, 28].

The three strains CDC-SF003, CDC-SF007 and CDC-SF008 had different strain types

(14d9f, 14d9g, and 14d10c) in this study suggesting that successful propagation of isolates

from previously frozen specimens is unlikely to be associated with strain type; however, the

sample size was small. The 14d9f and 14d9g types were reported previously in San Francisco

and Vancouver, while 14d9f and 14d10c were found in Cape Town [56].

Six out of the eight cryopreserved specimens in this study failed to grow in vivo, with two

specimens in particular (CDC-SF011, CDC-SF008) demonstrating discrepant results by serol-

ogy, PCR and DF microscopy. The reason(s) for these observations is unclear and immune

clearance of the treponemes in the interim between blood tests, or prior to euthanasia, cannot

be ruled out. Although serology, PCR and orchitis monitoring was performed for all rabbits, it

became evident that variability among individual animals and/or strains still posed a challenge
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for deciphering the ideal time to euthanize as not all laboratory tests and disease manifestation

(orchitis) aligned. In addition, while every effort was made to maintain consistency in proce-

dures related to specimen collection at the clinical site, there are still a number of variables to

take into account. Each specimen was evaluated by DF microscopy and qPCR following rabbit

inoculations at the CDC. Although the fresh lesion exudate specimens from each of the

patients were confirmed to be DF positive at the clinical site, this could not be later verified for

the corresponding thawed specimens at the CDC due to the presence of extraneous material

from swabs used for exudate collection and cryopreservation, and the dilution of treponemes

after addition of storage medium. To circumvent this issue, qPCR analysis was also performed

and while a quantitative measure of T. pallidum in residual inoculum was obtained, viability

cannot be determined by this method. Given that an appreciable loss in viability occurs during

any freeze-thaw cycle(s), it is unknown whether this impacted growth in vivo. Ideally, simulta-

neous comparison of propagating a fresh sample and a thawed, previously frozen sample for a

given patient specimen would help address the effect(s) of freeze-thaw on viability of lesion

exudate specimens though this would again require proximity between the clinical site and

animal facility. Residual inocula containing CDC-SF003 and CDC-SF007 that were success-

fully propagated each showed a treponemal concentration that is in the median range among

the eight specimens that were tested by qPCR. Thus, there does not appear to be any correla-

tion between the concentration of T. pallidum in the clinical specimen and likelihood of prop-

agation in rabbits. The seroreactive status of the patients from whom the specimens were

collected was also considered as a potential factor affecting propagation in rabbits. Patients

from whom CDC-SF003 and CDC-SF007 were collected showed VDRL antibody titers of 1:4

and 1:8, respectively, which are similar if not lower than the titers for the other patients whose

specimens did not propagate successfully in the rabbits. Additionally, the reported antibody

titers for some of the patients were derived from either VDRL or RPR testing and being differ-

ent assays, these results are not interchangeable. Thus, it is not possible to discern a trend

based on patient serostatus alone. However, as more specimens are tested for rabbit propaga-

tion, a larger sample size may shed light on specimen characteristics, if any, that favor or lower

the probability of in vivo growth, and these studies are ongoing.

Another experimental variable to consider in this study is the route of inoculation. Since IT

inoculation did not yield treponemes in testes extracts for the CDC-SF011 and CDC-SF002

strains in initial experiments, inoculations for the remaining clinical specimens were divided

between the IT and IV route for each rabbit, to facilitate systemic infection and formation of

disseminated skin lesions that could potentially be used as an alternative source of treponemes

for subsequent passage, in the event that growth in the testis was not sufficient or successful.

However, no lesions developed over the three month monitoring period in any of the rabbits

that were inoculated IV and IT. A caveat is that the dual inoculation route approach used in

this study essentially halved the dose for each site, potentially reducing the chances of lesion

development and/or sustained treponemal growth in the testes. However, this method proved

successful for IT growth of CDC-SF003 and CDC-SF007 that had inoculum genomic equiva-

lents on the order of 104/ml in the original specimens, which is less than or equivalent to that

of the other specimens that did not grow in the testes but were also subjected to the same inoc-

ulation method. These results further highlight the complexity of the variables involved, partic-

ularly that in vivo propagation of clinical isolates may not depend on treponemal count alone.

Other factors that are independent of inoculum concentration and route, and instead intrinsic

to the strain’s adaptability and/or viability cannot be ruled out. Of note, the right testis of both

the first and second passage CDC-SF003 rabbits showed low but detectable levels of T. palli-
dum by qPCR even though it was not the site in which inoculum was injected, which is an

observation that has been previously reported [69]. However, T. pallidum was not observed in
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the right testis or whole blood of the second passage rabbit inoculated with CDC-SF007 and

may be due to the overall lower number of spirochetes compared to the second passage of

CDC-SF003.

In summary, the method described herein shows that propagation of T. pallidum from

patients’ cryopreserved lesion exudate specimens is reproducible and feasible, broadening the

scope of specimen types that can be used in the rabbit model. Performing serology and PCR

techniques in parallel with orchitis monitoring can also guide propagation timelines for

uncharacterized clinical strains in rabbits. High yields of viable T. pallidum CDC-SF003 and

CDC-SF007 on the order of 105−106 treponemes/ml were obtained from up to two passages,

producing sufficient stock for cryopreservation and facilitating future studies. While further

method optimization is necessary and ongoing, our findings provide an additional path for

isolation and sustained growth of clinical T. pallidum strains, which could also be potentially

applied to yaws and bejel isolates. This approach could facilitate complementary whole

genome sequencing and pathology studies to decipher strain-specific phenotypes, potentially

helping identify patients at risk for syphilis complications such as neurosyphilis and ocular

syphilis. Additional research such as diagnostic assay development and vaccine studies based

on antigen expression from current strains, which require an appreciable amount of trepone-

mal material, may also benefit from our findings.
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