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Machine Learning Approach for
Biopsy-Based Identification of Eosinophilic

Esophagitis Reveals Importance
of Global features

Tomer Czyzewski, Nati Daniel , Mark Rochman, Julie M. Caldwell, Garrett A. Osswald,
Margaret H. Collins, Marc E. Rothenberg, and Yonatan Savir

Abstract—Goal: Eosinophilic esophagitis (EoE) is an al-
lergic inflammatory condition characterized by eosinophil
accumulation in the esophageal mucosa. EoE diagnosis
includes a manual assessment of eosinophil levels in mu-
cosal biopsies–a time-consuming, laborious task that is
difficult to standardize. One of the main challenges in au-
tomating this process, like many other biopsy-based di-
agnostics, is detecting features that are small relative to
the size of the biopsy. Results: In this work, we utilized
hematoxylin- and eosin-stained slides from esophageal
biopsies from patients with active EoE and control subjects
to develop a platform based on a deep convolutional neural
network (DCNN) that can classify esophageal biopsies with
an accuracy of 85%, sensitivity of 82.5%, and specificity
of 87%. Moreover, by combining several downscaling and
cropping strategies, we show that some of the features
contributing to the correct classification are global rather
than specific, local features. Conclusions: We report the
ability of artificial intelligence to identify EoE using com-
puter vision analysis of esophageal biopsy slides. Further,
the DCNN features associated with EoE are based on not
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only local eosinophils but also global histologic changes.
Our approach can be used for other conditions that rely on
biopsy-based histologic diagnostics.

Index Terms—Decision support system, deep convolu-
tional network, digital pathology, eosinophilic esophagitis,
small features detection.

Impact Statement— Deep convolutional neural network,
together with a systematic downscaling and cropping ap-
proach, can classify esophageal biopsies with high accu-
racy and reveals a global nature of the histologic features
of eosinophilic esophagitis. Our approach of systematic
analysis of the image size versus downscaling tradeoff can
be used to improve disease classification performance and
insight gathering in digital pathology.

I. INTRODUCTION

Eosinophilic esophagitis (EoE) is a recently recognized
chronic food allergic disease associated with esophageal specific
inflammation characterized by high levels of eosinophils [1]. An
allergic etiology is strongly supported by the efficacy of food
elimination diets, the co-occurrence of EoE with other allergic
diseases (e.g., asthma and atopic dermatitis), animal models
demonstrating that experimental EoE can be induced by allergen
exposure, and the necessity of allergic mediators of inflamma-
tion, such as Interleukin 5 and Interleukin 13, on the basis of
animal models and clinical studies [1], [2]. Disease pathogenesis
is driven by food hypersensitivity and allergic inflammation and
multiple genetic and environmental factors [3]. Although a rare
disease with a prevalence of approximately 1:2000 individuals,
EoE is now the chief cause of chronic refractory dysphagia in
adults and an emerging cause for vomiting, failure to thrive, and
abdominal pain in children [1].

Histologically, EoE involves eosinophil-predominant inflam-
mation of the esophageal mucosa. Microscopic examination
of esophageal mucosal biopsies is a prerequisite for EoE di-
agnosis. During esophagogastroduodenoscopy (EGD), several
esophageal biopsies are procured. These are then formalin-
fixed, embedded, sectioned, and subjected to hematoxylin and
eosin (H&E) staining [4], [5]. Subsequently, a pathologist ex-
amines the biopsies to determine the peak eosinophil count
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FIGURE 1. (A) Example of a full-size hematoxylin and eosin (H&E)-
stained esophageal biopsy slide from a patient with active eosinophilic
esophagitis (EoE). The red square marks an example of an area con-
taining eosinophils (bright pink cells with purple nuclei; several exam-
ples are indicated by black arrows in the inset). (B) Schematics of
the platform. Images (magnification 80×) of research slides (from one
esophageal research biopsy per patient) are labeled as EoE or non-EoE
on the basis of a pathologist’s analysis of corresponding clinical slides
associated with the same endoscopy during which the research biopsy
was obtained. The full-size images are downscaled and/or cropped
using various approaches to smaller images that are then used to train
a deep convolutional neural network (DCNN). eos, eosinophils; hpf,
high-power field; PEC, peak eosinophil count.

(PEC) [1], [2], [6] (Fig. 1). In addition to determining PEC,
other histopathologic features of EoE include abnormalities of
the structural cells, including epithelial cells and fibroblasts
comprising the lamina propria. These features can be reliably as-
sessed and quantified using the newly developed EoE Histology
Scoring System (HSS) [7]. This system not only reports the pres-
ence or absence of the features but also takes into account grade
(severity) and stage (extent). This scoring system is trainable
across pathologists [7]. However, considerable disagreement can
occur among certain observers, at least based on PEC [8], and
even for trained observers, scoring esophageal biopsies requires
a non-trivial time input.

During the last few years, deep learning and, in particular,
deep convolutional neural networks (DCNNs) have become
a significant component of computer vision. Unlike classical
machine learning techniques, deep learning involves the net
performing representation learning, which allows the machine
to be fed raw data and to discover the representations needed for
detection or classification automatically [9]–[12]. In particular,
deep learning is used for the classification and diagnosis of
conditions in which the diagnosis is based on histomorphology,
such as cancer [12], [13]. However, the application of deep learn-
ing to medical applications poses two unique challenges: first,
DCNN training requires a large number of images (hundreds to
millions); and second, the size of the relevant objects within the
images is small [14], [15].

Here, we developed a method based on DCNN and downscal-
ing of esophageal biopsy images at different frequencies. By

comparing the results of each frequency, we aimed to deduce
whether the scattering is global (i.e., features appear diffusely
throughout the tissue image) or local (i.e., features appear in
only specific and/or discrete locations within the image). We
developed a classifier that distinguishes between images of
H&E-stained esophageal biopsies from patients with active EoE
and non-EoE control patients with high accuracy. We show that
some of the features that underlie the correct classification of
disease are global in nature.

II. MATERIALS AND METHODS

A. Dateset

This study was performed under the Cincinnati Children’s
Hospital Medical Center (CCHMC) IRB protocol 2008-0090.
Subjects undergoing endoscopy (EGD) for standard-of-care pur-
poses agreed to donate additional gastrointestinal tissue biop-
sies for research purposes and to have their clinical, histo-
logic, and demographic information stored in a private research
database. One distal esophageal biopsy per patient was placed
in 10% formalin; the tissue was then processed and embed-
ded in paraffin. Sections (4µm) were mounted on glass slides
and subjected to H&E staining, in a manner identical to the
preparation of standard-of-care biopsies. Biopsies were viewed
at 80× magnification using the Olympus BX51 microscope,
and one photograph of each biopsy was taken using the DP71
camera. Images were classified into categories on the basis of
the clinical pathology report associated with the distal esophagus
biopsies that were obtained for clinical analysis during the same
endoscopy during which the biopsy for research purposes was
procured. The clinical report is based on the observation of the
pathologist that was available when the biopsy was taken. In the
context of strictly counting eosinophils, the inter-observer and
intra-observer correlation for reporting eosinophilic peak counts
was reported to be more than 0.97 [16].

In this study, we used images defined as being derived from
individuals with active EoE (biopsy with PEC ≥ 15 eosinophils
[eos]/400× high-power field [hpf]) or from non-EoE control in-
dividuals (biopsy with PEC= 0 eos/hpf); (n= 210 non-EoE; n=
210 active EoE). The images were taken with digital microscopy
at different sizes: 4140 × 3096 pixels, 2010 × 1548 pixels,
or 1360 × 1024 pixels. In the original dataset, the number of
images per category and at each size was not equal. Therefore,
to avoid training bias, the images were randomly selected to build
non-biased training and validation sets. In this new dataset, the
number of images in each category was equal (training set: n =
147 active EoE, n = 147 non-EoE; validation set: n = 63 active
EoE, n = 63 non-EoE). Additionally, the number of images per
size was equal in each category (4140 × 3096: n = 29; 2010 ×
1548: n = 126; 1360 × 1024: n = 55).

B. Downscale Approaches and Training

Two methods were employed to address the challenge of
training on high-size images containing small features: first,
downscaling the original image with the potential of losing the
information associated with small features [14]; and second,
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TABLE 1.
WHOLE IMAGE CLASSIFICATION RESULTS FOR FOUR DOWNSCALE AND/OR

CROP APPROACHES. THE VALIDATION COHORT OF IMAGES (N = 63 ACTIVE
EOE; N = 63 NON-EOE) WAS THE SAME FOR EACH OF THE CLASSIFIERS.
TRUE POSITIVE RATE (TPR; NUMBER OF IMAGES CLASSIFIED AS ACTIVE
EOE / NUMBER OF ACTIVE EOE IMAGES X 100), TRUE NEGATIVE RATE

(TNR; NUMBER OF IMAGES CLASSIFIED AS NON-EOE / NUMBER OF
NON-EOE IMAGES X 100), ACCURACY (NUMBER OF IMAGES ACCURATELY
CLASSIFIED AS EITHER ACTIVE EOE OR NON-EOE / TOTAL NUMBER OF

IMAGES X 100), AND PREDICTED PREVALENCE (TOTAL NUMBER OF IMAGES
CLASSIFIED AS ACTIVE [I.E., TRUE POSITIVE + FALSE POSITIVE NUMBER OF

IMAGES] / TOTAL NUMBER OF IMAGES) FOR EACH METHOD ARE SHOWN.
DCNN, DEEP CONVOLUTIONAL NEURAL NETWORK. ACC, ACCURACY

dividing the images into smaller patches and analyzing each
of the patches [17]. Although the second approach solves the
image size challenge, if the relevant small feature (e.g., a local
increase in eosinophil density) appears in only a few patches,
many patches that do not contain the small feature are still
labeled as positive. As a result, the false-positive prediction
might significantly bias the final diagnosis. Yet, this method
indicates whether the scatter of the features is global or local by
carefully comparing it to a random classifier.

In this work, we used ResNet50, a residual network 50 layers
deep [18]. Residual networks utilize skip-connections to transfer
the output of a particular layer as input not only to the consec-
utive layer but also to subsequent layers. This property’s main
advantage is in coping with issues such as vanishing gradients
and the degradation problem that are common when training
very deep networks [19]. Four different DCNNs were trained,
wherein each of the input image sizes was obtained differently:
1) cropping the full image to patches of 224 × 224 pixels (the
optimal size for ResNet50), 2) cropping the full image to patches
of 448 × 448 pixels and downscaling them to 224 × 224, 3)
downscaling the original image to 224 × 224 pixels size, and
4) downscaling the original image to 1000 × 1000 pixels size
(Table 1). This size was chosen because it represents nearly the
maximum size possible for training on Nvidia 1080TI with a
minimal mini-batch size of four images. Downscaling was done
using bicubic interpolation.

Patches were cropped with a sliding window of the desired
input (224 × 224, 448 × 448 pixels) with steps of half of the
input size for overlay, covering the full original images (an
example of a full image is shown in Fig. 2(A)). Subsequently,
only patches that had more than 10% tissue comprising the patch
were chosen for training and validation sets (Fig. 2(B)). All valid
patches were used for training. Table S1 in the supplementary
materials summarizes the number of images and patches for the
validation and training sets for the various approaches. During
training, rotation, translation, and reflection augmentations were

FIGURE 2. Steps in processing esophageal biopsy images to produce
patches. (A) A typical image of a hematoxylin and eosin (H&E) stained
esophageal biopsy section obtained from an individual with active EoE.
The image was taken at 80X magnification. (B) The same image after
background removal with an illustration of tissue coverage criteria per
patch size to meet the threshold for inclusion in training or validation
sets. Box 1 (red): patch of 224 × 224 pixels with less than 10% tissue
coverage. Box 2 (yellow): patch of 224 × 224 pixels with greater than
10% tissue coverage. Box 3 (red): patch of 448 × 448 pixels with less
than 10% tissue coverage. Box 4 (yellow): patch of 448 × 448 pixels
with greater than 10% tissue coverage.

performed. We used imageDataAugmenter, a MATLAB-based
method, to augment the training set images. Each image in the
training set was duplicated and underwent a combination of ro-
tation, translation, and reflection. Rotation angles were random
in the range [0 90] degrees, reflection was either horizontally
or vertically with 50% probability, and x and y translation were
drawn randomly in the range [0 100] pixels (image size of 1000
× 1000) or [0 20] (image size of 448 × 448 or 224 × 224).

III. RESULTS

Table 1 summarizes the whole image classification results
for the four downscale and/or crop approaches employed. First,
we downscaled the original images to two different input image
sizes. If the majority of the information that defines the condition
were local, we would expect that downscaling, resulting in
smooth local features, would have a significant effect on the
classification quality. Surprisingly, we found that downscaling
the original images to a size of 1000 × 1000 did not result
in a random classification, but instead resulted in a true pos-
itive rate (TPR) of 74.6% and a true negative rate (TNR) of
96.8%. These results suggest that some of the information that
defines the condition is local but is large enough to sustain
the downscaling; alternatively, the information could be global.
The bias towards negative classification (predicted prevalence
[PP] <0.5), as indicated by the PP of 0.39, suggests that the
information that determines the condition is more local, lead-
ing to more positive-labeled images having the same feature
as negative-labeled images. Downscaling the full images even
further to a size of 224 × 224 reduced both the TPR and the
TNR. Yet, consistent with the hypothesis that the information
that defines the positive images is more sensitive to downscaling,
the PP remained similar, and the TPR was reduced more than
the TNR (Δ9.5% and Δ7.9%, respectively). It is insightful to
examine quantitively the effect of the downscaling factor (the
ratio between the original image area and input images area)
on accuracy (Supplementary Materials, section II, Fig S1A). As
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the downscaling factor is more than ∼5, there is a decrease in
accuracy.

Next, we classified the whole images according to the sub-
classification of their patches. The predicted label assigned to
the whole image (i.e., active EoE or non-EoE) resulted from the
majority vote of the predicted labels of its patches (i.e., if≥ 50%
of patches were classified as active EoE, the whole image was
classified as active EoE; if ≥ 50% of patches were classified
as non-EoE, the whole image was classified as non-EoE). First,
each image was parsed into patches, each with a size of 448 ×
448 that were then each downscaled to a size of 224 × 224. In
this case, no substantial classification bias resulted; the PP of
0.48 and the TPR of 82.5% increased substantially compared to
the two downscaling methods described previously (Table 1).

Using patches of 224× 224 that did not undergo downscaling
yielded a similar TPR of 82.5%; however, the TNR decreased
to 77.8%. Breaking down the effect of image size, which is
proportional to the number of patches, reveals a monotonically
increasing relation between the image size and accuracy. Yet,
cropping into 448 × 448 patches and downscale to 224 × 224
gives better or equal accuracy, for all image sizes, than cropping
into 224 × 224 patches (Supplementary Materials, section II,
Fig. S1B). This is likely due to the inherent tradeoff between
the local and global information contained within the images.
If an image is larger, it contains more global information, but
the downscaling that is required prior to its input into the net is
larger; thus, small features are smoothed out to a greater degree.
In our case, using a 448 × 448 patch with downscaling provided
a better TNR of 87.3% than did using smaller patches of 224 ×
224 without downscaling.

Figure 3 summarizes the effect of the initial patch size
and downscaling factor in the receiver operating characteristic
(ROC) space. Applying other aggregation methods, such as
hierarchal clustering or different voting thresholds, resulted in
similar results (Supplementary Materials, section III, Fig. S2).
We also benchmarked the DCNN classification results using
standard well-known 20 textural features [20], [21], and three
baseline classification methods: linear discriminant analysis,
logistic regression, and linear SVM (Supplementary Materials,
section IV). The DCNN performs significantly better than these
standard classification approaches (Supplementary Materials,
section IV, Table S3). Additional performance measures such
as recall, precision, and F1-score are summarized in Table S4 in
the supplementary materials section V.

To further analyze the tradeoff between locality and down-
scale factor, we evaluated the classification performance of the
patches themselves (Table 2). The results are consistent with
the whole image majority vote classification. In particular, both
the TNR of 79.7% and TPR of 77.0% of the 448 × 448 patch
downscaled to 224× 224 are higher than those of the non-scaled
224 × 224 patch. These results indicate that incorporating more
information in a patch is more important than downscaling by
a factor of two and supports the notion that global information
drives the classification for EoE.

To determine the effect of locality on the classification, we
compared the distribution of prediction probability for patches
with a size of 224× 224 that did not undergo downscaling in

FIGURE 3. Classification results as a function of initial image size
and downscaling factor in the receiver operating characteristic (ROC)
space. For each of the four downscale and/or crop approaches utilized
to analyze the validation cohort of images (n = 63 active EoE; n = 63
non-EoE), the true positive rate (TPR) vs. (1 - the true negative rate
[TNR]) with TPR and TNR expressed as proportions is graphed. Blue
lines highlight accuracy measurements of 50% and 85% expressed as
proportions.

TABLE 2.
CLASSIFICATION RESULTS FOR INDIVIDUAL PATCHES. THE VALIDATION
COHORT OF IMAGES (N = 63 ACTIVE EOE; N = 63 NON-EOE) WAS

SUBJECTED TO CROPPING INTO PATCHES WITH THE INDICATED PIXEL SIZES
AND DOWNSCALED WHEN INDICATED. TRUE POSITIVE RATE (TPR; NUMBER

OF PATCHES CLASSIFIED AS ACTIVE EOE / NUMBER OF ACTIVE EOE
PATCHES X 100), TRUE NEGATIVE RATE (TNR; NUMBER OF PATCHES
CLASSIFIED AS NON-EOE / NUMBER OF NON-EOE PATCHES X 100),

ACCURACY (NUMBER OF PATCHES ACCURATELY CLASSIFIED AS EITHER
ACTIVE EOE OR NON-EOE / TOTAL NUMBER OF PATCHES X 100), AND
PREDICTED PREVALENCE (TOTAL NUMBER OF IMAGES CLASSIFIED AS
ACTIVE [I.E., TRUE POSITIVE + FALSE POSITIVE NUMBER OF IMAGES] /
TOTAL NUMBER OF IMAGES) FOR EACH PATCH SIZE AND DOWNSCALING
METHOD (IF APPLICABLE) ARE SHOWN. DCNN, DEEP CONVOLUTIONAL
NEURAL NETWORK; TPR, TRUE POSITIVE RATE; TNR, TRUE NEGATIVE

RATE. ACC, ACCURACY

two cases. In the first, each patch was labeled with the same label
as the original image from which it was derived. In the second,
each patch was assigned a random label.

Figure 4 shows the distribution for each case. In the case in
which the patch labels are true (Fig. 4(A), (B), the distribution
is bi-modal. In the case in which the patch labels are random
(Fig. 4(C), (D), most of the patches are ambiguous, and thus
the distribution is unimodal around 0.5. These collective case
findings suggest that most of the patches that are classified
correctly are not ambiguous. This indicates that the local patch
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FIGURE 4. Prediction ability of nonrandom (blue) and random (red)
classifier. (A) 224 × 224: histogram of the number of patches derived
from non-EoE images vs. the probability that they will be classified as
active EoE by the nonrandom classifier. (B) 224 × 224: histogram of the
number of patches derived from active EoE images vs. the probability
that they will be classified as active EoE by the nonrandom classifier. (C)
Random 224 × 224: histogram of the number of patches derived from
non-EoE-labeled images vs. the probability that they will be classified as
active EoE by the random classifier. (D) Random 224 × 224: histogram
of the number of patches derived from active EoE-labeled images vs.
the probability that they will be classified as active EoE by the random
classifier.

labeling carries information that is relevant for the majority of
the patches.

IV. DISCUSSION AND CONCLUSION

One of the main challenges in digital pathology is that the
features of the conditions are very small compared with the size
of the sample. This feature-sample size disparity leads to an
inherent tradeoff between the size of the analyzed image and the
downscaling factor. In the case of small, local features, visualiz-
ing the image as smaller patches may impede the classification
because most of the patches will not include the small, local
features. However, if local features are the primary source of
information about the condition, downscaling the whole image
may smooth them out.

Herein, we used DCNN and different downscaling and/or
cropping approaches to achieve ∼85% accuracy in distinguish-
ing active EoE from non-EoE esophageal biopsies, despite the
relatively small number of labeled images utilized for training
(n = 147 active EoE and n = 147 non-EoE). Although la-
beling relied primarily on a local feature (PEC ≥ 15 eos/hpf),
our results support that EoE is also associated with additional
global histopathologic features that are learned by the classifier.
Figure 5 illustrates possible scatter patterns for features that
contribute to disease diagnosis. Of note, the features could be
clustered locally (e.g., a local increase in density of eosinophils),
or they could be distributed uniformly throughout the tissue (e.g.,
morphology of structural cells comprising the tissue).

The fact that images that were cropped into patches but
were downscaled by a factor of greater than 10 (in terms of
the number of pixels) provided low TPR, suggests that the
features associated with the condition were not big enough for
the classification task. However, if the features were distributed

FIGURE 5. Schematic of various potential distributions of local pat-
terns within an esophageal biopsy section. An esophageal biopsy image
is shown; red ovals denote a local feature that contributes to disease
diagnosis. (A) Local pattern confined to a specific place in the tissue.
(B) Local pattern distributed at the edge of the tissue. (C) Local pattern
restricted to only half of the tissue. (D) Global pattern spread all over the
tissue.

only locally (e.g., Fig. 5(A)–(C)), many patches cropped from
the whole image would not include the features, and thus the
classification according to patches would fail. However, in this
study of EoE, most of these cropped patches were labeled
correctly. Moreover, the classification was better with 448 ×
448 patches downscaled to 224 × 224 than non-scaled 224 ×
224 patches, suggesting presence of global features (Fig. 5(D)).
Our results thus indicate that although the original labeling was
based primarily on local features, additional global features are
associated with EoE (Fig. 5(D)). This global information allows
a classification with minimal PP bias (PP 0.49) and with only a
small number of images.

In this work, we used an approach in which the label is global
- the entire slide is labeled according to the patient condition
(e.g., whether a patient is active or not) - and the network is
trained without local labeling. To improve the accuracy, se-
mantic information can be incorporated to estimate the number
of eosinophils directly [22]. Another approach is to score the
images not only according to their PEC, but also to account for
additional features such as basal zone hyperplasia and dilated
intercellular spaces [7].

Our work highlights the importance of systematic analysis of
the image size vs. downscaling tradeoff, particularly in digital
pathology, for improving classification and gaining insight into
the features’ spatial distribution underlying a condition. These
findings present an initial artificial intelligence approach to
diagnosing EoE using digital microscopy and have implications
for analyzing other biopsy-based disease diagnoses.

IV. ACKNOWLEDGMENT

The authors would like to thank Tanya Wasserman for valu-
able discussions and Shawna Hottinger for editorial support.



CZYZEWSKI et al.: MACHINE LEARNING APPROACH FOR BIOPSY-BASED IDENTIFICATION OF EOSINOPHILIC ESOPHAGITIS 223

REFERENCES

[1] E. S. Dellon et al., “Updated international consensus diagnostic criteria
for eosinophilic esophagitis,” Gastroenterology, vol. 155, pp. 1022–1033,
Oct. 2018.

[2] J. D. Sherrill and M. E. Rothenberg, “Genetic dissection of eosinophilic
esophagitis provides insight into disease pathogenesis and treatment strate-
gies,” J. Allergy Clin. Immunol., vol. 128, no. 1, pp. 23–32, Jul. 2011.

[3] K. M. O’Shea et al., “Pathophysiology of eosinophilic esophagitis,” Gas-
troenterology, vol. 154, pp. 333–345, Jan. 2018.

[4] J. D. Bancroft and M. Gamble, Theory and Practice of Histological
Techniques. Amsterdam, The Netherlands: Elsevier Health Sciences, 2008.

[5] G. Gill, Cytopreparation: Principles & Practice. Berlin, Germany:
Springer Science & Business Media, 2012.

[6] E. S. Dellon, K. J. Fritchie, T. C. Rubinas, J. T. Woosley, and N. J.
Shaheen, “Inter- and intraobserver reliability and validation of a new
method for determination of eosinophil counts in patients with esophageal
eosinophilia,” Dig. Dis. Sci., vol. 55, pp. 1940–1949, Jul. 2010.

[7] M. H. Collins et al., “Newly developed and validated eosinophilic
esophagitis histology scoring system and evidence that it outperforms peak
eosinophil count for disease diagnosis and monitoring,” Dis. Esophagus,
vol. 30, pp. 1–8, Mar. 2017.

[8] E. M. Stucke, K. E. Clarridge, M. H. Collins, C. J. Henderson, L. J. Martin,
and M. E. Rothenberg, “Value of an additional review for eosinophil
quantification in esophageal biopsies,” J. Pediatr. Gastroenterol. Nutr.,
vol. 61, pp. 65–68, Jul. 2015.

[9] M. Manoj krishna, M. Neelima, A. M. Harshali, and M. Venu GopalaRao,
“Image classification using deep learning,” Int. J. Eng. Technol., vol. 7,
pp. 614–617, Mar. 2018.

[10] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,”
Annu. Rev. Biomed. Eng., vol. 19, pp. 221–248, 2017.

[11] R. Fakoor, A. Nazi, and M. Huber, “Using deep learning to enhance cancer
diagnosis and classification,” in Proc. 30th Int. Conf. Mach. Learn., 2013.

[12] J. Wang, J. D. MacKenzie,R. Ramachandran, and D. Z. Chen, “A deep
learning approach for semantic segmentation in histology tissue im-
ages,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Interv.,
S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells,
Eds., Lecture Notes in Computer Science, Cham, Switzerland: Springer
International Publishing, 2016, pp. 176–184.

[13] U. Djuric, G. Zadeh, K. Aldape, and P. Diamandis, “Precision histology:
How deep learning is poised to revitalize histomorphology for personalized
cancer care,” NPJ Precis. Oncol., vol. 1, p. 22, Dec. 2017.

[14] K. J. Geras, S. Wolfson, Y. Shen, S. G. Kim, L. Moy, and K. Cho,
“High-resolution breast cancer screening with multi-view deep convo-
lutional neural networks,” Comput. Res. Repository, vol. 1703, 2018,
Art. no. 07047.

[15] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, vol. 7, pp. 7823–7859, 2019.

[16] A. Vanstapel, T. Vanuytsel, and G. D. Hertogh, “Eosinophilic peak
counts in eosinophilic esophagitis: A retrospective study,” Acta Gastro-
Enterologica Belgica, vol. 82, no.2, pp. 243–250, 2019.

[17] V. Kovalev, A. Kalinovsky, and V. Liauchuk, “Deep learning in big image
data: Histology image classification for breast cancer diagnosis protein
docking by deep neural networks view project UAV: Back to base problem
view project,” in Proc. Int. Conf. Big Data Adv. Anal., 2016, pp. 15–17.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., vol. 2016, 2016, pp. 770–778.

[19] Z. Wu, C. Shen, and A. van denHengel, “Wider or deeper: Revisiting
the RESNET model for visual recognition,” Pattern Recognit., vol. 90,
pp. 119–133, 2019.

[20] R. Haralick and L. Shapiro, Computer and Robot Vision. Reading, MA,
USA: Addison-Wesley, 1st ed., 1992.

[21] R. M. Haralick, I. Dinstein, and K. Shanmugam, “Textural features for
image classification,” IEEE Trans. Syst., Man Cybern., vol. SMC- 3, no. 6,
pp. 610–621, Nov. 1973.

[22] N. Daniel, A. Larey, E. Aknin, G. A. Osswald, and J. Caldwell et al.,
“PECNet : A deep multi-label segmentation network for eosinophilic
esophagitis biopsy diagnostics,” 2021, arXiv:2103.02015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


