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Head and neck cancer (HNC) remains to be a major cause of mortality worldwide because
of confounding factors such as late-stage tumor diagnosis, loco-regional aggressiveness
and distant metastasis. The current standardized diagnostic regime for HNC is tissue
biopsy which fails to determine the thorough tumor dynamics. Therefore, due to the ease
of collection, recent studies have focused on the utility of saliva based liquid biopsy
approach for serial sampling, early diagnosis, prognosis, longitudinal monitoring of
disease progression and treatment response in HNC patients. Saliva collection is
convenient, non-invasive, and pain-free and offers repetitive sampling along with real
time monitoring of the disease. Moreover, the detection, isolation and analysis of tumor-
derived components such as Circulating Tumor Nucleic Acids (CTNAs), Extracellular
Vesicles (EVs), Circulating Tumor Cells (CTCs) and metabolites from saliva can be used for
genomic and proteomic examination of HNC patients. Although, these circulatory
biomarkers have a wide range of applications in clinical settings, no validated data has
yet been established for their usage in clinical practice for HNC. Improvements in isolation
and detection technologies and next-generation sequencing analysis have resolved many
technological hurdles, allowing a wide range of saliva based liquid biopsy application in
clinical backgrounds. Thus, in this review, we discussed the rationality of saliva as
plausible biofluid and clinical sample for diagnosis, prognosis and therapeutics of HNC.
We have described the molecular components of saliva that could mirror the disease
status, recent outcomes of salivaomics associated with HNC and current technologies
which have the potential to improve the clinical value of saliva in HNC.

Keywords: head and neck cancer, liquid biopsy, saliva, biomarker, circulating tumor nucleic acids, extracellular
vesicles, metabolomics
INTRODUCTION

Head and Neck Cancer (HNC) is the sixth most prevalent cancer worldwide attributed to etiological
factors like tobacco and alcohol consumption, HPV infections and to a certain extent genetic
predisposition (1–3). Despite advancements in diagnostic and therapeutic regime, the overall
survival of HNC patients has remained dismal for over four decades. Conventional diagnostic
strategies comprise of physical examination, imaging techniques such as computed tomography
(CT) scan, Ultrasound (US), magnetic resonance imaging (MRI) and tissue biopsies followed by
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histopathological analysis. Till date, tissue biopsy is the most
commonly used method for diagnosis; however, this technique is
invasive, quite challenging, painful, time-consuming, and
potentially risky for the patient. Moreover, the intra-tumoral
and metastatic heterogeneity remains undetected, affecting the
specificity, sensitivity and accuracy of assessment (4). Therefore
the ‘liquid biopsy approach’ that focuses on detecting tumor-
derived components in circulatory fluids for the diagnosis,
screening and prognosis of cancer (5) is becoming increasingly
important. Liquid biopsies are anticipated to demonstrate high
accuracy in terms of representation of tumor genome landscape
and mutations. They also provide reproducibility and feasibility
of real-time therapeutic monitoring while being minimally
invasive and cost effective (6). For HNC cancers, serum,
plasma and saliva have been identified as the most frequently
used sources for liquid biopsies (7).

Saliva as a potential source for liquid biopsy of HNC patients
has several advantages compared to other body fluids as it (i)
reflects any genomic, epigenomic, proteomic and physiological/
pathological alterations in the oral cavity, larynx and pharynx;
(ii) serves as a non-invasive, inexpensive, easier and more
accessible screening tool (8); and (iii) provides the opportunity
for real-time monitoring of HNC patients by having the
flexibility of repetitive sampling and larger volumes for
Frontiers in Oncology | www.frontiersin.org 2
examination without the requirement of trained medical staff
for collections (8–10). Despite the potential value in utilizing
saliva derived biomarkers as diagnostic tool, its clinical utility is
limited due to some challenges. Primarily, the complex
composition of saliva comprises of various non-tumorigenic
components hampering the ability to detect biomolecules of
tumor origin. Moreover, relative contribution of different
subsites into the salivary milieu makes the identification of
HNC specific markers difficult (11). However, the potential
utility of saliva as a liquid biopsy tool for diagnosis, prognosis
and therapeutic monitoring of HNC is being extensively
explored. Presently, the most common components for liquid
biopsy of HNCs comprise cell-free tumor nucleic acids (DNA,
mRNA and miRNAs), extracellular vesicles, circulating tumor
cells (CTCs) and salivary metabolites (Figure 1). This review
encompasses the recent developments, technologies, clinical
applications and limitations of saliva derived biomarkers in
HNC diagnosis, prognosis, and therapeutics.
CIRCULATORY TUMOR NUCLEIC ACIDS

Circulatory tumor nucleic acids (ctNAs) are fragments of cell-
free genomic/viral DNA and/or RNA that are shed by tumor cells
FIGURE 1 | Summary of salivary components that can potentially act as biomarkers for HNC. This figure summarizes the current landscape of salivary components
that may act as biomarkers for HNC. The detection and analysis techniques and clinical applications for each component are mentioned in the figure. (NMR: Nuclear
Magnetic Resonance, MS: Mass Spectrometry, HNC: Head and Neck Cancer, ddPCR: Droplet Digital Polymerase Chain Reaction, qPCR: quantitative Polymerase
Chain Reaction, NGS: Next Generation Sequencing, SEC: Size-Exclusion Chromatography, NTA: Nanoparticle Tracking Analysis).
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through passive processes like necrosis and apoptosis or via
active mechanisms like spontaneous release of nucleic acids in
systemic circulation (12, 13). These fragments of circulating
tumor DNA (ctDNA) and RNA (ctRNA), are found in various
body fluids including saliva. They reflect the genetic information
of the bulk tumor and reflect clonal heterogeneity and tumor
evolution. The rate at which these circulatory nucleic acids
release into circulation depends on the tumor’s location,
vascularity, scale, resulting in variability across patients (14).
Analysis of ctDNA relies more on identifying and targeting
certain tumor specific mutations and understanding the
epigenetic landscape, whereas ctRNA emphasizes on
identifying novel or differential expression patterns of
messenger RNA (mRNAs), microRNA (miRNAs), and long
ncRNAs (lncRNAs) as a potential salivary biomarker. ctRNA
based biomarkers probably gives better dynamic insights about
cell-state and regulation as compared to ctDNA biomarkers.

Detection and analysis of ctNAs is quite challenging.
Currently, real-time PCR (qRT-PCR), digital droplet PCR
(ddPCR) and UltraSeek® (Agena Bioscience) mass-
spectrometry-based PCR method are the most widely used
techniques, as it helps in optimizing samples with low ctNA
concentration in HNCs. ddPCR is still the most preferred
method demonstrating higher sensitivity, specificity and
multiplexing capacity (15, 16). Further, techniques such as
methylation-specific PCR (17, 18), methylation on beads (19),
and cMethDNA assay (20, 21) are used to detect the difference in
methylation patterns on promoter of ctDNA in HNC patient
samples. PCR based techniques are preferred when there are low
number of target regions (≤ 20 targets), limited sample input and
when there is limited assessment of tumor heterogeneity or
identification of known variants. Next Generation Sequencing
(NGS) methods such as CAPP-Seq (cancer personalized
profiling by deep sequencing), TAm-Seq (tagged amplicon
deep sequencing), Safe-Seq (safe sequencing system), and
AmpliSeq are being used to isolate and capture ctNAs; each
with relatively higher strengths in sensitivity, specificity and
scalability (22–24). These NGS techniques can detect both
known and unknown tumor-specific mutations and analyze
differential expression patterns of single markers or a panel of
markers. Targeted NGS methods are less time-consuming, result
in fewer wastage of resources and offer a higher discovery rate,
thus aiding in identification of novel variants. Despite the current
limitations, these techniques have demonstrated potential to
detect and isolate smaller concentrations of ctDNA from
saliva, thus opening new avenues for clinical applications (25).
With technological advancements, higher specificity and
sensitivity of ctDNA detection could effectively increase their
clinical applications. Nonetheless development of cost-effective
NGS assays is crucial for their widespread clinical utility (26, 27).
CIRCULATORY TUMOR DNA (ctDNA)

ctDNA represents a trivial fraction (<1%) of whole cfDNA shed
from tumor cells into the circulation. However, this small
Frontiers in Oncology | www.frontiersin.org 3
subpopulation is believed to reflect the somatic mutations and
genomic landscape from primary tumors that can be useful in
early diagnosis and risk prediction of HNC. Recently, few studies
have emphasized utilizing ctDNA derived from saliva in early
detection of cancer. Wang et al., conducted a comprehensive
analysis of somatic mutations (TP53, CDKN2A, NRAS,
NOTCH1, PIK3CA, FBXW7, and HRAS) and HPV (HPV16
and 18) genes in saliva and plasma of 93 HNC patient samples
comprising of oral cavity, oropharynx, larynx, and hypopharynx
subsites. The study demonstrated detection of ctDNA at 96% rate
irrespective of the tumor size, stage and location. Moreover,
recurrence post-surgery was observed in majority of patients
having these somatic mutations. In OSCC patients, the detection
rate of ctDNA was higher in saliva as compared to plasma,
indicating that salivary ctDNA can be used for OSCC detection
(28).. Similarly, p53 mutation in exon 4 codon 63 was detected in
saliva of early stage OSCC patients (93.33% of cases, p<0.05) with
a similar detection rate as patient tumor samples (29). However,
Perdomo et al. reported that, targeted mutation detection
approach failed to demonstrate significant concordance in
detecting TP53 mutations from tumor and saliva derived
ctDNA. El Naggar et al. and Spafford et al., detected
microsatellite instability and loss of heterozygosity at certain
chromosomes in oral mucosal cells from HNC patients and
saliva (p < 0.001) with different sensitivity and specificity based
on sample size and sampling subsites (30, 31). Moreover, genetic
alterations in PMAIP1 and PTPN1 genes had the potential to
discern HNC patients from healthy individuals (32). Collectively,
these studies suggest that assessment of somatic mutations from
salivary ctDNA can be an effective non-invasive substitute to
tissue biopsy for early diagnosis, disease surveillance and
prognosis of HNC patients. However, multiple mutation
detection-based studies with standardized protocols and larger
cohort of patients will be required for clinical translation (33) of
this approach. Low yields of ctDNA after purification from saliva
is also a key limiting factor. To increase the efficacy and
sensitivity of salivary ctDNA as a biomarker, specific ctDNA
panels need to be designed that can help detect and monitor
HNC cases in real-time and a cost-effective manner.

Several studies have highlighted the importance and
feasibility of detecting epigenetic alterations in ctDNA from
body fluids and its immense diagnostic potential. Promoter
hyper-methylation of genes such as EDNRB (k = 0.60), KIF1A
(k = 0.64), NID2(k = 0.60), and HOXA9 (k = 0.60) in salivary
DNA have shown potential utility for early detection of oral
cancer patients (34–36). Few studies have demonstrated a
significant clinical correlation between hypermethylation in
promoter region of salivary ctDNA with prognosis and risk
prediction in HNC patients. Specifically, methylated gene loci
were identified in both tissue and preoperative saliva samples
and could serve as a classifier to differentiate between
preoperative and postoperative samples for HNC patients (37).
Analogous to this, Carvalho et al. indicated that detection of
promoter hypermethylation of either or all genes (TIMP-3,
CCNA1, DCC, MGMT, MINT-31, DAPK p16) in pre-treated
salivary DNA could effectively predict poor survival (HR=2.8;
March 2022 | Volume 12 | Article 828434

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Patel et al. Liquid Biopsies in Head and Neck Cancers
95% CI=1.2–6.5; p=0.016) and recurrence (HR=12.2; 95%
CI=1.8–80.6; p= 0.010) of HNC patients (38).These findings
suggest that elevated ctDNA hypermethylation patterns have the
potential to predict disease aggressiveness, overall survival rate
and therapeutic monitoring and surveillance of HNC patients
(Table 1). As we thrive towards the development of epigenetic-
based diagnostic tests, we need to consider the challenges that
come along with it. One of the major challenges: Given the
epigenetic plasticity in non-cancerous cells, we need to develop
tools that can filter the false positive signals and enhance the
specificity and sensitivity of these assays making them
more translatable.

Collectively, somatic mutations and methylation patterns of
salivary DNA could be utilized as potential biomarkers and
prognosticators in HNC. This approach can accelerate the
diagnosis and risk prediction of HNC and pave the path for
improved pa t i en t ou t comes by moni to r ing the i r
therapeutic response.
CIRCULATORY TUMOR RNA (ctRNA)

Analysis of transcriptomic profiles of circulating body fluids is a
widely explored method for early cancer detection and several
studies have shown significant association of the transcriptome
with disease progression. Several studies have demonstrated the
association of salivary mRNAs with development and detection
of HNC. Li et al. demonstrated a significant 3.5-fold elevation in
OSCC saliva with significant sensitivity (91%) and specificity
(91%) (P < 0.01) of transcripts of salivary SAT, IL8, S100P, IL1B,
OAZ1, DUSP1 and HA3, in oral cancer patients as compared to
their healthy counterparts (41). David Elashoff and colleagues
(42) substantiated the effectiveness of these biomarkers in a
larger patient cohort (382 patients), suggesting the potential
role of salivary mRNA markers in oral cancer detection. With
respect to individual marker performance across the five cohorts,
the increase in IL8 and SAT was statistically significant(p<0.02).
The validation of these biomarkers in larger patient cohorts
shows their feasibility in the discrimination of OSCCs from
healthy controls (42). Transcript level expression of tumor
suppressor gene transgelin was observed to be significantly
elevated in saliva of OSCC patients as compared to the normal
Frontiers in Oncology | www.frontiersin.org 4
counterparts. The salivary gene expression levels were in
concordance with the tumor tissue and associated with overall
survival (p=0.011) of patients, demonstrating its immense
potential as a promising biomarker and an independent
prognosticator in OSCC (43). HPV-16 has also been identified
as a major etiological factor responsible for HNSCC
tumorigenesis. HPV-16 mRNA showed a significantly altered
expression in salivary rinses of HNSCC patients with a
simultaneous effect on p16(INK4a), a known tumor suppressor
having a vital role in regulating the cell cycle(p<0.05) (44). Thus,
the expression pattern of different salivary mRNAs correlates
with various important clinical parameters including tumor
progression, differentiation, and overall survival. More
importantly, the expression of salivary mRNA depicts an
independent prognosis factor for HNC, suggesting that salivary
mRNA might be a potential biomarker for early detection of
HNC and predicting the prognosis for HNC patients.

Tumor derived circulating RNA profile is complex as it
comprises of distinctive components such as noncoding RNAs
(e.g., lncRNA and piwi-interacting RNAs) and microRNAs
(miRNAs). Alterations in miRNA and lncRNAs expression can
be exploited to investigate their potential in differentiating HNC
patients from healthy volunteers (45, 46), given the fact that
substantial research has been conducted in exploring the
diagnostic and prognostic potential of ncRNAs derived from
saliva of HNC patients (Table 2) (55). Various saliva-derived
circulatory miRNAs such as miR-139-5p in TSCC (49)miR-3612,
miR-650, miR-4259, miR-937-5p and miR-4478 in NPC (51) and
miR-125a, miR-200a, and miR-21 have been identified as
plausible biomarkers for different subsites of HNC (46, 48). In
a preliminary study, expression of 314 salivary miRNAs was
assessed in OSCC patients in comparison to their healthy
counterparts. miR-200a and miR-125 were observed to be
significantly down regulated (p<0.05) in the patient cohort as
compared to the healthy volunteers. This study emphasized that
salivary miRNAs were stable in saliva and could be utilized in
early detection of oral cancers (46). These findings were validated
by Wiklund and colleagues demonstrating that differential
expression of miR-200a and miR-375 along with promoter
methylation of miR-200c-141 in oral rinses and saliva of
OSCC patients can be utilized for early detection of oral
cancers (56). The potential role of circulatory miRNAs in
TABLE 1 | ctDNA biomarkers for HNSCC.

Marker Type of
Marker

Findings Sample
Size

Reference

E7 (HPV16 and HPV18), TP53,
PIK3CA, CDKN2A, FBXW7, HRAS,
and NRAS

Diagnostic The sensitivity of detection of ctDNA increased when both saliva and plasma assays were
combined (96% of the samples). Moreover, oral cavity tumor ctDNA was preferentially
enriched in saliva as opposed to ctDNA from other sites.

93 (28)

CDKN1A and DDB2 Post-
treatment
monitoring

Salivary CDKN1A and DDB2 were significantly upregulated post-treatment in HNSCC
patients and the rate of upregulation was correlated with the received treatment dose.

8 (39)

HPV DNA Prognostic Salivary HPV DNA levels in patients with LR HPV+ OPSCC were correlated to total tumor
burden. A rise of salivary HPV DNA was correlated with recurrence and a fall in HPV DNA
levels was observed during treatment.
Higher levels of plasma HPV cfDNA were associated with poor prognosis.

21 (40)
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effectively monitoring tumor progression, therapeutic response
and recurrence have been reported in several studies – (i)
Salivary miR-21 is associated with T-stage classification
(p=0.02) (54) (ii) and miR-136 expression showed significant
correlation with complete remission cases (AUC=0.904 CI=0.75-
1 P<0.05) (25) Moreover, a preliminary study conducted by
Greither et al. demonstrated differential expression of salivary
miR-200a (p=0.036) and miR-93 (p=0.047) in HNSCC patients
post-radiotherapy (50). Similarly, another study identified
significant correlation between increased expression of salivary
miR-15a-5p and disease-free survival in post-intensity
modulated radiotherapy patients (HR=0.25; 95% CI=0.05-0.78;
p<0.016) (57). These studies highlighted the utility and efficacy
of saliva-based miRNA biomarkers in predicting therapeutic
response despite the significant alterations in salivary
components post-radiation.

The other arm of ncRNAs are long non-coding RNAs
(lncRNAs) which are approximately more than 200 nucleotides
long and are not translated into protein. Considering their
inevitable role in tumor progression and metastasis, signatures
of saliva derived lncRNAs have been explored as probable
biomarkers for monitoring disease progression of OSCC. A
pilot study has reported measurable levels of HOTAIR and
MALAT lncRNAs in the saliva of OSCC patients (58).
Furthermore, these elevated levels were associated with nodal
metastasis ascertaining its potential as a predictive marker.

Recently, circular RNAs (circRNAs) have attracted attention
globally, because of their stability (owing to the circular
structure) in comparison to lncRNAs and miRNAs (45).
Various circRNAs secreted into the saliva of HNC patients
regulate several biological and physical processes (59). A study
found differential expression of 32 salivary circRNAs in OSCC
patients as compared to matched controls. The upregulation of
Frontiers in Oncology | www.frontiersin.org 5
hsa-circ-0001874 clinically correlated with tumor grade and
staging. Expression level of hsa-circ-0001971 was associated
with TNM stage. Further, these circRNAs could also
differentiate OSCC from oral leucoplakias (AUC of 0.895) (60).
These findings prompt towards their potential role as diagnostic
biomarkers for OSCC; however, additional investigation on
circRNAs as probable non-invasive biomarkers for HNCs will
be needed to assess their prognostic and diagnostic value.

The use of salivary ctRNAs as biomarkers for detection,
disease surveillance, therapy response, and prognosis sound
promising but a major l imitation of sal ivary RNA
quantification is the risk of RNA degradation due to the
presence of enzymes including RNases in the saliva. This in
turn affects the quality of RNA extracted thereby increasing the
false-positive and false-negative detection rates. Moreover, the
risk of sample contamination with blood from the oral mucosa
and lesions due to inflammation are other limiting factors.
Multicentric preclinical/clinical studies with standardized
protocols are required to verify the existing findings before
establishing the clinical utility of circulatory RNAs.
EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) are 30-200 nm membrane
encapsulated organelles that are secreted by cells into the
extracellular space in response to various physiological
conditions such as proteases, growth factors, apoptotic signals,
biomechanical shear and stress conditions (61, 62). Developing
evidence suggests that tumor-derived EVs enable the tumor bulk
to manipulate its microenvironment as they have the potential to
mediate intercellular communication by transporting their
TABLE 2 | Circulating miRNA markers for HNSCC.

Marker Type of
Marker

Findings Tumor
Sample
Size

Author

miR-31 Diagnostic Upregulation of salivary miR-31 in OC patients. 35 (47)
miR-21 and miR-184 Diagnostic Highly significant upregulation of miR-21 and miR-184 (P < 0.001) in OSCC and PMD

samples as compared to healthy controls.
40 (48)

miR-139-5p Diagnostic Significant downregulation of salivary miR-139-5p in TSCC patients as compared to
healthy controls. Levels returned to normal after treatment (surgery).

25 (49)

miR-93 and miR-200a Treatment
monitoring

Increase in expression of miR-93 and miR-200a in OSCC patients 12 months after
radiotherapy thereby highlighting their potential as biomarkers for post-radiation
treatment monitoring in HNSCC patients.

33 (50)

miR-937-5p, miR-650, miR-3612, miR-4478,
miR-4259, miR-3714, miR-4730, miR-1203,
miR-30b-3p, miR-1321, miR-1202 and miR-
575

Diagnostic Identified 12 miRNAs that were significantly downregulated in the saliva of NPSCC
patients and could potentially serve as diagnostic biomarkers.

22 (51)

miR-let-7a-5p and miR- 3928 Diagnostic Salivary miR- let-7a-5p and miR- 3928 were significantly downregulated in HNSCC
patients as compared to healthy controls. Both of these miRNAs showed significant
specificity and sensitivity in differentiating between healthy controls and HNSCC
patients.

12 (52)

miR-24-3p Diagnostic Significantly high expression of exosomal miR-24-3p was observed in saliva of OSCC
patients.

30 (53)

miR-21 and miR-31 Diagnostic Upregulation of salivary miR-31 and miR-21 in patients with severe dysplasia relative
to healthy controls. Leucoplakia had the most significant upregulation of the
aforementioned markers out of all the lesions.

36 (54)
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molecular cargo (DNA, RNA and protein) to local or distant sites
through circulatory fluids (63).

Conventional EV isolation techniques are dependent on their
physical and biological properties such as size, density and surface
marker expression (64). Conventionally utilized techniques for EV
isolation and purification based on size include filtration and size-
exclusion chromatography (SEC) whereas immune-affinity capture
method identifies the EV population based on surface markers.
Currently, the widely used methods for EV isolation are
ultracentrifugation and/or differential centrifugation and polymer
precipitation method which is commonly used in commercially
available kits. Recently developed microfluidics-based technologies
for EV isolation comprise of antibody-functionalized microfluidic
channels (65), nanoscale size-based filtration (66) and spiral inertial
microfluidic devices (67). After isolation, western blotting and flow
cytometry using surface protein markers CD9, CD63, CD81, Alix,
TSG101, are the most conventionally used analytical
methodologies for characterisation of EVs (68–71). Nanoparticle
Tracking Analysis (NTA) that works on the principle of
determining Brownian motion of the particles is another
extensively used technique and has higher resolution as
compared to flow cytometry (72). Similar to NTA, Tunable
Resistive Pulse Sensing (tRPS) is an emerging technology that
estimates the EV concentration based on the particle movement
and flow rates in fluid cells corresponding to the pulses/voltage
applied (73, 74). However, the clinical applicability of tRPS remains
to be challenging considering the heterogenous size of the EV
population. Several techniques have been explored for isolation and
characterisation of EVs using various patient samples; however,
sensitivity and specificity of these techniques in terms of clinical
utility for liquid biopsies requires comprehensive standardization
of protocols and larger patient cohort studies.

Various findings have revealed that saliva harbors ample
numbers of EVs, the components of which differ based on the
physiological or pathological state of an individual (75). Some of
the advantages of salivary EVs as compared to serum and plasma
derived EVs are – (i) the collection process is non-invasive;
Frontiers in Oncology | www.frontiersin.org 6
(ii) they contain less protein content that makes their
identification and quantification simpler (76, 77); and (iii) they
do not undergo coagulation which stimulates a persistent
secretion of EVs from platelets, thus altering the composition
of circulating EVs (78). Recently, the possibility of potential
biomarkers from circulatory EVs derived from saliva of HNC
patients is gaining interest (Table 3). On comparing plasma and
salivary EVs derived from oral cancer patients it was found that
salivary EVs were concomitantly elevated as the plasma derived
EVs and demonstrated a clinical association with tumor staging
(p<0.01) and loco-regional aggressiveness (p<0.01) (81). These
results are in corroboration with previous studies showing that
salivary EVs from oral cancer patients have an irregular
morphology, are greater in size and formed more aggregates as
compared to EVs from normal controls (82–84).

Recent studies have found a significant role of salivary EV
derived non-coding miRNAs as potential biomarkers for early
diagnosis, prognosis and therapeutic targets in HNC patients given
their stability within the EV and ability to regulate both oncogenes
and tumor suppressor genes. Significantly, elevated levels of miR-
21, miR-494-3p, miR-412-3p, miR-184, miR-27a-3p, and miR-512-
3p (p<0.05) were observed in salivary exosomes derived from
OSCC patients compared to the control cohort (9, 85). A recent
study demonstrated that salivary miR-24-3p was enriched in
OSCC and tongue cancer patients and could significantly
increase the proliferation of these cells (53). Collectively these
findings suggest that salivary exosomal miRNAs can be an asset for
convenient and non-invasive sampling as well as pave way for
early diagnosis, disease monitoring and therapeutic response
evaluation in various HNC subsites (86–88).

Recent studies have reported that EVs contain long non
coding RNAs (lncRNAs), however their expression has not
been explored extensively in salivary EVs. High expression of a
subset of lncRNAs, including HOTAIR, has been reported in the
saliva of metastatic HNC patients. Thus, besides miRNAs,
lncRNAs in salivary EVs could be a valued prognostic and
diagnostic asset for HNC (89, 90).
TABLE 3 | Exosomal biomarkers for HNSCC.

Author Type of
Marker

Findings Tumor
Sample
Size

Reference

RNA
miR-21 Diagnostic Hypoxic OSCC derived exosomes expressed higher levels of miR-21 and the

expression was closely associated with lymph node metastasis and T-stage of the
cancer.

108 (79)

miR-302b-3p, miR-517b-3p, miR-512-3p
and miR-412-3p

Diagnostic miR-302b-3p and miR-517b-3p were exclusively expressed in salivary EVs isolated
from OSCC samples. miR-412-3p and miR-512-3p were significantly upregulated in
salivary EVs of OSCC patients as compared to healthy controls (p < 0.02).

21 (9)

miR-24-3p Diagnostic Salivary exosomal miR-24-3p levels significantly increased in OSCC patients. miR-24-
3p interacts with PER1 thereby promoting the proliferation of OSCC.

49 (53)

Proteins
MMP-9, myosin-9 (NMMHC II-a),
complement C3, S100A9, complement
factor B (CFB), Rab GDI and complement
C4-B

Diagnostic Differentially expressed proteins were reported in salivary OSCC samples as compared
to control samples. Out of the group of 38 proteins that were identified only in OSCC
samples, 5 were identified in patients without any lesions.

21 (80)
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The discovery of tumor associated proteins in saliva is
accredited to high-throughput mass spectrometry screening of
patient samples. From these studies, a series of protein
biomarkers has been detected in salivary EVs for OSCC, such
as LGALS3BP, PKM1/M2, A2M, MUC5B, IGHA1, HPa, and PIP
(80, 91). Moreover, these tumor-associated proteins have been
reported to be involved in multiple signaling pathways, including
metal transport, cell proliferation, and tumor immune responses
(80). Additionally, exosomal EGFR, ANXA1 and programmed
cell death (PD)-1/PD-ligand 1 (PD-L1) pathway (tumor
suppressor in HNSCC) have been identified as potential
biomarkers for predicting prognosis and therapeutic
monitoring in tumor derived exosomes of HNSCC patients (92).

There are several benefits of EVs as compared to ctDNA and
CTCs. However, a wide range of isolation and analysis
techniques for EVs and lack of universally accepted EV
reference standards are some of the major hurdles for
developing diagnostic assays to enumerate EVs from patient
samples. Moreover, interference from hemolytic, lipaemic and
platelet contaminated samples and issues with sample stability
compromise the reproducibility of EV detection, modify EV’s
physical and biological properties and affect their purity and
recovery rate (93). Hence, developing a consistent external
quality assessment (EQA) scheme involving application of
strict but attainable sample requirements for assays,
establishing standardized collection and storage environments
that can minimize EV degradation and applying standard
methods of EV characterization and enumeration is needed.

Salivary EVs have enormous potential for future diagnostic
and therapeutic modalities, but this potential needs to be
underp inned wi th so l id sc i ent ific groundwork . A
comprehensive understanding about the mechanism of how
cancer cells utilize EVs to promote carcinogenesis may direct
the advancement of novel therapies for HNC.
SALIVARY METABOLOMICS

Metabolomics focusses on identification and quantification of
small metabolites produced during the process of metabolism
from biological samples including body fluids, cells, and tissues.
Increasing evidence has highlighted the importance and
potential clinical utility of metabolomics in differentiating
between HNC patients and controls using bio-fluids such as
saliva, plasma and serum of HNC patients.

Currently, mass spectrometry (MS) and nuclear magnetic
resonance (NMR) are the most frequently used procedures for
screening salivary metabolites for early diagnosis and therapeutic
monitoring of HNC patients (94). For salivary metabolite-based
analysis, solution state NMR is the most preferred technique and
protons (1H) are the most commonly analyzed NMR-active
nuclei (95). One of the major advantages of this technique is
that simple steps such as centrifugation are sufficient and no
other pre-processing is required for sample preparation (96). The
utility of MS techniques such as matrix-assisted laser desorption
ionization (MALDI) in combination with time-of-flight (TOF) is
being explored in salivary metabolomics as it can provide a high-
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throughput profile from a small sample volume without the
requirement of a separation step (97, 98). Apart from this, liquid
chromatography MS (LC-MS) is a frequently used technique for
screening saliva samples for metabolites . Capil lary
electrophoresis MS (CE-MS) is an emerging technique that
utilizes high voltages to induce an electrophoretic flow of ions
through a capillary (20–200 µm i.d.) using very small sample
volumes (10-100 nanolitre). The unique advantage of CE-MS is
its ability to boost the range of detectable polar metabolites;
however complex assembly and the high possibility of capillary
blockage are confounders (99, 100). Therefore, it is crucial to
develop a standard protocol for processing saliva samples for
metabolomic analysis for successful clinical translation.

Identification of salivary metabolites such as d-glycerate-2-
phosphate, pseudouridine, norcocaine nitroxide, 1-
methylhistidine, 2-oxoarginine, inositol 1,3,4-triphosphate,
sphinganine-1-phosphate, and 4-nitroquinoline-1-oxide
demonstrated the potential of this technique to differentiate
between malignant and precancerous lesions (94). Wei et al.
used ultra-performance liquid chromatography combined with
quadrupole/time-of-flight spectrometry (UPLC-QTOFMS)
analysis to identify a signature panel of salivary metabolites
(valine, lactic acid, g-aminobutyric acid, n-eicosanoic acid, and
phenylalanine) in 37 OSCC patient samples that could
distinguish between OSCC from their normal counterparts
with 86.5% sensitivity and 82.4% specificity. Furthermore,
lactic acid and valine were significantly elevated in OSCC with
respect to oral leucoplakia (OLK) with a fold change of 2.97 (p =
0.0032) and 1.60 (p = 0.0034) respectively (101). Similarly,
Sugimoto et al., and Ishikawa et al. analyzed the salivary
metabolomic profiles in oral cancer patients in two independent
studies. These studies identified several metabolites such as
cadaverine, glutamic acid, pyrrolinehydrocarboxylic acid, choline,
threonine, beta-alanine, piperidine, carnitine, tryptophan,
glutamine, taurine, leucine plus isoleucine, pipecolic acid, alanine,
valine, and histidine that were consistently elevated in the saliva
and tumor tissues of the patient samples as compared to controls
(102, 103). Sugimoto’s group identified taurine and piperdine as the
key oral cancer-specific markers (p < 0.05) in a pool of 69 OSCC
saliva fluid samples, suggesting that metabolites in saliva can be
used as biomarkers for HNC screening. Ishikawa et al. reported a
high fold change value for kynurenine (FC = 38.1, p < 0.0001) (a
metabolite associated with reactive oxygen species mediated stress)
in tumor samples from oral cancer patients. Collectively these
findings suggest that salivary metabolites reflect changes in
metabolites found in tumor tissues and thus could be used for
diagnosis and prognosis of oral cancers (101, 102).

Among these differentially expressed metabolites, several
studies observed significantly higher levels of salivary
polyamine in oral cancer patients which showed a clinical
association with tumor invasion and metastasis (102). A study
conducted by Hsu et al. confirmed the elevation of polyamine
along with its intermediate metabolites and demonstrated a vital
involvement of polyamine pathway in oral cancer progression
(103, 104). These findings highlight the importance of polyamine
homeostasis and its clinical utility in identifying and
understanding tumor progression.
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Although many studies have successfully utilized salivary
metabolomics to detect HNC, inconsistency in saliva/serum
derived metabolite profiles hampers the clinical utility of this
approach (105). To resolve this, more evidence using larger patient
cohorts is warranted. Additionally, establishing standardized
protocols, analyzing intracellular metabolites and their role in
HNC and understanding the underlying mechanisms behind
metabolomic alterations are required in order to identify genes
or proteins affected by metabolomic changes. The salivary
metabolites profile tends to fluctuate as it is highly responsive to
various conditions including stress. Such factors need to be
accounted for as they directly impact the reproducibility of the
results as well as the sample collection protocol. Salivary
metabolomics is still at a nascent stage and may develop into a
diagnostic tool for early detection of oral cancer.
SALIVARY MICROBIOME

Recent studies have highlighted the role of oral microbiome in
the development, progression and treatment monitoring of HNC
(106). Moreover, oral microbiota has also been reported to
influence salivary metabolomic profiles of HNC patients (107).
Studies based on identification of bacterial spectra on the surface
of OSCC mucosa in comparison to normal oral mucosa of
patients revealed that there was a predominance of anaerobic
pathogens in OSCC patients, compared to normal oral mucosa
(108, 109). However, very little is known about the relationship
between the oral microbiota and disease progression in
HNC patients.

The past approaches for identification of bacterial taxa were
culture dependent. However the diversity of the oral microbiome
cannot be completely identified by these approaches. PCR
technology and DNA-DNA hybridization methods are
commonly used to describe oral microflora. However this
experimental design can only identify limited changes in the
microflora of a tissue (110–112). With the emergence of NGS
technology, rRNA sequencing is promoted to discover the
associations between microbial flora and HNC.

Pushalkar et al. examined the saliva microbiome of OSCC
patients and suggested its potential application as a diagnostic tool
(113). A 16S rRNA gene sequencing study on Caucasian
participants found that a panel of Capnocytophaga,
Corynebacterium, Porphyromonas, Haemophilus, Oribacterium,
Rothia, and Paludibacter could discriminate between patients with
oropharyngeal cancers and oral cavity cancers from age-matched
controls (p<0.05) (114). A recent study demonstrated that an
elevated presence of Capnocytophaga (AUC= 0.81 p<0.05) in
saliva could be used as a probable screening tool for prognosis and
diagnosis of HNC patients (115). Similarly, abundance of Dialister
(p<0.05) in HNC patients correlated with aggressive laryngeal and
oral tumors (116). Collectively, these studies suggest that salivary
microbiota maybe useful in diagnosis and early detection of HNC.

The comprehensive role of oral microbiome in HNC
development and progression is still at a nascent stage, but has
been explored considerably in the last decade. However, it is still
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difficult to understand the exact mechanisms by which the oral
microbiome contributes to HNC pathogenesis. Recently, data that
links specific microbiome species to HNC aetiopathogenesis has
been reported (106); however, studies based on longitudinal time
frames with larger patient cohorts are needed. Longitudinal studies
are critical in evaluating the dynamic nature of salivary oral
microbiome before, during and after HNC development. Further
research along these lines for identifying microbial biomarkers
involved in tumor progression may assist in better understanding
of the process of tumorigenesis and development of personalized
treatments for better patient management in HNC.
CIRCULATING TUMOR CELLS (CTCs)

The tumor mass tends to shed a large number of cells through
the process of apoptosis/necrosis. These cells are known as
Circulating Tumor Cells (CTCs) that have the potential to
create metastatic niches (117) by migrating to adjacent or
distant tissues through the blood or lymphatic system. Thus,
these cells are considered as seeds of metastasis or risk predictors
of disease aggressiveness. CTCs have a promising role in early
risk prediction, disease progression and therapeutic monitoring,
and as potential drug targets (118).

CTC detection is a two-step process that involves an initial
enrichment step followed by a detection step. The enrichment
process comprises of two alternative approaches namely –(i)
negative depletion: which focuses on removal of undesired cells
(RBCs and lymphocytes) either via lysis or by immuno-magnetic
bead-based depletion of CD45+ leukocytes; and (ii) positive
selection: that involves isolation of epithelial cells using surface
markers like epithelial cell adhesion molecule (EpCAM) or
cytokeratins in order to distinguish the CTCs from
contaminating leukocytes. The subsequent detection step is
carried out using techniques ranging from quantitative PCR
(qPCR) and digital PCR (dPCR) for mutational profiling to
whole-genome sequencing, fluorescence in situ hybridization
(FISH) based cytogenetic analysis and targeted NGS (119, 120).
Targeted NGS-based detection of CTCs is a relatively recent
advancement and is being explored for various types of cancers,
including HNC (121). Immunocytochemistry (122) and flow
cytometry (123) are used for single-CTC analysis but a major
drawback of these two techniques is their poor multiplexing
capacity. To overcome this limitation new technologies are
emerging such as single-cell Western Blotting (scWB), a
microfluidics-based technique used to evaluate protein levels in
metastatic cancers (124). In addition, CellSearch® is an EpCAM-
based CTC detection system that is the only system clinically
approved by the FDA for enumerating epithelial CTCs. Recent
studies have highlighted the heterogeneity of CTC populations
and CellSearch® fails to detect CTCs with low or no expression
of EpCAM and is unable to detect non epithelial tumors like
sarcomas or other mesenchymal tumors. This shortcoming is
overcome by using antigen-independent systems that identify
CTCs based on their biophysical characteristics like density, size,
and electrical properties.
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CTCs can predict the risk of metastasis in HNC patients even
before clinical examination (125). Hence, they may be useful for
risk prediction in HNC. The presence of CTCs has been detected
in saliva, however, the current landscape of CTC-based studies in
HNSCC have utilized blood/plasma/serum-derived samples.
Moreover, CTC evaluation is a challenge in saliva due to their
limited numbers which makes isolation and detection difficult
(126). The feasibility of EpCAM markers in salivary detection of
CTCs, remains uncertain because of the shedding of normal
epithelial cells along with cancerous cells in saliva. Nonetheless,
existing studies have shown promising potential of circulatory
CTCs for diagnosis, prognosis, and therapeutic monitoring in
HNSCC, which suggests that further research can lead to better
prospects for salivary CTCs in HNC (127–130).
DISCUSSION

Several studies conducted in the last decade demonstrated the
plausibility of identification of potential biomarkers from biofluids
and their relevance in clinical settings. Liquid biopsy has paved the
way for early diagnosis and prognosis, recurrence and therapy
monitoring as well as screening of high-risk populations. Although
blood-based liquid biopsies have been the utmost common avenue
of research, the use of salivary or oral rinse-based liquid biopsies
for HNC offer a unique opportunity, as these cancers are of upper
aerodigestive mucosal origin and can shed tumor cells, tumor
DNA, and EVs directly into saliva. Moreover, this biopsy approach
is minimally invasive, entails analysis of various circulating
biomarkers and enables real time monitoring of tumor
progression using repetitive testing. Such real time monitoring is
simply not possible with traditional biopsies. As cancer treatment
moves toward an attention on targeted precision medicine, liquid
biopsy has the potential to guide such treatments based on real
time monitoring of patients. The current review highlights new
technological advancements and potential clinical applications of
saliva as a liquid biopsy tool in HNC. CTCs, ctNAs, EVs, and
salivary metabolome can yield useful biomarkers using non-
invasive techniques. These biomarkers could reflect actual tumor
biomarkers. The copious work, involving an extensive variety of
assays based on diverse principles, has been quite productive in
terms of utility of these biomarkers in diagnosis and disease
monitoring of head and neck cancers. However, a major
obstacle for all biomolecules in liquid biopsy remains the
relatively low and fluctuating concentration derived from a
tumor against the background of normal counterparts; in most
patient samples. Such hurdles are tackled using the approaches
highlighted in the technologies addressed above. These methods
are presently sensitive enough to detect and analyze very rare
mutation events. Nevertheless, it is crucial that laboratories
working with such techniques must be consistent in their
methodologies to avoid inaccurate results. Though passé, the
association of a needle in a haystack relates and is fitting for
each of these practices.

The investigation of ctNAs and EVs has benefitted from
advances in the field of enrichment former to the analytical
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procedures. While at a nascent stage, reports have revealed that
isolation and enrichment techniques will be an important asset
in refining nucleic acid-based assays and as an individual
diagnostic in the future.

Evidently, EVs have various advantages for prognosis and
diagnosis. They aid in extraction of high-quality RNA from fresh
or frozen saliva, thus enhancing the scope of detectable
mutations that comprise of splice variants, mutations, fusions
along with expression-based assays for mRNA, microRNA,
lncRNA and other non-coding RNAs. ctDNA contains all
genes at an equal level, while RNA originating from a highly
expressed gene could be present in thousands of copies/cells.
Nevertheless, as mutations exist on both ctRNA (dying/apoptotic
process) and exosome RNA (living process), developing a
platform that can aid in both will have palpable advantages for
detecting rare mutations. This can be of great help in the case of
patients who do not have an ample quantity of mutated nucleic
acid in circulatory fluid. Moreover, as DNA mutations will only
notify limited information of the disease, investigating RNA
expression in biofluids such as saliva can further help in
understanding the processes within the HNC patient. Although
saliva is a promising source of all these biomolecules it is
currently unclear which one of these (ctNAs, EVs or
metabolites) will eventually be useful in early diagnosis, tumor
prognosis and real time therapeutic monitoring. It is entirely
possible that each of these end points require monitoring
different biomolecule levels. Advances in technologies for
sensitive, robust and inexpensive detection of such
biomolecules will enable the use of saliva based liquid biopsies
in routine clinical use.

Cancer is a multifaceted and dynamic disease that can
undergo quick changes. To copiously deliver on the assurance
and surety of personalized medicine, development of reliable
non-invasive avenues for the diagnosis, prognosis, patient
stratification and treatment response monitoring are
paramount. Further studies in clinical settings and in large
patient cohorts with well-annotated data are needed to validate
the salivary transcriptomic, genomic and proteomic data. The
several liquid biopsy platforms explained in this review have the
ability to add immense value to the care of cancer patients.
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