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Abstract: Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are
typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological
tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes.
Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that
define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin
Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework.
Unexpectedly, NMR determination of its three-dimensional structure reveals a new structural type of
A-superfamily conotoxins with a different disulfide-stabilized fold, despite containing the conserved
cysteine framework and disulfide connectivity of classical α-conotoxins. The peptide did not
demonstrate activity on a range of nAChRs, or Ca2+ and Na+ channels suggesting that it might
represent a new pharmacological class of conotoxins.
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1. Introduction

Cone snail venoms comprise mainly small peptides, termed conotoxins, and represent one of the
most extensive libraries of bioactive compounds from marine creatures. Conotoxins generally have
selectivity and potency for a range of ion channels and G-protein coupled receptors and consequently
have been useful as pharmacological tools and therapeutic leads [1]. Several conotoxins have been
tested in clinical trials, with an N-type calcium channel blocker from Conus magus (ω-MVIIA) approved
by the Federal Drug Administration (FDA) as Prialt® for the treatment of chronic pain [2–4]. While the
majority of studies aimed at developing conotoxins as drug leads focussed on treatment of pain
(e.g.,ω-CVID and χ-MrIA [5]) other studies have expanded the potential applications of conotoxins.
Conantokin G, a N-methyl-D-aspartate (NMDA) antagonist from Conus geographus, has been of interest
for development as an anticonvulsant [6], while more recent studies have shown antimycobacterial
activity (O1_cal29b from Californiconus californicus) [7] and inhibitory effects against the growth of
lung cancer cells (TxID from Conus textile) [8]. The venom of a single species can contain hundreds
of different peptides and with at least 750 different species of cone snails [9,10], it is estimated that
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more than 1 million unique peptides exist [10]. However, despite extensive study in the field, we have
currently sampled less than 1% of this diversity [10].

Conotoxins have been classified into various gene superfamilies based on signal sequence
conservation, in addition to classification into families based on cysteine framework and receptor
targets [11]. The number of disulfide bonds is typically 2-4, but the connectivity can vary even amongst
conotoxins containing the same number of cysteine residues, as can the bioactivity. The known cone snail
venom peptide sequences and their known functions have been collated in the database Conoserver [12,13].
Twenty-nine superfamilies and thirty different cysteine frameworks have been identified in Conoserver
to date, highlighting the diversity in the sequences of conotoxins. The A-superfamily is one of the
most well characterised, with the majority containing cysteine framework I (CC-C-C). This framework
is primarily associated with the α-conotoxin family, members of which specifically antagonise the
nicotinic acetylcholine receptors (nAChRs) [14,15]. nAChRs are ligand-gated ion channels involved in a
range of physiological and pathophysiological processes, including muscle contraction, pain sensation
and nicotine addiction. They are classified as muscle-type and neuronal, and have been implicated
in neurological disorders such as Parkinson’s and Alzheimer’s diseases [16] making them potential
drug targets. nAChRs exist as homopentamers or heteropentamers comprising a range of different
subunits [17]. α-Conotoxins are one of the most medically relevant families of conotoxins, highlighted by
a cyclic version of Vc1.1 displaying oral activity in an animal model of neuropathic pain [3,18]. Additional
engineering studies have further highlighted the potential of this peptide in drug design [19,20].

α-Conotoxins are generally less than 20 residues in length, have a CysI-CysIII, CysII-CysIV
disulfide connectivity and the majority have a 4/7 loop spacing, which represents 4 residues in the first
inter-cysteine loop and 7 in the second loop (Figure 1a). A well-studied example containing this loop
spacing is Vc1.1 [21]. Several other loop spacings have been identified in theα-conotoxin family, and the
size of the loops correlates to some extent with specificity for different nAChR subtypes. For example,
3/4 α-conotoxins target homomeric neuronal nAChRs, 3/5 α-conotoxins target muscle-type nAChRs
and 4/4, 4/6 and 4/7 α-conotoxins target different heteromeric and/or homomeric neuronal nAChRs [14].
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Figure 1. Framework and sequences of α-conotoxins. (a) Framework I is represented highlighting
the two inter-cysteine loops; the number of residues within each of these loops is used to define the
α-conotoxin class. In addition, the globular disulfide bond connectivity present in α-conotoxins is also
shown. (b) The sequence of Pl168 from Conus planorbis, which contains a 4/8 framework. The sequences
of related 4/7 α-conotoxins, Vc1.1 and MII are also shown. Cysteine residues are highlighted in bold.

The structures of several α-conotoxins have been determined using nuclear magnetic resonance
(NMR) spectroscopy. This technique is well suited to the determination of the structures ofα-conotoxins
because of their small size, high aqueous solubility and relatively well-defined structures [22].
In addition, some studies used X-ray crystallography to study α-conotoxins either in isolation or in
complex with binding partners. Despite the variation in inter-cysteine loop sizes across the family,
the majority of α-conotoxins are characterised by a small helical structure, which is braced by the
CysI-CysIII disulfide bond. The additional disulfide bond connecting CysII-CysIV generally tethers
the C-terminal region to the N-terminus.

Here we show that a minor change in the inter-cysteine loop spacing in framework I can have a
significant impact on the structure and bioactivity. Pl168, a 22-residue framework I peptide that contains
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an unusual 4/8 spacing, was identified in the transcriptome of Conus planorbis as a new α-conotoxin [23].
The sequence of Pl168, along with the sequences of two well characterised α-conotoxins, Vc1.1 and
MII, are given in Figure 1b. The three-dimensional structure of Pl168 differs significantly from the
characteristic α-conotoxin fold and the peptide does not block a range of nAChRs or Ca2+ and Na+

channels, indicating that it might represent a new pharmacological class of A-superfamily toxin.

2. Experimental Section

2.1. Peptide Synthesis, Purification and Characterisation

Synthetic Pl168 was manually synthesised using standard solid-phase peptide synthesis
fluorenylmethyloxycarbonyl (Fmoc) methods and 2-chlorotrityl-chloride resin. The Fmoc protected
amino acids (Auspep, Australia) were activated using O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HCTU) (Iris, Germany) and coupled on resin with
N,N-diisopropylethylamine (DIPEA) (Auspep, Australia)/dimethylformamide (DMF) (Auspep,
Australia) by stepwise solid-phase peptide synthesis chemistry. Cleavage of the peptide chain
from the solid support was achieved with a mixture of trifluoroacetic acid (TFA) (Auspep,
Australia):triisopropylsilane (TIPS) (Auspep, Australia):H2O (95%:2.5%:2.5% v/v) followed by purging
with nitrogen to evaporate TFA. The peptide was then precipitated in ice-cold diethyl ether
(Auspep, Australia) and dissolved in 50% acetonitrile (Sigma, Australia):50% H2O:0.1% TFA (v/v) and
subsequently lyophilised to dryness. Crude peptide was purified by reversed-phase high performance
liquid chromatography (RP-HPLC) on a Phenomenex Jupiter C18 preparative column (300 Å, 10 µm,
250 × 21.2 mm) (Phenomenex, Torrance, CA, USA), using a gradient of 0-60% solvent B (Solvent A:
99.95% H2O:0.05% TFA; Solvent B: 90% acetonitrile:10% H2O:0.045%TFA) over 60 min. Collected
fractions were analysed using a SCIEX 5800 matrix-assisted laser desorption ionisation (MALDI)
time-of-flight (TOF)/TOF mass spectrometer (SCIEX, Foster City, CA, USA) and then lyophilised.
Formation of the disulfide bonds was carried out in ammonium bicarbonate pH 8.0 (Sigma, Australia)
at room temperature and the major isomer from the oxidation reaction purified using RP-HPLC and
the mass confirmed using MALDI-TOF mass spectrometry (SCIEX, Foster City, CA, USA).

2.2. NMR Spectroscopy

Lyophilised peptide was dissolved in 90% H2O:10% D2O at a concentration of approximately
0.2 mM. All NMR spectra were acquired on a Bruker 600 MHz AVANCE III NMR spectrometer (Bruker,
Karlsruhe, Germany) equipped with a cryogenically cooled probe. Two-dimensional 1H-1H TOCSY,
1H-1H NOESY, 1H-1H DQF-COSY, and collected at 290 K were used for sequence-specific assignments
and structure calculations. Thus, 1H-15N HSQC, and 1H-13C HSQC spectra were acquired for carbon
and nitrogen chemical shifts, respectively. All spectra were recorded with a 1 s interscan delay
using standard Bruker pulse sequences with an excitation sculpting scheme for solvent suppression.
Two-dimensional spectra were collected over 4096 data points in the f2 dimension and 512 increments
in the f1 dimension over a spectral width of 12 ppm. Homonuclear NOESY and TOCSY spectra were
acquired with a mixing time of 200 and 250 ms, and a spin lock time of 80 ms, respectively. All spectra
were processed using Bruker TopSpin (Version 3.5pl7) and assigned using CCPNMR analysis [24]
based on the approach described in Wüthrich et al. [25]. The αH secondary shifts were determined by
subtracting random coil 1H NMR chemical shifts from the experimental αH chemical shifts [26].

2.3. Structure Calculations

Structures were calculated with the CYANA program using an automated NOE assignment
protocol [27]. Torsion-angle restraints were predicted using TALOS-N [28] and hydrogen bonds
predicted based on preliminary structures calculated without disulfide bond restraints. Calculations
were also performed with the three possible disulfide bond connectivities to determine the most likely
connectivity. A set of 100 final structures was calculated with the globular disulfide connectivity and



Biomedicines 2020, 8, 128 4 of 10

20 structures with the lowest target function chosen to present the final ensemble. Structures were
visualized and the root-mean-square deviation (RMSD) values were assessed using MOLMOL [29].

2.4. Electrophysiological Measurements

Rat nAChR cDNAs were provided by J. Patrick, Baylor College of Medicine, Houston, TX,
and subcloned into the oocyte expression vector pNKS2. The cRNA was synthesized with the SP6
mMessage mMachine kit (Ambion, Austin, TX, USA), and Xenopus laevis (Nasco International) oocytes
were kindly provided by Prof. Luis Pardo, Göttingen). Oocytes were injected with 50 nL aliquots
of cRNA (0.05 mg/mL). The nAChR subunits of heteromeric receptors were mixed at the ratio of 1:1
(α3:β2) or 5:1 (α4:β2).

Recordings were performed as described [30] in ND96 (96 mM NaCl, 2 mM KCl, 1 mM CaCl2,
1 mM MgCl2, and 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at pH 7.4). Briefly,
current responses to 100 µM acetylcholine (ACh) or 100 µM nicotine (in the case of α7) were recorded
at −70 mV using a Turbo Tec 05X Amplifier (NPI Electronic, Tamm, Germany) and Cell Works software.
A fast and reproducible solution exchange (<300 ms) was achieved with a 50 µL funnel-shaped oocyte
chamber combined with a fast solution flow (∼150 µL s−1) fed through a custom-made manifold
mounted immediately above the oocyte. Agonist pulses were applied for 2 s at 4 min intervals.
Peptide up to 100 µM was applied for 3 min in a static bath.

2.5. FLIPRTetra Ion Channel Assays

The effect of Pl168 on human ion channels was assessed using a high-throughput Ca2+ imaging
assay as previously described [31–34]. In brief, SH-SY5Y human neuroblastoma cells (ATCC) were
cultured in Roswell Park Memorial Institute (RPMI) medium supplemented with L-glutamine (1 mM)
and 15% foetal bovine serum and maintained at 37 ◦C/5% CO2. Cells were plated on black-walled
384-well imaging plates (Corning, NY, USA) 48 h prior to loading with Calcium 4 No-wash dye
(Molecular Devices, Sunnyvale, CA) in physiological salt solution (PSS, composition in mM: 140 NaCl,
11.5 glucose, 5.9 KCl, 1.4 MgCl2, 1.2 NaH2PO4, 5 NaHCO3, 1.8 CaCl2, 10 HEPES, pH 7.4). Fluorescence
responses (excitation 470–495 nm; emission 515–575 nm) were measured at 1 s intervals using a
FLIPRTetra fluorescence imaging plate reader (Molecular Devices, Sunnyvale, CA), with peptide (30 µM)
added 300 s prior to stimulation of ion channel specific responses, followed by a further 300 reads.
CaV2.2 responses were elicited by addition of KCl (90 mM)/CaCl2 (5 mM) in the presence of nifedipine
(10 µM); α7 nAchR responses by choline (30 µM) in the presence of PNU-120596 (10 µM); α3-containing
nAChR responses by nicotine (30 µM); CaV1 responses by KCl (90 mM)/CaCl2 (5 mM) in the presence
ofω-conotoxin CVIF (10 µM); and NaV responses by veratridine (50 µM). Data was analysed using
ScreenWorks 3.2.0.14 (Molecular Devices, Sunnyvale, CA, USA) and expressed as response over
baseline, with baseline defined as 10 reads prior to agonist addition.

3. Results

3.1. Peptide Synthesis and Characterisation

To allow structural and functional characterisation of Pl168, the peptide was synthesised using
Fmoc chemistry and oxidation of the cysteine residues to form disulfide bonds was carried out in
ammonium bicarbonate pH 8.0 at room temperature. A major isomer was present in the oxidation
reaction and was purified using RP-HPLC and the mass analysed using MALDI-TOF mass spectrometry.
The sample was lyophilised and stored at 4 ◦C until subsequent analyses were carried out.

3.2. Structural Characterisation

The three-dimensional structure of Pl168 was determined using NMR spectroscopy. The spectra
display sharp peaks, and only one conformation is evident based on the number of amide proton peaks.
This qualitative analysis suggests that the two proline residues in the sequence are not in cis/trans
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isomerisation, a phenomenon which is relatively common in small peptides. Backbone and side-chain
assignments were determined using established procedures [25] and dihedral angle restraints were
predicted based on the chemical shift assignments using TALOS [28]. Slowly exchanging amide
protons were analysed by dissolving lyophilized peptide in 100% D2O and recording one-dimensional
and TOCSY spectra over time. More than eight amide protons were evident in the spectra following
10 min of dissolution in D2O, with three (Thr11, Tyr20 and Cys21) still present after three hours.
The protection of amide protons from the solvent indicates they are involved in hydrogen bonds.
Preliminary structures were calculated using CYANA, based on the predicted dihedral angle restraints
and incorporating a protocol for automated assignment of the NOESY inter-residue cross-peaks to
derive distance restraints. Analysis of the preliminary structures and slowly exchanging amide protons
allowed the incorporation of hydrogen bond restraints into the calculations.

Initial structures were calculated without disulfide bond restraints. Analysis of these structures
indicated that Cys6 forms a disulfide bond with Cys12, based on 11 out of 15 structures having
sulfur-sulfur distances for these two cysteine residues in close proximity. The sulfur atoms of Cys7 and
Cys21 were not in close proximity to other cysteine residues. The presence of the Cys6-Cys12 disulfide
bond implies that the peptide contains the globular disulfide connectivity (CysI-CysIII, CysII-CysIV)
present in α-conotoxins. To confirm this is the likely connectivity, structures were calculated with the
three different disulfide connectivities (Table 1). Consistent with the structures calculated without
disulfide bond restraints, the globular disulfide bond connectivity had the lowest target function of
all three connectivities. An overlay of the 20 lowest energy structures incorporating the globular
connectivity, and the secondary structure present in Pl168 is given in Figure 2. The main elements of
secondary structure are α-helices from Cys6 to Phe9, and Ile14 to Tyr20. The N-terminal region, prior
to the first cysteine residue, is disordered in the structures, consistent with the lack of NOEs in this
region. By contrast, residues 6–21 are well defined. The structural statistics for the final ensemble of
structures are given in Table 2.
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Figure 2. Three-dimensional structures of Pl168 (a,d), Vc1.1 (b,e; PDB code 2h8s) and MII (c,f; PDB
code 1mii). Superposition of the lowest energy structures are shown at the top of the diagram and the
ribbon representation showing the secondary structure shown at the bottom. The disulfide bonds are
shown as yellow lines on the top of the figure, and in ball-and-stick format on the bottom.
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Table 1. Analysis of Pl168 structures calculated with the three possible disulfide bond connectivities.

Connectivity Fold Target Function 1

Cys6-Cys12, Cys7-Cys21 Globular 0.046 ± 0.037
Cys6-Cys21, Cys7-Cys12 Ribbon 1.23 ± 0.099
Cys6-Cys7, Cys12-Cys21 Beads 3.3 ± 0.090

1 Average target function from 15 structures calculated using CYANA.

Table 2. Structural statistics for pl168 with a globular disulfide connectivity.

Experimental Restraints

Interproton distance restraints
Intraresidue 57
Sequential 50
Medium range (i–j < 5) 17
Long range (i–j ≥ 5) 8

Total 132
Dihedral-angle restraints 30
Hydrogen bonds (2 per bond) 12
R.m.s. deviations from mean coordinate structure (Å) (in residues 6–21)
Backbone atoms 0.44 +/− 0.14
All heavy atoms 1.51 +/− 0.25
Ramachandran Statistics *
% in most favoured region 77.8
% in additionally allowed region 22.2

* Based on the PROCHECK analysis https://servicesn.mbi.ucla.edu/PROCHECK/.

3.3. Electrophysiology

The influence of Pl168 on a range of cloned nAChR subtypes expressed in Xenopus laevis oocytes
was assessed by two-electrode voltage clamp measurements as previously described [30]. No effect
was observed on the α7, α4β2, α3β2 or muscle-type nAChRs at peptide concentrations up to 100 µM.

3.4. FLIPRTetra Ion Channel Assays

The effect of Pl168 (30 µM) on ion channel responses (response over baseline; mean ± S.E.M,
n = 4) was assessed using fluorescent Ca2+ imaging in the human neuroblastoma cell line SH-SY5Y
endogenously expressing nAchR, CaV and NaV channels. Pl168 (30 µM) had no effect on α7 nAChR
responses (control, 2.6 ± 0.14; Pl168, 2.5 ± 0.06), no effect on nicotine-induced α3 nAChR responses
(control, 0.69± 0.05; Pl168, 0.54± 0.09), no effect on L-type (CaV1) voltage-gated Ca2+ channel responses
(control, 1.8 ± 0.23; Pl168, 1.9 ± 0.14) or voltage-gated Na+ channel responses (control, 0.65 ± 0.07;
Pl168, 0.74 ± 0.07), and only a small (18%) inhibition of N-type (CaV2.2) voltage-gated Ca2+ channel
responses (control, 0.17 ± 0.008; Pl168, 0.14 ± 0.01) (Figure 3). Addition of the peptide also caused no
increase in Ca2+, suggesting it does not act as an agonist at endogenously expressed ion channels or
receptors linked to Ca2+ signalling.

https://servicesn.mbi.ucla.edu/PROCHECK/
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presence ofω-conotoxin CVIF (10 µM); (5) Pl168 (30 µM) on NaV channels; (3) Control NaV channel
response by veratridine (50 µM).

4. Discussion

We have determined the three-dimensional structure of an A-superfamily conotoxin containing an
unusual 4/8 spacing and shown that it represents a new structural sub-family. α-Conotoxins, the major
family of A-superfamily peptides, have been well studied with more than 70 structures submitted to
the Protein Data Bank. In general, the fold is very similar across the family, but we show here that an
additional residue in loop 2 appears to have a significant effect on the structural fold.

Pl168 was synthesized without selective protection of the cysteine residues, but nonetheless a
major isomer was produced, which was purified and structurally analysed using NMR spectroscopy.
Structural analysis indicated that the globular disulfide bond connectivity was present in the synthetic
version of Pl168. The Pl168 sequence was identified from transcriptomic data and therefore a co-elution
with the native material was not possible. Although unlikely, it is conceivable that the native peptide
present in the venom displays a different connectivity given that the folding conditions can have a
significant influence on the isomers present. For instance, a recent study showed that recombinant
expression of the α-conotoxin TxIA resulted in the ribbon isomer in contrast to synthetic studies
which allowed production of the globular isomer [35]. In the absence of a direct comparison of the
synthetic peptide with native material we cannot say definitively that this connectivity is present in the
venom, but the well-defined structure displayed by the synthetic version of Pl168 and the propensity of
A-superfamily framework I toxins to contain the globular connectivity is consistent with the synthetic
peptide being equivalent to the native peptide.

The structures of Pl168 comprise two helical regions connected by a loop region. Comparison of
Pl168 with the 4/7 conotoxin Vc1.1 indicates that the folds are similar in that both are characterised by
α-helices braced by two disulfide bonds as shown in Figure 2. It should be noted, however, that not all
the Vc1.1 structures in the ensemble [36] contain the N-terminal helix, and many α-conotoxins only
contain the one helical region centered around CysIII as shown for α-conotoxin MII [37] (Figure 2).
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However, the structural differences between α-conotoxins such as Vc1.1 and MII, and Pl168 relate
to the bracing of the disulfide bonds. Whereas CysIII in Vc1.1 and MII is located within the α-helix,
Cys III in Pl168 is present in the loop region and this distinction prevents an effective superposition of
these structures. These structural differences, and the presence of a related peptide in Conus planorbis
with only one residue different to Pl168 (Y20N mutation; GenBank: ADJ67509.1), suggests that Pl168
could represent a new structural class and possibly a new sub-family of conotoxins.

Extensive mutational studies have been done on a range of α-conotoxins, which have identified
residues important for bioactivity, including a recent study on MilIA, the first conotoxin isolated from
Conus milneedwardsi [38]. Interestingly, mutations in MilIA allowed elucidation of residues important in
switching between muscle and neuronal nAChRs preference. However, the α-conotoxin family is large
with diverse inter-cysteine loop sequences and there does not appear to be a common pharmacophore.
The lack of activity of Pl168 against a range of nAChRs suggests that the overall three-dimensional
structural and side-chain orientations are not optimal for interaction with the mammalian nAChRs
tested in this study. However, given the range of different nAChRs subunits, it is still possible that
it inhibits a subtype not tested or a prey-specific nAChR (C. planorbis feeds on polychete worms).
Although Pl168 contains a conserved signal sequence with other α-conotoxins, it might target another
receptor or ion channel as peptides from the A-superfamily are very diverse in their sequence and
bioactivity [11]. However, the lack or minimal activity against Ca+ and Na+ channels suggests that a
wide screen is required to determine the bioactivity of this peptide.
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