
Screening newborns for metabolic disorders based 
on targeted metabolomics using tandem mass 
spectrometry

Review article

The main purpose of newborn screening is to diagnose genetic, metabolic, and 
other inherited disorders, at their earliest to start treatment before the clinical 
manifestations become evident. Understanding and tracing the biochemical data 
obtained from tandem mass spectrometry is vital for early diagnosis of metabolic 
diseases associated with such disorders. Accordingly, it is important to focus on 
the entire diagnostic process, including differential and confirmatory diagnostic 
options, and the major factors that influence the results of biochemical analysis. 
Compared to regular biochemical testing, this is a complex process carried out by 
a medical physician specialist. It is comprised of an integrated program requiring 
multidisciplinary approach such as, pediatric specialist, expert scientist, clinical 
laboratory technician, and nutritionist. Tandem mass spectrometry is a powerful 
tool to improve screening of newborns for diverse metabolic diseases. It is likely 
to be used to analyze other treatable disorders or significantly improve existing 
newborn tests to allow broad scale and precise testing. This new era of various 
screening programs, new treatments, and the availability of detection technology 
will prove to be beneficial for the future generations.
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Introduction

Inborn errors of metabolism are a heterogeneous group of metabolic disorders caused 
by an enzyme defect in a metabolic pathway, leading to dysfunction of metabolism and the 
accumulation of toxic intermediate metabolites. Newborn screening test (NST), introduced 
in the 1960s by scientist Robert Guthrie, is used to screen newborn and infants for metabolic 
disorders using classical methods that includes Guthrie assay, bacterial inhibition assay, 
and enzyme immune assay.  Later, tandem mass spectrometry had been introduced as 
combined with fast atom bombardment and electrospray ionization1-7), recently with high 
resolution chromatography8) and direct analysis in real time9) mass spectrometry for NST1-

10).  For the recent two decades, tandem mass spectrometry has been applied to screen 
over 60 different defined metabolic disorders, thus enabling their early diagnosis and 
treatment2,11,12). The specificity and sensitivity of tandem mass spectrometry method could be 
up to 99.995% and 99%, respectively, for most organic acidemias, amino acid disorders, and 
fatty acid oxidation disorders as well as extended program comprosing of Fabry, Pompe, and 
mucopolysaccharidosis-I13-15). Though the technical advances achieved in mass spectrometry 
have facilitated the use of dozens of various biochemical markers, special care needs to be 
taken in interpreting output data of the tested marker metabolites because false interpreting 
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can lead to a misdiagnosis12,16-18) to metabolic disorders more 
thoroughly, and speed up the process of early diagnosis and 
treatment12,16-18). 

Metabolites as a targeted marker on dried 
blood-spot and inborn metabolic diseases

One abnormal finding in tandem mass spectrometry points to 
several different metabolic diseases as shown in Table 119-21). One 
of the reasons for such abnormal result is that the acylcarnitine 
isomers cannot be differentiated by tandem mass spectrometry. 
Medication can also trigger changes in the body that mimic a 
metabolic disease. For these reasons, tandem mass spectrometry 
is often performed for initial mass screening, and second alternate 
tests, such as urine organic acid analysis and plasma amino acid 
analysis, are additionally required for the confirmatory follow-up 
diagnostic test19-21).

Acylcarnitine as a marker for fatty acid
oxidation disorder and organic aciduria

It is necessary to differentiate between systemic carnitine 
deficiency (carnitine uptake deficiency, CUD) and secondary 
carnitine deficiency in case of low free carnitine (C0)18,20). 
CUD is characterized by increased renal excretion and 
low concentrations of C0 and all acylcarnitines. CUD is a 
congenital deficiency of carnitine/organic cation transporter 
2 characterized by defects in the beta-oxidation pathway 
due to low carnitine levels. Though the diagnostic marker for 
CUD is decreased C0 value, the possibility of false negative 
cannot be ruled out, especially in long-stored samples due 
to increase in C0 values over time. However, there is a report 
that systemic carnitine deficiency is hardly influenced by 
hydrolysis because of the low level of the total acylcarnitine19,22). 
On the other hand, there are cases where secondary carnitine 
deficiency is accompanied by increase of a specific acylcarnitine 
(increase of 3-hydroxyisovaleylcarnitine [C5-OH], C5, and 

Table 1. Metabolites and suspicious metabolic disease 
Metabolites 2nd Testing recommended Suspicious metabolic disease
Phe PKU, citrin deficiency (citrulline ↑)
[Leu+Ile] & Val AA (plasma), OA (urine) MSUD, ketosis
Met AA (plasma), ammonia (blood) Homocystinuria, MAT deficiency, citrin deficiency (citrulline (high))
Cit AA (plasma), ammonia (blood) Citrullinemia I, argininosuccinic aciduria, citrin deficiency
Cit (low) ammonia (blood) OTC deficiency, CPS1 deficiency
Arg AA (plasma) Hyperargininemia, citrin deficiency(citrulline (high))
Tyr OA(urine) Hypertyrosinemia (if succinylacetone (↑) → type 1), liver dysfunction
C0 (low) Removal rate of carnitine systemic carnitine deficiency, secondary carnitine deficiency 
C0 OA (urine) CPT1 deficiency, tissue degradation  (hypoxia) 
C2 OA (urine) Ketosis
C2 (low) (general fatty acid oxidation problem )
C338) OA (urine) Methylmalonic aciduria, propionic aciduria
C4 OA (urine) IBD deficiency, SCAD deficiency, glutaric aciduria type 2
C4-OH OA (urine) SCHAD (HAD) deficiency,  ketosis
C5 OA (urine) Isovaleric aciduria, under administraion of pivaloyl containing antibiotics , 2MBD deficiency
C5-DC OA (urine) Glutaric aciduria type 1, glutaric aciduria type 2
C5-OH OA (urine) Complex carboxylase deficiency, methylcrotonylglycineuria, HMG uria, beta-ketothiolase 

deficiency, MCG-CoA hydrolase enzyme deficiency, biotin deficiency 
C8 OA (urine) MCAD deficiency (C8>C10), glutaric aciduria type 2 (C8<C10)
C10−C12 OA (urine) Glutaric aciduria type 2
C14:1 OA (urine) VLCAD deficiency, ketosis
C16 OA (urine) CPT2 deficiency, CACT deficiency, VLCAD deficiency, glutaric aciduria type 2
C16-OH OA (urine) TFP/LCHAD deficiency
C18:1(C18) OA (urine) CPT2 deficiency, CACT deficiency, VLCAD deficiency, glutaric aciduria type 2
C18:1-OH OA (urine) TFP/LCHAD deficiency
C16, C18 (low) OA (urine) CPT1 deficiency
PKU,  phenylketonuria; AA, amino acid analysis; OA, organic acid analysis; MSUD, maple syrup urine disease; MAT, methionine adenosyl 
transferase ; OTC, ornithine transcarbamylase; CPS1, carbamoyl phosphate synthetase I; IBD, isobutyryl CoA dehydrogenase; SCAD, short 
chain acyl-CoA dehydrogenase; SCHAD, short chain 3-hydroxyacyl-CoA dehydrogenase; 2MBD, 2-methylbutyryl-CoA dehydrogenase; 
HMG, 3-hydroxy-3-methyl-glutaryl-CoA reductase; MCG, methylcrotonylglycine; MCAD, medium-chain acyl-coenzyme A dehydrogenase; 
VLCAD, very long-chain acyl CoA dehydrogenase; CPT, carnitine palmitoyltransferase; CACT, carnitine acylcarnitine translocase; TFP, 
trifunctional protein; LCHAD, long-chain 3-hydroxyacyl-CoA dehydrogenase.
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C3 in methylcrotonylglycinuria, isovaleric aciduria, and 
methylmalonic aciduria, respectively). While screening 
newborns if the mother has systemic carnitine deficiency, the 
newborn exhibits low C0 concentration even when unaffected 
by the metabolic disease. Moreover, it has been reported that 
if the mother is affected by glutaric aciduria type 1, secondary 
carnitine deficiency can occur and the newborn can also show 
low C0 concentration. In many organic aciduria patients, 
secondary free carnitine deficiency occurs with elevation of 
specific acylcarnitine. For this reason, long-stored samples are 
likely to fail to confirm secondary carnitine deficiency due to 
the ease of hydrolytic degradation22).

If muscle tissue proteolysis occurs in carnitine palmitoyltrans
ferase I (CPT1) deficiency and hypoxic shock, large quantity 
of C0 contained in the tissue is released into the blood, thus, 
increasing the blood free carnitine (C0) concentration. 
This is very often concurrent with the elevation of C3 and 
C4. The characteristic of  CPT1 deficiency are increased 
C0 concentration, decreased long-chain acylcarnitine, and 
increased C0/[C16+C18] ratio. However, samples unaffected 
with CPT1 deficiency can present a pattern similar to that of 
CPT1 deficiency due to hydrolysis of acylcarnitine22,23).

In case of concurrent increase in 3-hydroybutyryl carnitine 
(C4-OH) and C2, the odds are high that 3-hydroxylactate also 
increases, and ketosis can be suspected. Since C2 levels increase 
in short chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD)/3-
hydroxyacyl-CoA dehydrogenase (HAD) deficiency, increased 
C4-OH/C2 ratio is used as a marker for screen SCHAD 
deficiency. Additionally, by the time SCHAD deficiency is 
manifested, C6-OH increases concurrently. However, care 
should be taken when a nonderivatization method is used 
in tandem mass spectrometric analysis it is expressed by the 
increase of glutarylcarnitine (C5-DC) instead of elevation of 
C6-OH22-24).

An elevation of C5 is indicative of the presence of one of these 
four isomers; isovalerylcarnitine, 2-methylbutyrylcarnitine, 
pivaloylcarnitine, and valerylcarnitine. Isovalerylcarnitine 
increases in isovaleryl aciduria, and so does 2-methylbutyryl-
CoA dehydrogenase deficiency 2-methylbutyrylcarniti
ne16,25-27). A long-term administration of oral antibiotics and 
some parenteral antimicrobials, it leads to increase in pivaloy
lcarnitine.  They can be differentiated by urine organic acid 
analysis, whereby slight increase of C5 can occur for unclear 
reasons23,25).

High C5-DC level requires a differential diagnosis (glutaric 
acidemia types I and II) by urine organic acid analysis. Newborn 
patient with glutaric aciduria type 1 excretes abnormal 
quantities of glutaric acid and 3-hydroxyglutaric acid whereas 
glutaric aciduria type 2, 2-hydroxyglutaric acid. However, 
elevation of glutaric acid excretion in infants and young children 
is not always clearly noticeable in glutaric aciduria type 1. When 
ketone increases, C5-DC levels may be slightly elevated23).

If C5-OH increases, diagnosis is simple because urine exhibits 
a distinctively abnormal metabolite excretion in urine organic 
acid analysis. If a preterm infant is fed special formula devoid of 

biotin, C5-OH increases due to biotin deficiency. While biotin 
injection can rapidly lower the serum C5-OH level, C5-OH 
accumulated in the red blood cells cannot transfuse out and C5-
OH level continues to rise depending on red blood cell survival 
time. The urine organic acid analysis of a preterm infant with 
biotin deficiency reveals the elevated level of 3-hydroxyisovaleric 
acid. If the mother has methylcrotonylglycinuria, the maternal 
C5-OH is transfused to the fetus and gets accumulated in the 
red blood cells. In such a case, C5-OH accumulated in the red 
blood cells is detected in the dried blood-spot analysis, resulting 
in a false positive result25). For confirmatory diagnosis, maternal 
urine organic acid analysis is necessary23). 

C5-OH increases at an extremely low rate in mild beta-
ketothiolase deficiency unless symptoms are acute. 

In most of  such cases, mothers are not aware of  their 
pathological conditions. They usually exhibit mild symptoms 
or remain asymptomatic depending on environmental factors 
during their childhood and youth. Although found through 
newborn screening the maternal blood free carnitine level is 
very low, symptoms may or may not manifest depending on 
any given occasion. Hypocarnitinemia may be prevented by 
carnitine intake as needed23).

Increase in C6, C8, C10, with C8 most markedly, indicates 
medium-chain acyl-coenzyme A dehydrogenase (MCAD) 
deficiency28-30). Slightly elevated C8 of a neonate is also presented 
in MCAD deficiency carrier. If C10 is higher than C8, glutaric 
aciduria type 2 is suspected. Elevated levels of C8 and C10 
also appear in preterm infants fed with preterm formula in the 
form of medium-chain triglyceride (MCT) oil25), which can be 
confirmed with enzyme activity assay and gene analysis22).

Specific diagnostic marker, C14:1 carnitine increases in very 
long-chain acyl CoA dehydrogenase (VLCAD) deficiency.  
Extremely severe case of VLCAD deficiency is associated with 
more marked increase in C16 and C18:1 than in C14:1 in both 
serum and dried blood-spot analysis.  Carnitine palmitoyl 
transferase 2 (CPT2) deficiency and carnitine acylcarnitine 
translocase (CACT) deficiency involves elevated C16 and 
C18:131), but no change in C14:1 levels, and can thus be easily 
differentiated from VLCAD deficiency. C14:1 is slightly elevated 
in ketosis as well, which involves increase in C2, thus lowering 
the C14:1/C2 ratio. For confirmatory diagnosis, enzyme activity 
assay and gene analysis should be performed22).

An elevation of C16 and C18:1 (or C18) point towards CPT 
2 deficiency and CACT deficiency. Since certain levels of C16 
and C18:1 are found in blood-spot even in healthy conditions, 
reflecting the red blood cell concentration, only a remarkable 
elevation can be considered to be abnormal31). Increase in 
C14:1 along with considerably elevated C16 and C18:1 levels 
is indicative of VLCAD deficiency, and not CPT 2 or CACT 
deficiency. If C2 level is increased along with slightly elevated 
C16 and C18:1 levels, odds for ketosis are very much high22).

Low level of C16 and C18:1 (C18) in dried blood-spot analy
sis is indicative of CPT1 deficiency. Decreased C16 and C18:1 
(C18) levels can also be found in neonates who have recovered 
from extremely ill conditions such as suspended animation, but 
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the phenomenon is transient and the levels are often normalized 
in re-examination22).

An elevation of C16-OH and C18:1-OH is a condition 
found in mitochondrial trifunctional protein (TFP)/long-chain 
3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. 
In LCHAD deficiency C18-OH level increases as well as, at a 
higher rate, C18:1-OH increases. Patients with severe type of 
TFP/LCHAD deficiency exhibit significantly elevated C16-
OH and C18:1-OH levels, but the degree of increase fluctuates, 
and severity cannot be predicted only by the degree of increase 
of C18:1-OH levels. If C2 is increased along with C16-OH and 
C18:1-OH, it is most likely caused due to ketosis6,18,22,23,32).

Amino acids as a marker for amino acid 
metabolism disorders

An elevated level of tyrosine detected in newborn screening 
by tandem mass spectrometry is usually due to transient 
neonatal hypertyrosinemia. To differentiate, tyrosinemia type 
1 can be diagnosed by presence of succinylacetone in serum or 
urine34). Although the patient has tyrosinemia type 1, tyrosine 
concentration does not always high levels as in neonate32).

An elevated phenylalanine (Phe) is indicative of phenylketo
nuria33). Additionally, newborns and infants with neonatal 
intrahepatic cholestasis caused by citrine deficiency may have 
elevated Phe levels concomitant with increase in citrulline. 
Phe may increase along with tyrosine and methionine levels, 
secondary to liver dysfunction3).

An elevated citrulline appears in citrullinemia type 1, 
argininosuccinic aciduria, and citrine deficiency. Arginino
succinic acid increases concurrently during argininosuccinic 
aciduria in urine. Patients with neonatal intrahepatic cholestasis 
caused by citrine deficiency have an elevated amino acid level, 
besides citrulline, accompanied by occasional increase in serum 
galactose32).

Low serum citrulline concentration is associated with 
ornithine transcarbamylase (OTC) deficiency34) and carbamoyl 
phosphate synthetase I (CPS1) deficiency concomitant with 
hyperammonemia. However, in newborn screening by tandem 
mass spectrometry, these diseases have been reported even in 
cases with normal citrulline concentration32).

An elevated leucine, isoleucine, and valine appear in maple 
syrup urine disease (MSUD)35). If it is concomitant with C2 
increase, odds are high that it is due to the ketosis-related expe
dited catabolism. For differential diagnosis, serum alloisoleucine 
analysis and urine organic acid analysis can be used, the 
presence of alloisoleucine is essential in MSUD. Enzyme 
activities could be measured for confirmatory diagnosis32).

Conditions influencing numeric value of 
metabolites 

In quantifying targeted metabolites using tandem mass 
spectrometry, many factors influence the results of acylcarnitine 

and amino acids7,18,31). In newborn screening, level of metabolites 
can be moderately changed in accordance with changed 
biological metabolic process by medical treatment or influenced 
by specimen status based on various external  factors32,36).

As for sample storage environment if samples are stored 
in high temperature with humidified conditions, levels of 
measured metabolites are likely to yield inaccurate values. Espe
cially under such environments level of free carnitine tend to 
increase and acylcarnitine decrease. Altered metabolite value 
can be minimized by storing the dried blood samples in a 
freezer (or refrigerator), preferably in an airtight bag. If possible 
fresh samples should be used except for unavoidable cases such 
as postmortem examination after a sudden death37,38). 

Regarding effect of pH ayclcarnitine becomes more unstable 
in a high pH than in low pH environment. In urine samples 
stored prolonged period, the pH tends to exceed pH >8.0, the 
influence of pH should be accounted for. Excessive hemolysis 
increase in long-chain acylcarnitine level due to excessive 
hemolysis37).  Hemolysis induced by "squeezing blood collection" 
does not pose problems, but samples with excessive hemolysis 
can yield findings similar to long-chain fatty acid metabolism 
disorder38).

Short-chain acylcarnitine (C3–C4) is more prone to hydroly
sis than long- (C12–C18) and medium-chain (C5–C10) 
acylcarnitine species25). Therefore, propionic acidemia and 
methylmalonic acidemis, for which C3 acts as biomarker, may 
not be detected in dried blood spot stored at room temperature 
for over one year. In contrast, long-chain fatty acid metabolism 
disorder was diagnosable without difficulties in blood-spot 
samples stored for over three years32,37,38).

The measured values of C6, C8, C10, and C12 increase while 
administering MCT oil. The ratio of C8/C10 can be used to 
differentiate such increases due to MCAD deficiency. Many 
reported cases proved that urine organic acid analysis is efficient 
for differentiation between MCT oil and MCAD deficiency32,37).

Some total parenteral nutrition (TPN) products are rich in 
branched chain amino acids, leading to test values similar to 
that in MSUD20). For differential diagnosis, amino acid ratios, 
such as Phe/Tyr, Met/Phe, and Leu/Ala ratios, are important 
markers32). In some cases, detailed secondary confirmatory 
testing is required. Most importantly, specimen should be 
collected before beginning parenteral nutrition as much as 
possible. Moreover, TPN contains substances similar to C8 and 
C12, whose levels may look elevated2).  Since TPN does not 
contain carnitine, babies under a long-term parenteral nutrition 
therapy can develop carnitine deficiency25).

Some antibiotics such as ampicillin and cefotaxime can 
induce increase in the level of  acylcarnitines (C5, C14:1, 
and C16:1-OH).  The level of C5 can increase by consuming 
antibiotics containing the pivaloyl functional group, such as 
cefcapenepivoxil, cefditorenpivoxil, and cefteram pivoxil24).  
There have been cases in which C5 levels increased after 
the administration of ciberestat. These components can be 
differentiated by urine organic acid analysis32,38).

If the mother has a carrier for inborn metabolic disorder, 
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blood-spot result of her healthy neonate can exhibit abnormal 
findings in newborn screening. Reported metabolic diseases like 
these cases are associated with asymptomatic systemic carnitine 
deficiency, methylcrotonylglycinuria, 3-methylglutaconic 
aciduria, glutaric aciduraia type 1, and vitamin B12 deficiency.  
Neonates from vegetarian mothers show decreased free 
carnitine levels due to the mother’s status of low carnitine level 
resulted from vegetarianism32,39).

In addition, other conditions influencing numeric value 
of metabolites are in a poorly fed neonate and cholestasis 
neonate38-40).

Newborns with low birth weight often exhibit transient neo
natal tyrosinemia. In preterm and low-birth weight newborns, 
implications of measured values are often unclear and no 
defined reference values have been established so far39). When 
interpreting the test values for preterm and low-birth weight 
newborns, it should also be borne in mind that nonspecific 
pathological manifestations can also affect measured value15,18,39).

The blood test is generally performed when a baby is 24 to 48 
hours old after enough feeding. This timing is very important 
because certain conditions may go undetected if the blood 
sample is drawn before 24 hours of age. Newborn screening 
does not confirm a baby has a certain condition. If a positive 
screen is detected, parents will be notified immediately and 
follow-up testing will be done.

Conclusions

Three decades have passed since the first newborn screening 
has started in South Korea in 1985. To fulfill the goal of newborn 
screening, early diagnosis and treatment of metabolic diseases, 
integrated interdisciplinary collaboration between specialist 
pediatricians and expert scientist of related fields is essential, 
especially for accurate measurements and interpretations of 
biochemical data obtained by tandem mass spectrometry. 
Thereby reflecting each patient’s meticulously examined physical 
status, enables customized differential diagnosis of inherited 
metabolic disorders.
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