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In this work, we provide a computational method of regularized logistic regression for discovering
biomarkers of spontaneous preterm birth (SPTB) from gene expression data. The successful identification
of SPTB biomarkers will greatly benefit the interference of infant gestational age for reducing the risks of
pregnant women and preemies. In recent years, various approaches have been proposed for the feature
selection of identifying the subset of meaningful genes that can achieve accurate classification for disease
samples from controls. Here, we comprehensively summarize the regularized logistic regression with
seven effective penalties developed for the selection of strongly indicative genes of SPTB from microarray
data. We compare their properties and assess their classification performances in multiple datasets. It
shows that elastic net, lasso, L1=2 and SCAD penalties get the better performance than others and can
be successfully used to identify biomarkers of SPTB. Particularly, we make a functional enrichment anal-
ysis on these biomarkers and construct a logistic regression classifier based on them. The classifier gen-
erates an indicator of preterm risk score (PRS) for predicting SPTB. Based on the trained predictor, we
verify the identified biomarkers on an independent dataset. The biomarkers achieve the AUC value of
0.933 in the SPTB classification. The results demonstrate the effectiveness and efficiency of the built-
up strategy of biomarker discovery with regularized logistic regression. Obviously, the proposed method
of discovering biomarkers for SPTB can be easily extended for other complex diseases.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Preterm birth (PTB) refers to the birth of a fetus before the com-
pletion of 37 weeks of gestation. In accordance with the World
Health Organization (WHO) report, about 20 million premature
babies are born every year worldwide [1]. PTB is the leading cause
of mortality in children under the age of five [2], as well as the
main reason of disability, illness and death in newborns. It has
become a major challenge in the field of obstetrics and gynecology
worldwide [3]. The consequences of PTB persist from early child-
hood into adolescence and adulthood [4]. The mortality rate
accounts for about 0:1% of the number of newborn premature
babies [5]. At present, the mechanism of PTB is far from clear
although it consumes a lot of medical resources and brings a big
burden to family and society [6]. In medicine, approximately
one-third of PTB is due to maternal or fetal accident reasons, and
the other two-thirds are classified as spontaneous preterm birth
(SPTB), which includes spontaneous preterm labor (SPTL) and
preterm premature rupture of the membranes (PPROM) [7]. Specif-
ically, SPTL is defined as spontaneous onset of labor 637 weeks of
gestation resulting in preterm delivery. PPROM is defined as spon-
taneous rupture of membranes at <37 weeks without labor [8].
However, there is no effective diagnosis method to detect the SPTB
or use intervention approach ahead to prolong the labor process
and extend the pregnancy to term. Thus, the discovery of diagnos-
tic biomarkers is of great significance for the early detection of
SPTB [9]. A major effect on the associated mortality and morbidity
in preemies will be achieved only by accurate identification of
women at high-risk of SPTB firstly and then by effective develop-
ment of interventions to prevent this complication [10,11].

Discovering biomarkers for SPTB in asymptomatic women
remains a great challenge. Accurate and reproducible screening
tools are still not available in clinical practice [12]. Fortunately,
the high-throughput omics technologies such as microarray and
RNA-seq have provided amount of data which are beneficial to dis-
cover diagnostic biomarkers [13]. Recently, increasing attention
has been paid to the application of microarray for premature diag-
nosis [14–17]. The selection of certain indicative genes serving as
biomarkers based on gene expression microarray profiling data
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has been popular in bioinformatics and machine learning [18].
Nevertheless, microarray usually measures a large number of
genes with a small number of samples [19]. That is to say, there
are a massive amount of predictor genes (i.e., large p) and a small
number of clinical samples (i.e., small n). The difficulty of ‘large p
small n’ problem brings great challenge in the selection of charac-
teristic genes as biomarkers [20]. From a computational perspec-
tive, the main difficulty is underlying the massive number of
combinatorial gene sets in the thousands of human genes. We need
identify an optimal subset of genes that are associated with SPTB
and can be identified as biomarkers. Effective gene selection meth-
ods are desirable to classify different phenotypic states of SPTB.
The classification accuracy is our objective function of optimization
in biomarker discovery [21,22]. From a statistical perspective, too
many variables may lead to multicollinearity [23]. The more vari-
ables, the more likely the multicollinearity occurs. It almost defi-
nitely occur when the number of genes is much greater than the
number of samples [20]. The failure of independence between vari-
ables makes the traditional statistical methods numerically unsta-
ble and often unrecognizable [24]. How to use the high-throughput
data to identify feature genes as biomarkers of classifying pheno-
types has become a new investigation topic [25].

Obviously, the core in biomarker discovery from gene expres-
sion data is classification and feature selection. Numerous classifi-
cation algorithms have been proposed, such as AdaBoost (AB), K-
nearest neighbor (KNN), neural network (NN), random forest (RF)
and support vector machine (SVM). These methods may lead to
satisfactory classification performance. However, the learning pro-
cess is with poor explainability [26]. In these methods, all variables
are used for classification and they often result in the nonsense of
biomedical implications. Differently, logistic regression method
has a specific expression formula. It is intuitive and easy to be
understood as an explainable machine learning method [27].
Moreover, according to the integration with classification methods,
feature selection methods can be divided into three categories: Fil-
ter method separates feature selection from classifier construction
[28]. Wrapper method evaluates the classification performance of
selected features and keeps searching until certain defined accu-
racy criteria is satisfied [29]. Embedded method integrates feature
selection within the classifier construction simultaneously [30]. As
such a kind of embedded method, regularized logistic regression is
a combination of feature selection and classifier construction, both
of which are completed in the same optimization process. The fea-
ture selection is automatically performed during training the clas-
sifier. It can improve the classification accuracy by shrinking the
regression coefficients and can select a small number of genes
simultaneously. It is with far less computational complexity than
wrapper method [31]. The logistic regression not only directly
gives a class of probabilities that explain the combination of vari-
ables (genes), but also generates a classification label for samples
[20]. The regularization can solve the problem of multicollinearity
and avoid the over-fitting caused by high-dimensional data [32].
Therefore, regularized logistic regression has become a typical
method for classifying diseases based on microarray data [33,34].

The fundamental idea of regularization in regression is to con-
strain the regression coefficients by a penalty function. According
the property of penalties, the existing regularization methods can
be briefly categorized as convex penalty and non-convex penalty.
The convex category contains the penalties of ridge [35], lasso
[36] and elastic net [37]. The ridge penalty is the L2 norm of the
coefficient vector. It has successfully solved the collinearity prob-
lem [38]. Since L2 norm is differentiable, it can be solved by the
coordinate descent method [39]. Instead, lasso penalty is based
on L1 norm, it can be solved by the efficient LARS approach
[40,41]. Although lasso can bring the sparsity of coefficients, the
solution is not unique in some cases and it does not own the oracle
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property, which brings trouble to practical applications [36]. To
overcome this limitation, Zou and Hastie proposed a logistic
regression model with elastic net penalty that linearly combines
L1 norm and L2 norm. The elastic net penalty has the grouping
property beyond the oracle property, which is critical for analyzing
high-dimensional biomedical data [42].

So far, many non-convex penalty functions have been devel-
oped for regularized logistic regression for classification and fea-
ture selection. A natural choice is the L0 penalty, which directly
counts the number of non-zeros in the coefficients. However, the
non-differentiable of L0 function makes it impossible to employ
any efficient optimization technique to solve [38]. To obtain a more
sparse solution than L1 regularization, Xu et al. proposed the L1=2
penalty [43]. As a representative of Lq ð0 < p < 1Þ penalty, L1=2
takes into account both sparsity and computational efficiency. It
is unbiased and has oracle properties [44]. Frank and Friedman
described a broader framework with the penalty term of
Lq ð0 < p 6 2Þ norm [45]. Interestingly, they named it as a bridge
regression for bridging the L0 regression and the L2 regression
(ridge) [24]. Easily, the former L0; L1=2; L1 and L2 norms are all spe-
cial cases of bridge regression. Knight and Fu derived the theoret-
ical properties of bridge regression [46]. They defined an ideal
penalty estimation operator that should have three characteristics:
sparsity, unbiasedness and continuity. Thereafter, various variants
of L1 norm have been proposed [24]. For instances, Fan and Li pro-
posed a smoothly clipped absolute deviation (SCAD) penalty [47].
Zhang proposed a maximum concave penalty (MCP) which has
the maximum convexity in the penalty function that satisfies all
unbiased conditions and has good theoretical properties [48]. It
is worth mentioning that Breheny and Huang demonstrate the util-
ity of convexity diagnostics to determine regions of the parameter
space in which the objective function of logistic regression with
SCAD or MCP penalty is locally convex, even though the penalty
is not [49].

In this paper, we summarize the regularized logistic regression
methods with Lq penalties and provide a comparative study on
seven popular penalties, i.e., ridge, lasso, elastic net, L0; L1=2, SCAD
andMCP, in the discovery of SPTB biomarkers. Based on some data-
sets for training, we evaluate their individual classification perfor-
mances in terms of accuracy (Acc), precision (Pre), sensitivity (Sn),
specificity (Sp), F-measure and AUC value. We optimize the param-
eters that balance the log-likelihood function and penalty for
achieving the better classification performance respectively. The
logistic regression with elastic net, lasso, L1=2 and SCAD penalties
achieve the higher AUC values that generate a feature subset with
20 genes that can be served as SPTB biomarkers. By training on the
gene expression profiles underlying these biomarkers, we con-
struct a logistic regression classifier and define an indicator called
preterm risk score (PRS) to predict the high-risk subjects of SPTB
based on the maternal whole blood gene expression data. In the
independent validation of identified biomarkers, the SPTB samples
achieve significantly different PRS scores compared to Term-birth
samples. The validation classification achieves the AUC value of
0.933. The results demonstrate the effectiveness and efficiency of
the proposed biomarker discovery method and the identified
biomarkers. All data and source code used in this paper can be
available at https://github.com/zpliulab/LogReg.
2. Materials and methods

2.1. Data

The gene expression profiling data of pregnant women are
downloaded from NCBI GEO database (Accession IDs: GSE59491
and GSE73685). Table 1 lists the details of the two datasets. Briefly,



Table 1
The detailed information of the two datasets used in this work. The numbers in parentheses are the sample size.

Dataset # of samples # of genes Samples type Phenotype of samples

GSE59491 326 24478 � Maternal whole blood (326) � SPTB (98)/ Term-birth (228)
GSE73685 183 20909 � Amnion (24) � TL (5)/ TNL (7)/ PL (3)/ PNL (5)/ PPROM no labor (2)/ PPROM with labor (2)

� Chorion (24) � TL (5)/ TNL (7)/ PL (3)/ PNL (4)/ PPROM no labor (3)/ PPROM with labor (2)
� Cord blood (23) � TL (5)/ TNL (7)/ PL (4)/ PNL (5)/ PPROM no labor (1)/ PPROM with labor (1)
� Decidua (23) � TL (5)/ TNL (7)/ PL (2)/ PNL (5)/ PPROM no labor (2)/ PPROM with labor (2)
� Fundus (20) � TL (3)/ TNL (7)/ PL (1)/ PNL (4)/ PPROM no labor (3)/ PPROM with labor (2)
� Lower segment (24) � TL (5)/ TNL (7)/ PL (3)/ PNL (5)/ PPROM no labor (2)/ PPROM with labor (2)
� Maternal whole blood (24) � TL (5)/ TNL (7)/ PL (3)/ PNL (5)/ PPROM no labor (2)/ PPROM with labor (2)
� Placenta (21) � TL (5)/ TNL (7)/ PL (2)/ PNL (4)/ PPROM no labor (3)
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GSE59491 collects maternal whole blood samples at two different
time periods (17–23 weeks and 27–33 weeks of gestation). The 326
samples are from 165 asymptomatic pregnant women. It consists
of 98 SPTB samples and 228 Term-birth samples. In each microar-
ray, 24,478 genes are measured after data preprocessing [8].
GSE73685 totally contains 183 samples from eight tissues (mater-
nal blood, chorion, amnion, placenta, decidua, fetal blood, myome-
trium from the uterine fundus and lower segment) [50]. In their
paper, Bukowski et al. generated the original data is to compare
women who delivers preterm and term with or without labor.
Based on the timing and presence of labor, they studied four com-
plementary phenotypes: delivery in women at term with labor
(TL), delivery at term without labor (TNL), delivery after preterm
labor (PL) and preterm delivery without labor (PNL), due to fetal
or maternal indications [50]. According to the definition of SPTL
(one subtype of SPTB), the PL samples can be selected as SPTB sam-
ples, while PNL can not. In more details, the dataset contains two
phenotypes, PPROM no labor and PPROM with labor, of which
the former type belongs to the SPTB samples we studied here
according to the definition of PPROM (another subtype of SPTB).
After data preprocessing, each sample contains 20,909 gene
expressions.

We perform the biomarker discovery experiments in the data-
set of GSE59491. Specifically, we firstly identify the differentially
expressed genes (DEGs) by Welch’s t-test. After adjusting P-
values by Benjamini and Hochberg (BH) method [51], we obtain
359 genes with significant difference (adjusted P-value < 0:05)
between SPTB and Term-birth samples. The gene lists are shown
in Table S1 in the Additional file. We will implement the methods
of logistic regression with Lq penalties in these genes for identify-
ing gene biomarkers. For training and testing purpose, we ran-
domly divide all samples into two subsets, 229 samples (70%,
164 positive, 65 negative) for learning and training and 97 samples
(30%, 64 positive, 33 negative) for evaluating in the biomarker dis-
covery section. We use the independent data of GSE73685 for val-
idating the discovered biomarkers. In order to be consistent with
the sample source in the previous dataset, we select 17 samples
from maternal blood (excluding PNL and PPROM with labor) as
the independent test dataset. We have also bolded these selected
samples in Table 1, in which 5 samples are SPTB (PL + PPROM
no labor) samples and the rest 12 ones are Term-birth (TL
+ TNL) samples.

2.2. Framework

Fig. 1 illustrates the framework of identifying biomarkers from
gene expression data by logistic regression with Lq penalties. At
first, we identify DEGs in GSE59491 dataset and find out 359 can-
didates with adjusted P-value < 0:05. Second, we randomly select
70% of the samples as the training dataset, the rest as the test data-
set in the biomarker identification. The optimal tuning parameter
lambda is determined through 10-fold cross-validation with the
minimum misclassification error in the training dataset. In order
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to ensure the reliability of the results, we repeat the process 30
times by setting 30 different random seeds. Third, we evaluate
the classification performance by logistic regression with seven
types of penalties. The comparison proves that the elastic net,
lasso, L1=2 and SCAD penalties own the better classification and fea-
ture selection. Fourth, the overlap genes of four feature subsets
obtained by logistic regression with the above four penalties are
treated as the identified biomarkers for SPTB. Fifth, we validate
their classification ability in the independent validation dataset.
After training a logistic regression classifier with the gene expres-
sion profiles of the biomarker genes, we obtain the AUC and PRS of
these biomarkers in the validation dataset. Then we prove the
effectiveness of these identified biomarkers in distinguishing pre-
term from Term-birth samples.

2.3. Logistic regression

As mentioned, we essentially focus on a binary classification
problem with feature selection by logistic regression with regular-
ization term. For logistic regression, suppose we have observations
ðXi; yiÞ; i ¼ 1;2; � � � ;n independently and identically distributed,
from n samples. Taking these observations as a dataset D,

D ¼ ðX1; y1Þ; ðX2; y2Þ; � � � ; ðXn; ynÞf g;

where Xi ¼ ðxi1; xi2; � � � ; xipÞT 2 Rp denotes the p-dimensional gene

expression vector associated with the ith sample, xij represents the

gene expression value of the jth gene in the ith sample. yi is a corre-
sponding variable that takes a value of 0 or 1. It represents the true

disease state of the ith sample (yi ¼ 1 if the ith sample is SPTB and
yi ¼ 0 if Term-birth). Define a classifier f ðxÞ ¼ expðxÞ=ð1þ expðxÞÞ
such that for any input of class label y; f ðxÞ predicts y correctly.
The logistic regression is considered as follows

pi ¼ Pr yijXi; hð Þ ¼ f XT
i h

� �
¼

exp XT
i h

� �
1þ exp XT

i h
� � ; i ¼ 1;2; � � � ;n; ð1Þ

where h ¼ h0; h1; . . . ; hp
� �

are the unknown coefficients to be esti-
mated, and h0 is the intercept.

After running a logit transformation on Eq. (1), we have

logitðpiÞ ¼ log
pi

1� pi
¼ h0 þ h1xi1 þ h2xi2 þ � � � þ hpxip: ð2Þ

Note Eq. (2) is not only the logistic regression classifier for train-
ing and validation, but also the indicator of PRS for identifying the
SPTB risk of pregnant women.

What’s more, because yi � Bð0;1Þ; ð1 6 i 6 nÞ, let its co-
probability (occurrence) be pi, we can write the probability func-
tion of yi as

PrðyiÞ ¼ pyi
i ð1� piÞ1�yi ; 1 6 i 6 n: ð3Þ

The likelihood function is given by



Fig. 1. The framework of identifying predictive biomarkers of SPTB from gene expression data.
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LðpiÞ ¼ P
n

i¼1
PrðyiÞ ¼ P

n

i¼1
pyi

i ð1� piÞ1�yi : ð4Þ

Then take the logarithm of Eq. (4) and the log-likelihood func-
tion can be expressed as

LðhjDÞ ¼
Xn
i¼1

yi log f Xi
T
h

� �h i
þ 1� yið Þ log 1� f Xi

T
h

� �h in o
; ð5Þ

where XT
i h ¼ h0 þ h1xi1 þ h2xi2 þ � � � þ hpxip; ð1 6 i 6 nÞ. Obviously,

Eq. (5) is a function of the regression coefficient vector h. The esti-
mation of the parameter vector h can be obtained by minimizing
the inverse of Eq. (5).

However, Eq. (5) is ill-posed in the case of high-dimensional
variables and small samples ðp � nÞ. If we solve it directly, that
may result in over-fitting. Fortunately, regularization can be
employed to solve the problem. So we test and choose an appropri-
ate penalty to Eq. (5) by defining the Lq regularized logistic regres-
sion model as

h ¼ argmin LðhjDÞ þP h; kð Þf g; ð6Þ
where LðhjDÞ is the loss function, Pðh; kÞ is the penalty function, k
is a positive tuning parameter used to balance the loss term and
penalty term.

2.4. Lq penalties

Different Lq penalties have been developed in the regularized
logistic regression models. They take into account different rela-
tionship between input variables. Generally, we formulate the pen-
alty function Pðh; kÞ with the Lq norm of coefficient vector h as the
corresponding penalty term

Pðh; kÞ ¼ k
Xp

j¼1

jhjjq; ð7Þ
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where q is a positive shrinkage parameter of norm. Table 2 lists
some properties of the former seven penalty functions. The unbi-
ased, sparse, continuous, convex and oracle properties are often
regarded as standards of the selection of penalty [24]. Fig. 2 shows
the function images in one-dimension when k ¼ 1 for these
penalties.

Clearly, q ¼ 2 refers to the ridge (L2 penalty) logistic regression,
q ¼ 1 refers to the lasso (L1 penalty) logistic regression, the mixture
of q ¼ 2 and q ¼ 1 corresponds to the elastic net logistic regression,
q ¼ 0 refers to the L0 penalty logistic regression, q ¼ 1=2 refers to
the L1=2 penalty logistic regression. Differently, SCAD and MCP
are the other two widely-used penalty terms for achieving some
expected properties in regularization, e.g., oracle property.

As shown in Fig. 2(b), when the value of coefficient h is small
ðjhj < 1Þ, the smaller the value of q, the harsher penalty the Lq reg-
ularization imposed on the coefficient h. Fig. 2(c) further points out
that the larger the absolute value of coefficient h, the greater the
Lqðq P 1Þ penalty and elastic net imposed on it. Thus these penal-
ties also have the problem of biased estimation of larger coeffi-
cients. In addition, from Fig. 2(a), we can also find that when the
absolute value of coefficient h is sufficiently large (jhj > ak), the
SCAD and MCP penalty become a constant (the constant can be
given by their expressions blow, respectively). Although the SCAD
penalty value is greater than the MCP penalty value, their images
are both parallel to the h-axis, just like L0 penalty.

If and only if q P 1 and the mixture of q ¼ 2 and q ¼ 1; Lq pen-
alty is a convex function, then Eq. (6) is easier to solve. Theoreti-
cally, when q ! 0, the sparsest solution can be obtained. But the
L0 norm is non-convex and non-continuous, which makes Eq. (6)
difficult to solve. When q 6 1; Lq penalty, as well as SCAD and
MCP, is non-differentiable at the origin point (0,0). Fan and Li
proved that the singularity of the penalty at the origin point is a
necessary condition for generating a sparse solution [47]. More
importantly, existing research shows that some non-convex penal-



Fig. 2. One-dimensional images for Lq penalty functions.

Table 2
The properties of Lq penalties.

Penalty Unbiased Sparse Continuous Convex Oracle property

Ridge No No Yes Yes No
Lasso No Yes Yes Yes Asymptotic
Elastic net No Yes Yes Yes No
L0 No Yes No No No
L1=2 Yes Yes Yes No Yes
SCAD Yes Yes Yes No Yes
MCP Yes Yes Yes No Yes
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ties have many good properties, such as sparsity [43], unbiased
[52], and oracle property [46]. Therefore, the Lqðq < 1Þ, SCAD and
MCP regularization methods have received widespread attention
in recent years.

2.4.1. Ridge
Ridge regression, also known as Tikhonov regularization [53], is

one of the most frequently used regularization methods of ill-
posed regression analysis [54]. The regularization term is defined
as Pðh; kÞ ¼ k hk k22, where hk k22 ¼ Pp

j¼1h
2
j , i.e., the sum of the square

of coefficients, aka the square of Euclidian distance. Namely

Pðh; kÞ ¼ k
Xp

j¼1

h2j : ð8Þ
2.4.2. Lasso
With the advent of the age of big data, sparsity has become an

important means underlying the data [24]. Using the L1 norm as
the penalty, Tibshirani proposed the seminal lasso model [36]. In
lasso, the regularization is defined as Pðh; kÞ ¼ k hk k1, where
hk k1 ¼ Pp

j¼1jhjj, i.e. the sum of the absolute values of coefficients,
also known as the Manhattan distance. Namely

Pðh; kÞ ¼ k
Xp

j¼1

jhjj: ð9Þ
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2.4.3. Elastic net
From a biological perspective, some groups of correlated fea-

tures, i.e., genes, are embedded in the same in functional pathway.
In microarray gene expression data analysis, experiments have
shown that lasso regression sometimes performs poorly in inter-
correlated features. To overcome this limitation, Zou and Hastie
proposed the elastic net regularization method for feature selec-
tion. Elastic net regularization attempts to combine L2 penalty with
L1 penalty together to better select all relevant features simultane-
ously. The elastic net penalty is defined as

Pðh; kÞ ¼ k a
Xp

j¼1

jhjj þ ð1� aÞ
Xp

j¼1

h2j

" #
; ð10Þ

where a 2 ½0;1� is a parameter to balance the effects of L2 penalty
and L1 penalty. Obviously, when a ¼ 0, the penalty refers to ridge
penalty, and when a ¼ 1, the penalty refers to lasso penalty, respec-
tively. a can be set literally to be 0 < a < 1, the penalty is an elastic
net penalty [22].

2.4.4. L0 penalty
Since it directly counts the number of non-zero elements in a

vector, the L0 norm of the coefficient vector jbj0 ¼ Pp
j¼11 hj – 0

� �
is a natural definition for the penalty termPðh; kÞ. L0 regularization
limits the number of non-zero elements to a certain range, which is
obviously sparse, and hence implies the variable selection. In Eq.
(7), let q ¼ 0, we get the L0 penalty function
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Pðh; kÞ ¼ k
Xp

j¼1

1 hj – 0
� �

: ð11Þ

Solving logistic regression with L0 penalty has been demon-
strated to be NP-hard [55].

However, if we define the formulation 0
0 ¼ 1, it is easy to get

jbj0 ¼
Xp

j¼1

1 hj – 0
� � ¼ Xp

j¼1

h2j
h2j

; ð12Þ

Substituting Eq. (12) into Eq. (6), it derives

ĥL0 ¼ argmin
h

�LðhjDÞ þ k
Xp

j¼1

h2j
h2j

( )
: ð13Þ

Here, we employ the former sparse-generalized linear regres-
sion model with L0 approximation to solve the regression with L0
penalty [56].

2.4.5. L1=2 penalty
In theory, the Lq penalty with a smaller value of q would lead to

solutions with more sparsity. To this end, Xu et al. explored the
properties of Lq ð0 < q < 1Þ regularization, especially its special
effects. The L1=2 penalty function is defined as

Pðh; kÞ ¼ k
Xp

j¼1

jhjj
1
2: ð14Þ

Note that the penalty function (14) is not differentiable when h

has zero components. The singularity causes the standard
gradient-based methods to fail in solutions. Motivated by the
method of [47], Huang approximates the bridge penalty with
q ¼ 1

2 by

Xp

j¼1

Z hj

�1
sgnðuÞ= juj1=2 þ g

� �h i
du: ð15Þ

For a small g > 0, it has a finite gradient at zero. Note that this
function and its gradient converge to the bridge penalty with q ¼ 1

2

and its gradient when g! 0, respectively. The approximation of
L1=2 penalty is called modified bridge (mbridge) [57] in the sense
of approximation.

2.4.6. SCAD penalty
The SCAD penalty is defined as

Pðh; kÞ ¼
Xp

j¼1

Pa jhjj; k
� �

; ð16Þ

where

Paðjhj; kÞ ¼
kjhj; jhj 6 k;
� h2�2akjhjþk2ð Þ

2ða�1Þ ; k < jhj 6 ak;

ðaþ1Þk2
2 ; jhj > ak;

8>><
>>:

for a > 2 and k > 0. Eq. (16) is a function of the coefficients h

indexed by a parameter k that controls the tradeoff between the
loss function and penalty function in Eq. (5), and that also may be
shaped by one or more tuning parameters a [47]. The rationale
behind SCAD penalty can be obtained by its first derivative

P0
aðjhj; kÞ ¼

k � sgnðhÞ; jhj 6 k;
ðak�jhjÞ
a�1 sgnðhÞ; k < jhj 6 ak;

0; jhj > ak;

8><
>:
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where

sgnðhÞ ¼
�1; h < 0;
0; h ¼ 0;
1; h > 0:

8><
>:

SCAD begins by applying the same rate of penalization as lasso,
but continuously reduce the rate until, when jhj > ak, the rate of
penalization drops to 0 [49]. We also note that the penalty is con-
tinuously differentiable in the interval ð�1;0Þ [ ð0;1Þ, but not
differentiable when hk ¼ 0 ðk ¼ 1;2; � � � ; pÞ, and its derivative is 0
outside the interval ½�ak; ak�. Therefore, SCAD regularized regres-
sion can produce sparse solutions and unbiased estimates for large
coefficients.

2.4.7. MCP penalty
The MCP penalty refers to

Pðh; kÞ ¼
Xp

j¼1

Pa hj; k
� �

; ð17Þ

where

Paðh; kÞ ¼ k
Z jhj

0
1� x

ka

� �
þ
dx ¼ kjhj � h2

2a ; jhj 6 ka;
k2a
2 ; jhj > ka;

(

for a > 1 and k > 0. In particular, a is the shape (or concavity) tun-
ing parameter making MCP a bridge between L0ða ! 1þÞ and
L1ða ! 1Þ [48]. More information can be obtained by its first
derivative

P0
aðh; kÞ ¼ k 1� jhj

ka

� 	
þ
� sgnðhÞ ¼ k � sgnðhÞ � h

a ; jhj 6 ka;

0; jhj > ka:




The rationale behind MCP penalty is similar to that of SCAD.
Both penalties begin by applying the same rate of penalization as
lasso, and reduce that rate to 0 as jhj gets further away from zero,
the difference is in the way that they make the transition. Note that
the MCP penalty is not differentiable at hk ¼ 0 ðk ¼ 1;2; � � � ; pÞ too.

2.5. Classification evaluation criteria

To evaluate the performance of logistic regression with these
seven Lq penalties in classifying SPTB samples by selecting certain
genes, we employ some metrics, e.g., Acc, Pre, Sn, Sp, F-measure
and AUC to measure the performance. They are defined as formulas
(18)–(22) respectively:

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

; ð18Þ

Pre ¼ TP
TP þ FP

; ð19Þ

Sn ¼ TP
TP þ FN

; ð20Þ

Sp ¼ TN
FP þ TN

; ð21Þ

F�measure ¼ 2
Sn� Pre
Snþ Pre

; ð22Þ

where TP; TN; FP and FN refer to true positive, true negative, false
positive and false negative in the classification respectively. We also
plot the receiver operating characteristic (ROC) curve for demon-
strating the correspondence between true positive rate (TPR) and
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false positive rate (FPR). AUC (area under the ROC curve) value is
also calculate to display the authenticity of the logistic regression
classification with Lq penalty [58].
3. Results and discussion

3.1. Identified biomarkers

We randomly select 70% of the samples from whole training
data (GSE59491) for training, and the remaining 30% for testing,
which ensures the seven regularized logistic regression methods
are learned and tested on the same dataset for fair comparison
[59]. We perform the classification and feature selection simulta-
neously on the SPTB gene expression dataset using logistic regres-
sion with the seven penalties, i.e., ridge, lasso, elastic net, L0; L1=2,
SCAD and MCP, respectively. The selected feature genes in these
embedded classifiers can serve as biomarkers of classifying sam-
ples with different phenotypes of SPTB and Term-birth.

In order to select the tuning parameter k of Lq penalties, we
employ a 10-fold cross-validation on the training dataset to obtain
the optimal k that makes the minimum misclassification error (see
the next section for details). After setting 30 random seeds to
repeat the cross-validation procedure 30 times, the averaged mis-
classification errors of these classifiers in the test data set based on
the regularized logistic regression models are shown in Table 3. We
find these classifiers achieve both low training and testing errors.
For instance, logistic regression with L1=2 penalty obtains the low-
est training error of 0=229 and that with elastic net penalty obtains
the lowest test error. The number of identified biomarker genes are
also diverse. Ridge regression selects the largest number of
biomarkers and L1=2 obtains the fewest number of genes as
biomarkers.

In these identified biomarkers, we find that there is a lot of
overlaps between the gene sets selected by different logistic
regression with Lq penalties. For instance, 67 feature genes selected
by L1 penalty also appear in the 78 features selected by elastic net
penalty. 28 out of 31 features selected by L0 penalty also appear in
the 67 feature genes selected by L1 penalty. As expected, L2 penalty
owns the full features of 359 genes. The feature sets selected by L2
penalty and elastic net penalty have a large intersection of 78
genes. More precisely, we calculate the number of overlapping
genes selected by these embedded logistic regression classifiers.
The results are shown in the lower triangle of Table 4. The overlap
significance of P-values between different penalties is also shown
in the corresponding upper triangle of Table 4. As shown, the over-
laps are evaluated by hypergeometric test and also highlighted by
different colors.

We identify the biomarker genes by classification and feature
selection in an integrative embedded way. The corresponding
ROC curves of different classifiers are shown in Fig. 3. The details
of classification performance are shown in Table 5. For classifying
the SPTB samples, we find that logistic regression with elastic net
penalty achieves the highest AUC value of 0.912. Lasso achieves a
Table 3
The average misclassification errors by the logistic regression with seven penalties on
the SPTB data in 30 random experiments.

Penalty Training error Testing error # of selected biomarker genes

Ridge 47/229 21/97 359
Lasso 10/229 19/97 67
Elastic net 13/229 18/97 78
L0 48/229 24/97 31
L1=2 0/229 19/97 25
SCAD 18/229 22/97 49
MCP 24/229 24/97 27
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close AUC value with elastic net. The ridge penalty obtain the low-
est AUC value of 0.781. From the comparison study, we also find
the convex penalties with mean of 0.867 obtain higher classifica-
tion performance than the non-convex penalties with mean of
0.852. In the prediction of SPTB, the logistic regression classifiers
with the convex penalties tend to achieve higher accuracy in dis-
tinguishing disease samples from controls.

As shown in Table 5, logistic regression classifier with elastic
net, lasso, L1=2 and SCAD penalties in the feature selection obtain
the AUC of over 0.850. Thus, we select the overlapping features
as our identified biomarker genes for classifying phenotypic sam-
ples. Using the overlap genes, 20 genes are identified as the
screened biomarkers of SPTB, namely FADS2, TRAV4, PCDHGB5,
ZNF284, ASRGL1, MFSD4A, TARS, MCM2, CDKN2A-DT, FBXO31,
ZNF649-AS1, PLEC, SPRTN, VAMP2, PRKAG1, CLASRP, PAICS, GOLGA7,
MIR3117, GLYR1.
3.2. Selection of parameters

We compare the classification performances by logistic regres-
sion with seven penalties. We recognize the parameters in these
penalties have great impacts on the solution of regression coeffi-
cients. Here we consider an attempt to perform logistic regression
using a ¼ 0:5 for elastic net, a ¼ 3:7 for SCAD penalty and a ¼ 3 for
MCP penalty [49], the values are suggested for linear regression in
Fan and Li [47]. For a fair comparison, we optimize the selection of
tuning parameter k for each classifier individually. The best turned
models are implemented in the former comparisons. Figs. 4
demonstrates the solution paths and the gene selection results of
the seven penalties in the same training data set. By setting up dif-
ferent k values, Figs. 4 records the regression coefficients and cross-
validation errors in these classifiers of regularized logistic
regression.

As shown in Fig. 4, the x-axis displays the logðkÞ as k varies. The
left subfigures (Ridge (a), Lasso (b), Elastic net (c), L1=2 (e), SCAD (f),
MCP (g)) of regression coefficients show the paths of regression
coefficients as k varies, each curve in a subfigure corresponds to
a gene variable respectively, the y-axis refers to the coefficient of
this gene. The axis above indicates the number of nonzero coeffi-
cients at the current k, which correspond to the effective degrees
of freedom for the above seven penalties. Moreover, in the left sub-
figure L0 (d), according to the approximated L0 method [56], it is a
plot of the fitted value against linear predictor.

What’s more, the right subfigures (Ridge (a), Lasso (b), Elastic
net (c), L0 (d), L1=2 (e), SCAD (f), MCP (g)) display the cross-
validation error curves (red dotted lines), include the upper and
lower standard deviation of the errors along the k sequence (black
error bars). Especially, the optimal k value of seven penalties is
shown as the vertical dotted line correspondingly, which indicates
the logarithm of the optimal k , called kmin. It minimizes the predic-
tion error and gives the most accurate model with each penalty. In
our experiments, we use kmin with the minimum misclassification
error on training dataset as the selected optimal tuning parameter
for each regularized logistic regression method.
3.3. Function analysis of biomarkers

To investigate the pathological implications of these identified
biomarker genes of SPTB, we perform a functional enrichment
analysis. This will verify the biomarkers and in turn prove the
effectiveness of logistic regression with Lp penalties in biomarker
discovery. First, we perform gene ontology (GO) enrichment anal-
ysis on these 20 genes. Table 6 lists the top 10 enriched biological
process (BP) terms with P-value< 0:01. The detailed results are
shown in Table S2 in the Additional file.



Table 4
The number of overlapping biomarker genes and its significance between any two penalties.

Fig. 3. The ROC curves of seven methods after 10-fold cross-validation repeated 30
times.
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Second, we summarize the biological functions of these 20 bio-
marker genes, which have been verified to be closely associated
with the occurrence and development of SPTB. The detailed func-
tional interpretation are shown in Table S3 in the Additional file.
Some representative biomarker genes with their functions are
listed in Table 7. In Table 7, we find that some of biomarker genes
have been proved to be closely related to SPTB in many literatures.
The enriched functions also indicates the method of identifying
biomarkers of SPTB by logistic regression with Lq penalties is
effective.
Table 5
The classification performance details of seven penalties for SPTB.

Penalty Acc Pre Sn

Ridge 0.936 0.929 0.394
Lasso 0.942 0.818 0.545
Elastic net 0.945 0.857 0.545
L0 0.920 0.574 0.818
L1=2 0.942 0.733 0.667
SCAD 0.933 0.762 0.485
MCP 0.926 0.737 0.424
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3.4. Independent dataset validation

For further justifying the identified biomarker genes of SPTB, we
validate our findings in an independent dataset (GEO ID:
GSE73685). We firstly test the classification ability of these
biomarkers in distinguishing SPTB from Term-birth samples. We
find 17 overlap genes (FADS2, PCDHGB5, ZNF284, ASRGL1, MFSD4A,
TARS, MCM2, FBXO31, ZNF649-AS1, PLEC, SPRTN, VAMP2, PRKAG1,
CLASRP, PAICS, GOLGA7, GLYR1) in the identified 20 biomarkers
are contained in the 20,909 measured genes in the validation data.
We firstly train a logistic regression classifier (2) using the 17 bio-
marker genes (set to xi1; xi2; � � � ; xi17) from the training data to
obtain the logistic regression parameters (e.g., intercept and coef-
ficients). Then, using the trained logistic regression classifier to
predict the value of a response variable by the corresponding
expression values of the 17 biomarkers in the independent valida-
tion data. Finally, the value of response variable is subjected to
logit transformation to obtain the PRS of each sample. Fig. 5 (a)
illustrates the ROC curve with the performance details of classifica-
tion on the validation dataset. The AUC value achieves as high as
0.933. Table 8 shows the confusion matrix about the sample clas-
sification. The classification performance might be improved fur-
ther when more validation datasets become available in the
future [3]. The independent validation proves the efficiency of
our identified biomarkers in classifying SPTB samples from the
Term-birth ones.

Here, we define the PRS for indicting the risk of SPTB based on
the former logistic regression model. In the validation dataset,
Fig. 5 (b) shows the boxplot of PRS in the independent dataset. It
is clear that there is a significant difference in the PRS for the sam-
ples of SPTB when compared to the Term-birth samples (P-value
= 0.0039, Wilcoxon test).

A great challenge in preventing SPTB is to identify pregnant
women at greatest risk [77]. When a risk measure of SPTB for indi-
viduals is scored, appropriate intervention of preventing SPTB
could be directed. The proposed PRS is intended as a screening
score to identify high-risk subjects. It may encourage a person with
higher risk value to perform a whole blood gene expression test
Sp F-measure AUC

0.997 0.553 0.781
0.986 0.655 0.907
0.990 0.667 0.912
0.932 0.675 0.839
0.973 0.698 0.872
0.983 0.593 0.875
0.983 0.538 0.822



Fig. 4. The solution paths and the gene selection results of the logistic regression with Lq penalty.

Table 6
The enriched GO terms in the biomarkers.

ID Description BgRatio P-value P.adjust Qvalue Gene symbol Count

GO:0043001 Golgi to plasma membrane protein transport 32/17913 <0.001 0.092 0.075 VAMP2/GOLGA7 2
GO:0006893 Golgi to plasma membrane transport 43/17913 <0.001 0.092 0.075 VAMP2/GOLGA7 2
GO:0061951 Establishment of protein localization to plasma membrane 48/17913 <0.001 0.092 0.075 VAMP2/GOLGA7 2
GO:0098876 Vesicle-mediated transport to the plasma membrane 70/17913 0.002 0.141 0.115 VAMP2/GOLGA7 2
GO:0006892 Post-Golgi vesicle-mediated transport 77/17913 0.002 0.141 0.115 VAMP2/GOLGA7 2
GO:0006633 Fatty acid biosynthetic process 144/17913 0.008 0.196 0.159 FADS2/PRKAG1 2
GO:0006188 IMP biosynthetic process 10/17913 0.009 0.196 0.159 PAICS 1
GO:0046040 IMP metabolic process 10/17913 0.009 0.196 0.159 PAICS 1
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during pregnancy. Because many individuals with a high PRS may
have unrecognized asymptomatic SPTB heterogeneity, a full blood
test may be required for diagnosis, treatment, and other clinical
assessments. We regard PRS could provide a practical way to iden-
tify pregnant women at high-risk SPTB in general population. In
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the PRS model (2), the multivariate logistic regression coefficients
are often used to assign weights to each biomarker gene. In our
case study of SPTB, our aim is to generate a simple and easy-to-
use risk calculator that could conveniently predict SPTB in asymp-
tomatic pregnant women. Totally, 17 biomarker genes are selected



Table 7
Some representative SPTB biomarker genes with the summaries of their functions.

Gene
symbol

Gene name Gene functions

ASRGL1 Asparaginase And Isoaspartyl
Peptidase 1

� Diseases associated with ASRGL1 include Telogen Effluvium and Masa Syndrome. Among its related pathways
are Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism and Metabolism [60].

FADS2 Fatty Acid Desaturase 2 � Diseases associated with FADS2 include Fanconi Anemia, Complementation Group D2 and Best Vitelliform
Macular Dystrophy. Among its related pathways are alpha-linolenic acid (ALA) metabolism and fatty acid beta-
oxidation (peroxisome) [61–64].

GOLGA7 Golgin A7 � GOLGA7 (Golgin A7) is a Protein Coding gene. Among its related pathways are Innate Immune System [65].
MCM2 Minichromosome Maintenance

Complex Component 2
� Diseases associated with MCM2 include Deafness, Autosomal Dominant 70 and Autosomal Dominant Non-
Syndromic Sensorineural Deafness Type Dfna. Among its related pathways are E2F mediated regulation of DNA
replication and Mitotic G1-G1/S phases [66–69].

PLEC Plectin � Diseases associated with PLEC include Epidermolysis Bullosa Simplex, Ogna Type and Muscular Dystrophy,
Limb-Girdle, Autosomal Recessive 17. Among its related pathways are Cell junction organization and Apoptotic
cleavage of cellular proteins [70–73].

VAMP2 Vesicle Associated Membrane
Protein 2

� Diseases associated with VAMP2 include Tetanus and Infant Botulism. Among its related pathways are Vesicle-
mediated transport and Neurotransmitter Release Cycle [74–76].

Fig. 5. (a) The ROC curve of classifying samples on the independent dataset. (b) The boxplot PRS of SPTB and Term-birth samples on the independent data.
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to enter the model (2) without considering the interaction between
these variables. More comprehensive cohorts are still required to
generate a more reliable PRS scoring system from a clinical practice
perspective.
Fig. 7. Independent dataset verification results.
3.5. Compared with alternative machine learning methods

From a comparison with other machine learning methods in
biomarker discovery, we employ the recursive feature elimination
(RFE) technique to eliminate redundant and irrelevant feature
genes. We use an empirical Bayes (EB) method to select 694 DEGs
as the candidates for selection [51]. Then the ranking files of gene
importance, obtained by five machine learning with feature selec-
tion methods, i.e., SVM-RFE, AB-RFE, NN-RFE, RF-RFE and KNN-RFE,
are implemented to identify feature genes as biomarkers. We also
randomly select 70% samples to form the training dataset, then the
remaining 30% as the testing dataset, and construct the five classi-
fiers to learn and evaluate the classification performance. In each
classifier, the optimal parameters, e.g., gamma and cost in SVM,
are determined through 10-fold cross-validation with the mini-
mum misclassification error in the training dataset individually.
The ROC curves are shown in Fig. 6(a), and the other performance
results are shown in Fig. 6(b). The details are listed in Table S4 in
the Additional file.
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The legend annotation of Fig. 6 and the horizontal axis of Fig. 6
(b) are arranged in descending order of the five methods according



Table 8
The confusion matrix.

Forecast category

Term-birth SPTB

Actual category Term-birth 12 0
SPTB 1 4
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to their AUC values. Compared with AB-RFE, NN-RFE, RF-RFE and
KNN-RFE, the AUC of SVM-RFE is relatively higher. SVM-RFE
achieves the highest AUC value of 0.998, and KNN-RFE obtains
the lowest AUC value of 0.810. Although all the AUC values of
the five methods are higher than 0.800, the performance metrics
of Acc, Pre, Sn, Sp and F-measure by these methods are also lower
than our former proposed method of regularized logistic regression
in the training dataset.

We select top-ranked 50 genes by the five machine learning and
feature selection methods to construct five feature subsets respec-
tively. We intersect the genes in these feature subsets and select
out 54 genes in the overlapping as the discovered biomarkers by
the five popular machine learning methods. The biomarker genes
are listed in Table S5 in the Additional file. We find that there
are 14 overlaps between the 20 genes selected by our method
and these 54 genes selected by alternative machine learning meth-
ods. The GO function enrichment analysis on these 54 genes, we
also find the enriched functions are related to plasma membrane
transport, which is consistent with our findings.

In the independent validation dataset of GSE73685, there are 46
genes included in the above 54 gene set. Using the 46 genes to train
an SVM classifier in the training dataset of GSE59491, the classifi-
cation result in the validation data is shown in Fig. 7. The AUC
value is 0.883, which is also lower than the regularization methods
we proposed. The comparison study further proves the effective-
ness and advantage of our proposed method.
4. Conclusions

In this paper, we developed a method for predicting SPTB
biomarkers with regularized logistic regression. Specifically, the
definitions of seven penalties were introduced in details. Their
properties and characteristics with applications in biomarker dis-
covery from gene expression data have been presented. For achiev-
ing fair comparisons, we used 10-fold (tenfold) cross-validation on
Fig. 6. Classification performance. (a) ROC curves of five
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the same training dataset to get the optimal tuning parameter for
each penalty. We compared these regularized logistic regression
classifiers in their various performance metrics and resulted in
the best performance of that with elastic net penalty. By combining
the selected genes in the classifiers with top performances, we
identified 20 biomarker genes of SPTB. These selected biomarkers
have been verified by functional enrichment analyses and litera-
ture checks. We also validated these biomarkers on an indepen-
dent dataset. We further proved the advantage of our proposed
method by comparing the discovered biomarkers with those iden-
tified by the other alternative machine learning methods. The dis-
tinct ability of distinguishing SPTB samples from Term-birth
samples indicate the efficacy of identified biomarkers. Further-
more, the established PRS indicator provides a potential index for
identifying high-risk SPTB subjects in clinical application. The
results also illustrate the power of sparse statistical learning model
in discovering diagnostic biomarkers.
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