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The endocannabinoid (eCB) system is a lipid-based neurotransmitter complex that
plays crucial roles in the neural control of learning and memory. The current model of
eCB-mediated retrograde signaling is that eCBs released from postsynaptic elements
travel retrogradely to presynaptic axon terminals, where they activate cannabinoid
type-1 receptors (CB1Rs) and ultimately decrease neurotransmitter release on a short-
or long-term scale. An increasing body of evidence has enlarged this view and
shows that eCBs, besides depressing synaptic transmission, are also able to increase
neurotransmitter release at multiple synapses of the brain. This indicates that eCBs act as
bidirectional regulators of synaptic transmission and plasticity. Recently, studies unveiled
links between the expression of eCB-mediated long-term potentiation (eCB-LTP) and
learning, and between its dysregulation and several pathologies. In this review article,
we first distinguish the various forms of eCB-LTP based on their mechanisms, resulting
from homosynaptically or heterosynaptically-mediated processes. Next, we consider the
neuromodulation of eCB-LTP, its behavioral impact on learning and memory, and finally,
eCB-LTP disruptions in various pathologies and its potential as a therapeutic target
in disorders such as stress coping, addiction, Alzheimer’s and Parkinson’s disease,
and pain. Cannabis is gaining popularity as a recreational substance as well as a
medicine, and multiple eCB-based drugs are under development. In this context, it is
critical to understand eCB-mediated signaling in its multi-faceted complexity. Indeed,
the bidirectional nature of eCB-based neuromodulation may offer an important key to
interpret the functions of the eCB system and how it is impacted by cannabis and
other drugs.

Keywords: endocannabinoids, synaptic plasticity, long-term potentiation, neuromodulation, GABAergic
interneurons, cannabinoid receptor type-1, learning and memory, excitation-inhibition balance

Abbreviations: 2-AG, 2-arachidonoylglycerol; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
BDNF, brain-derived neurotrophic factor; BLA, basolateral amygdala; CB1R, cannabinoid type-1 receptor; DSI,
depolarization-induced suppression of inhibition; DXR, dopaminergic type-X receptor; E/I balance, excitation/inhibition
balance; FAAH, fatty acid amide hydrolase; eCB, endocannabinoid; GABA, gamma-aminobutyric acid; i-LTD, long-term
depression of inhibitory transmission; LPP, lateral perforant path; LTP, long-term potentiation; LTD, long-term depression;
MAGL, monoacylglycerol lipase; mGluR, metabotropic glutamatergic receptor; mPFC, medial prefrontal cortex; NMDAR,
N-methyl-D-aspartate receptor; NO, nitric oxide; pkA, protein kinase-A; STDP, spike-timing-dependent plasticity; TrkB,
tropomyosin receptor kinase-B; TRPV1, transient receptor potential vanilloid type-1.
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BACKGROUND

Endocannabinoids (eCBs) are a family molecule of biolipids,
mainly composed by 2-arachidonoylglycerol (2-AG) and
anandamide, synthesized and released on-demand, which
mostly act on presynaptic cannabinoid type-1 receptors (CB1R)
and postsynaptic transient receptor potential vanilloid type-1
(TRPV1; Piomelli et al., 2007; Castillo et al., 2012; Katona and
Freund, 2012; Araque et al., 2017). eCBs have emerged as a
major signaling system in learning and memory (Marsicano
and Lafenêtre, 2009; Mechoulam and Parker, 2013; Kruk-
Slomka et al., 2017) because of their powerful influence on
synaptic plasticity, mainly as a depressing synaptic function
(Castillo et al., 2012; Araque et al., 2017; Augustin and Lovinger,
2018). eCB signaling has been widely described to decrease the
neurotransmitter release probability via diverse presynaptic
mechanisms, including inhibition of voltage-gated calcium
channels, activation of potassium channels, and protein kinase-A
(pkA) signaling. In light of recent studies, this review aims at
highlighting evidence for short and long-term eCB-mediated
synaptic potentiation (eCB-LTP).

eCB-MEDIATED SYNAPTIC
POTENTIATION

We have distinguished here the homosynaptic from
heterosynaptic eCB-mediated potentiation such that
homosynaptic plasticity refers to input-specific plasticity, in
which only the neurons belonging to a given stimulated synapse
undergo plasticity, whereas heterosynaptic plasticity refers
to changes at a synapse resulting from activities of distinct
synapses/pathways.

Homosynaptic eCB-Mediated LTP
Using spike-timing-dependent plasticity (STDP), a Hebbian
synaptic learning rule relying on paired activity on either
side of the synapses (Feldman, 2012), a few numbers of
pairings induce eCB-LTP at corticostriatal synapses, which is
CB1R- and TRPV1-mediated (Cui et al., 2015, 2016, 2018a;
Xu et al., 2018; Figure 1A). 2-AG levels and subsequent
CB1R activation have a dual effect on eCB-plasticity: high
levels of eCBs synthesis and CB1R activation (reached with
∼10–15 post-pre pairings) induce eCB-LTP, while low
levels (reached with ∼50–100 pre-post pairings) induce
eCB-LTD (Cui et al., 2015, 2016). Indeed, few pairings
promote efficient eCB synthesis (via maximal calcium
influx and efflux from voltage-gated calcium channels and
TRPV1, and endoplasmic reticulum, respectively) and thus
maximal CB1R activation, combined with minimal CB1R
desensitization (Cui et al., 2016). Corticostriatal eCB-plasticity
relies on presynaptic pkA/calcineurin balance, such that
eCB-LTP requires active pkA, whereas eCB-LTD depends on
calcineurin activation (Cui et al., 2016; Figure 1A). Therefore, at
corticostriatal synapses, eCB-mediated plasticity is bidirectional,
and eCB-LTP or eCB-LTD expression is determined by
pre- and postsynaptic activity patterns. A similar form of
homosynaptic and bidirectional eCB-plasticity occurs between

neocortical pyramidal cells following a limited number of
coincident activity (Cui et al., 2018b). Interestingly, eCB-LTP
is robust to spike-time jittering, contrarily to NMDAR-
LTP, and can thus arise in noisy neural network activity
(Cui et al., 2018a).

A homosynaptic CB1R-dependent eCB-LTP was also
characterized in hippocampal granular cells of the dentate gyrus
resulting from postsynaptic 2-AG synthesis upon high-frequency
stimulation of the lateral perforant path (LPP; Wang et al.,
2016, 2018a; Figure 1B). When activated, CB1R, detected
presynaptically at LPP terminals using STORM microscopy,
engage the presynaptic FAK/ROCK signaling pathway favoring
glutamate release. Interestingly, at CA3-CA1 synapses CB1R
is preferentially linked to ERK/Munc18–1, whose activation
depresses glutamate release (Wang et al., 2018a).

In both cases, the eCB-LTP magnitude did not reach
saturating levels and could be increased under monoacylglycerol
lipase (MAGL) inhibition, the 2-AG degrading enzyme,
suggesting that eCB-LTP might serve as a priming plasticity
accounting for fast learning and episodic memory. Finally,
homosynaptic CB1R-mediated eCB-LTP was also observed in
stratum oriens interneurons (Friend et al., 2019).

eCB-Mediated Heterosynaptic Facilitation
of LTP
Via Depression of Inhibitory Transmission
By reducing inhibition from GABAergic synapses through
a CB1R-dependent short-term depolarization-induced
suppression of inhibition (DSI), eCBs were first shown to
facilitate NMDAR-LTP induction at hippocampal CA3-CA1
synapses (Carlson et al., 2002), exclusively in the cell subjected
to the subthreshold LTP inducing protocol. eCB-mediated
facilitation through long-term disinhibition was then observed
at various synapses, cell types, and brain regions. Indeed,
in the hippocampus, high or low-frequency stimulations or
theta-burst stimulations of Schaffer collaterals induce LTD
of local GABAergic interneurons (i-LTD), which in turn
facilitates LTP at excitatory CA3-CA1 synapses (Chevaleyre
and Castillo, 2003, 2004; Zhu and Lovinger, 2007; Lin et al.,
2011; Pan et al., 2011; Xu et al., 2012; Monory et al., 2015;
Silva-Cruz et al., 2017; Figure 1C). i-LTD, originating from
metabotropic glutamatergic receptor (mGluR) activation
and subsequent 2-AG release from CA1 pyramidal cells
that leads to the activation of CB1R located on GABAergic
terminals, causes relief of the GABAergic brake in a restricted
dendritic area (∼10 µm) when synaptically-induced or on
a cell-wide extent following endogenous CA1 pyramidal cell
activity (Younts et al., 2013). In contrast to the transient
LTP facilitation induced by DSI in single active cell and
up to neighboring naïve cells (Wilson and Nicoll, 2001),
i-LTD provides long-lasting priming of at most a single
cell (Chevaleyre and Castillo, 2004; Younts et al., 2013).
The modulation of CA1-LTP by i-LTD is an example of
metaplasticity, i.e. long-lasting neural changes induced by
activity at a given time, and that modulate subsequently
induced plasticity (Abraham, 2008), orchestrated by eCBs.
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FIGURE 1 | Homosynaptic and heterosynaptic endocannabinoid (eCB)-mediated long-term potentiation (LTP). (A,B) Homosynaptic eCB-LTP in the striatum (A)
and hippocampus (B). (A) eCB-LTP is induced by few spike-timing-dependent plasticity (STDP) pairings (∼10–15 post-pre pairings), whereas eCB-LTD is induced
by a larger number of pairings (∼50–100 pre-post pairings) at the same corticostriatal synapses (Cui et al., 2015, 2016, 2018a; Xu et al., 2018; Gangarossa et al.,
2020). Right: top panel illustrates the domains of expression of eCB-LTP, eCB-LTD, and NMDAR-LTP related to the polarity and number of STDP pairings. Bottom
panel: eCB-LTP and eCB-LTD are expressed depending on eCB levels [and cannabinoid type-1 receptor (CB1R) activation], such that low and high levels induced
eCB-LTD and eCB-LTP, respectively. CB1R activation is expected to decrease pkA and calcineurin activity, via reduced calcium influx through voltage-sensitive
calcium channels (VSCC). This effect is schematized by the relative protein kinase-A (pkA) and calcineurin activity changes upon increased CB1R activation, such
that eCB-LTD occurs when calcineurin/pkA >1, whereas calcineurin/pkA <1 leads to eCB-LTP. (B) eCB-LTP at synapses between the lateral perforant path (LPP)
and the hippocampal granular cells of the dentate gyrus, requires co-operative CB1R/ROCK signaling, which favors glutamate release via a presynaptic actin
regulatory mechanism (Wang et al., 2016, 2018b). eCB-LTP illustrated in (A,B) are independent of the GABAergic transmission and astrocytic calcium transients,
present a presynaptic locus of expression and hence rely on a homosynaptic mechanism. (C,D) Heterosynaptic eCB-LTP involving intermediary elements such as
GABAergic interneurons (C) and astrocytes (D). (C) Heterosynaptic eCB-LTP at CA3–CA1 hippocampal synapses. Activation of mGluR1/5 promotes 2-AG synthesis
and release; 2-AG activates CB1R located on neighboring GABAergic interneurons and induces LTD via a pkA-dependent mechanism. This LTD of inhibitory
transmission (i-LTD) then facilitates the release of glutamate at CA3–CA1 synapses promoting a local LTP. This eCB-mediated metaplasticity can be induced with
various cell conditioning paradigms, and most notably subthreshold stimulations (HFS, LFS, TBS or ITDP; Chevaleyre and Castillo, 2003, 2004; Zhu and Lovinger,
2007; Lin et al., 2011; Pan et al., 2011; Xu et al., 2012; Basu et al., 2013; Orr et al., 2014; Monory et al., 2015; Silva-Cruz et al., 2017; Kim et al., 2019). (D)
Heterosynaptic eCB-LTP involving astrocytes at CA3–CA1 synapses. Neuronal activity (HFS, TBS, LFS) induces synthesis of eCBs at synapse-1 which activate
astrocytic CB1R. Then, astrocytic glutamate release (via IP3-induced calcium-release mechanism) induces an NMDAR-facilitation or NO-mediated LTP on
neighboring CA1 synapse-2. This eCB-mediated lateral synaptic regulation has been observed in the hippocampus (Navarrete and Araque, 2008, 2010;
Gómez-Gonzalo et al., 2015; Covelo and Araque, 2016) and striatum (Martín et al., 2015).
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This i-LTD is finely tuned by the parallel activation of
CB1R on GABAergic or glutamatergic cells (Monory et al.,
2015) and is also accompanied by changes in excitability
enhancing the spiking probability in response to a given EPSP,
i.e., EPSP-to-spike potentiation (Chevaleyre and Castillo,
2003; Orr et al., 2014; Kim et al., 2019), and by structural
changes (Monory et al., 2015; Hu et al., 2019) both eCB-
mediated. Interestingly, a circuit-based synaptic learning
rule, consisting of paired stimulation of the perforant path
and Schaffer collaterals, induced an input-timing-dependent
heterosynaptic LTP at CA3-CA1 but not at cortical-CA1
synapses (Xu et al., 2012; Basu et al., 2013). Input-timing-
dependent-LTP depends on CB1R-mediated i-LTD occurring
at GABAergic synapses (here cholecystokinin interneurons).
Activation of the cortical-CA1 pathway triggers heterosynaptic
calcium transients, boosting eCB signaling originating from
the CA3-CA1 pathway, which leads ultimately to i-LTD.
Similar metaplasticities involving eCB-mediated i-LTD have
been reported in the striatum (Adermark, 2011; Mathur
et al., 2013), ventral tegmental area (Szabo et al., 2002),
basolateral amygdala (BLA; Azad et al., 2004) and spinal cord
(Kyriakatos and El Manira, 2007).

Via Astrocytes
eCBs, released from a given stimulated CA3–CA1 synapse,
activate astrocytic CB1R and via an IP3-induced calcium-
release mechanism promote astrocytic glutamate release, which
in turn induces an NMDAR-mediated short- (Navarrete and
Araque, 2008, 2010) or nitric oxide(NO)-mediated long-term
(Gómez-Gonzalo et al., 2015) potentiation on neighboring
CA1 synapses (Figure 1B). This lateral synaptic regulation
achieved by astrocytes and eCBs (Covelo and Araque, 2016),
also reported in the dorsal striatum (Martín et al., 2015),
appears as a means of controlling distant synapses by
activated ones. Since, astrocytes are interconnected by gap
junctions, permeable to calcium and IP3, both involved in
the propagation of intercellular calcium waves (Giaume and
Venance, 1998), the role of astrocytic gap junctions in regulating
the extent of this lateral synaptic regulation remains to
be determined.

Via Dopaminergic Signaling
At the goldfish Mauthner cell, sustained activity at
excitatory synapses triggers 2-AG release, which activates
CB1R on nearby dopaminergic fibers and promotes an
increased release of dopamine (Cachope et al., 2007).
In turn, dopamine acts back via a D1/5R-mediated pkA
signaling, which induces LTP at electrical and glutamatergic
chemical synapses.

Non-CB1R-Mediated eCB-Potentiation of
Synaptic Transmission
In the hippocampus, anandamide induces an increase of
miniature excitatory (Sang et al., 2010) and inhibitory (Hofmann
et al., 2011) postsynaptic currents. Anandamide and 2-AG
potentiate NMDAR-mediated currents via respectively TRPV1-
dependent and -independent mechanisms (Hampson et al.,
1998; Yang et al., 2014). Although, this latter anandamide/2-

AG NMDAR-mediated metaplasticity favors hippocampal LTD
(Yang et al., 2014), it remains to investigate whether this
eCB-NMDAR cross-talk exists in other brain areas and,
considering the crucial role of NMDAR in synaptic potentiation,
could constitute a metaplasticity promoting LTP.

NEUROMODULATION OF eCB-LTP

eCB-LTP expression or magnitude can be regulated by
neuromodulators through a variety of mechanisms targeting eCB
synthesis and/or release, or the signaling downstream of CB1R.

Dopamine
The relationship between dopamine and eCB-signaling has been
extensively documented for eCB-LTD (Covey et al., 2017).
Recent evidence also shows a tight link between dopamine
and eCB-LTP. In the globus pallidus, eCB-mediated i-LTD
is switched to i-LTP upon D2R activation (Caballero-Florán
et al., 2016). Striatal homosynaptic eCB-LTP is prevented when
STDP pairings are applied simultaneously to opto-inhibition of
nigrostriatal dopaminergic neurons and depends on presynaptic
D2R located on cortical afferents, whose activity level shapes the
expression domain of eCB-LTP and eCB-LTD (Xu et al., 2018).
Interestingly, restricting Gi/o protein availability in presynaptic
terminals switches the coupling of CB1R to Gs and stimulates
pkA pathway (Glass and Felder, 1997; Gonzalez et al., 2009):
this competition for Gi/o availability between CB1R and D2R
could favor presynaptic pkA activation and thus promote
corticostriatal eCB-LTP (Cui et al., 2016).

GABA
GABA acts as a Hebbian/anti-Hebbian switch, which orientates
the polarity of corticostriatal homosynaptic eCB-LTP: eCB-LTP
is induced by post-pre pairings in native conditions, but
by pre-post pairings under GABAergic transmission blockade
(Cui et al., 2015).

NO
Biological actions of eCBs partly rely on their ability to
regulate NO signaling (Lipina and Hundal, 2017). At cerebellar
parallel fiber-Purkinje cell synapses, low and high-frequency
stimulations induce differential CB1R activation leading to low
and high amount of NO production, which orientates the
plasticity, respectively, towards eCB-LTP and eCB-LTD (Wang
et al., 2014). Therefore, NO levels may act as a threshold
in the modulation of synaptic strength (Song et al., 2012;
Wang et al., 2014).

Brain-Derived Neurotrophic Factor (BDNF)
BDNF modulates not only eCB-LTD (Heifets and Castillo,
2009) but also eCB-LTP. For heterosynaptic eCB-LTP
in the hippocampus, neocortex, ventral tegmental area,
and striatum, activation of the postsynaptic tropomyosin
receptor kinase-B (TrkB) by BDNF increases 2-AG
mobilization and consequently CB1R activation, which
allows an eCB-mediated depression of IPSCs (Lemtiri-
Chlieh and Levine, 2010; Selvam et al., 2018) and i-LTD
(Zhao et al., 2015; Zhong et al., 2015), tuning the magnitude
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of glutamatergic LTP. In the neocortex, eCBs released by
dendritic calcium spikes reduce inhibitory transmission,
which facilitates postsynaptic calcium spike generation, the
calcium-dependent release of BDNF, and ultimately the
induction of eCB-LTP (Maglio et al., 2018). For homosynaptic
eCB-LTP, TrkB activation facilitates 2-AG synthesis and
shapes the expression domain of corticostriatal eCB-LTP
(Gangarossa et al., 2020).

eCB-MEDIATED LTP IN LEARNING

While several links between eCB-LTD and various forms of
memories have been woven, such as in habit learning or
during critical periods of sensory processing (Augustin and
Lovinger, 2018), we focus here on the recent starting evidence of
the involvement of homosynaptic eCB-LTP and eCB-mediated
heterosynaptic facilitation of LTP in learning, based on studies
using electrophysiological recordings, and pharmacological or
genetic tools modifying eCB-LTP.

Homosynaptic eCB-LTP
At the LPP-dentate gyrus synapses, conveying cue identity
to the hippocampus, eCB-LTP is implicated in memory of
both simultaneous and serial two-odor discriminations, acquired
after a small number of trials in rats (Wang et al., 2016,
2018a,b). Systemic injections of CB1R or MAGL antagonist,
preventing or enhancing, respectively, eCB-LTP, had opposite
effects on learning of the simultaneous two-odor discrimination
task. Importantly, MAGL inhibition led to long-term memory
24 h after six training trials, a protocol which failed to
induce efficient learning in controls (Wang et al., 2016).
Moreover, learning performance was correlated with greater
expression of pROCK in LPP of trained rats and reduced
expression with CB1R inhibitor (Wang et al., 2018b). The
serial odor discrimination task, testing the encoding of cues
embedded in a sequence, is thought to reflect the constant
flow of experience characteristic of episodic memory (Wang
et al., 2018a). Frm1-KO mice, characterized by impaired 2-AG
signaling, reducedNMDAR-mediated transmission, and a strong
impairment of eCB-LTP at LPP-dentate gyrus synapses, show
learning deficits in this task. Also, systemic injection of MAGL
inhibitor or chemogenetic activation of Gq in the entorhinal
cortex was sufficient to rescue in vitro homosynaptic eCB-LTP
and learning.

Heterosynaptic eCB-Mediated Facilitation
of LTP
Several studies highlight the importance of eCB-mediated i-LTD
and the regulation by eCBs of the excitation/inhibition balance
in memory formation and maintenance (Figure 2), unraveling a
novel role of eCBs in disinhibitory mechanisms during learning
(Letzkus et al., 2015). Mice in which only sub-saturating forms
of LTP requiring i-LTD expression in vitro were impaired in
CA1 pyramidal cells (by a targeted mGluR5 knock-out), showed
no deficits in spatial memory but performed poorly in trace-
conditioning tasks when a long 30 s interval separated the two
cues (Xu et al., 2014). Although, partial occlusion of i-LTD

in wild-type mice could be observed ex vivo, LTP could still
be induced in CA1 after learning, probably because only a
few active synapses had been saturated during the task. The
acquisition and retention of this temporally-based associative
learning were enhanced by systematic MAGL inhibition, shown
to promote i-LTD-mediated LTP. This echoed a previous study
(Pan et al., 2011), in which MAGL knock-out mice showed
improved learning in the water maze and object recognition
tasks (but see Griebel et al., 2015). In the same vein, a
subpopulation of hippocampal interneurons appears critical in
controlling the level of inhibition and CB1R- dependent LTP
expression in pyramidal neurons during incidental learning:
GABA-CB1R-KO mice have impaired learning and in vivo
LTP, which can both be fully rescued by reducing GABAergic
transmission. Furthermore, enhancement of ex vivo i-LTD
amplitude in trained mice suggests its involvement in learning
(Busquets-Garcia et al., 2018). CB1R activation is also required
for encoding emotionally salient stimuli at the BLA-medial
prefrontal cortex pathway (Laviolette and Grace, 2006; Tan
et al., 2010, 2011): notably BLA pharmacological CB1R activation
or anandamide reuptake inhibitor potentiates the formation
of associative memories with normally subthreshold footshock,
putatively through CB1R-dependent heterosynaptic facilitation
of BLA output (Azad et al., 2004), and leads to enhanced
cortical activity and bursting in response to olfactory cues
previously paired with footshock. Systemic treatment with CB1R
antagonist prevents in vivo LTP expression and learning. Finally,
astroglial CB1R-knock-out mice do not express NMDAR-LTP
at CA3–CA1 synapses in vivo and show impaired performance
in the novel object recognition task (Robin et al., 2018),
which could be rescued by elevating D-serine levels, gating
NMDAR activation.

Interestingly, a long-lasting enhancement of inhibitory
transmission observed in cortical neurons ex vivo after training
on a difficult olfactory discrimination task relies on an
unusual eCB-mediated mechanism: post-synaptic persistent
CB1R activation in pyramidal cells leads to an inhibition of
pkA, which induces an increase in postsynaptic GABAA channel
conductance (Ghosh et al., 2018).

Overall, the learning of several tasks might initially
be associated with an eCB-mediated relief of GABAergic
transmission, hence reducing the threshold of LTP induction
and could be followed by an elevation of the inhibitory tone that
could participate to long-term memory stabilization (Figure 2).

THERAPEUTIC PERSPECTIVES

eCBs have long been involved in several brain disorders,
in particular drug addiction and pain (Araque et al., 2017).
Most of the dysregulation of eCB-mediated LTP described
below involve heterosynaptic facilitation of LTP through
disinhibitory mechanisms.

Stress Coping
Acute and chronic stress reduce anandamide levels and modify
2-AG signaling andCB1R expression (Ruehle et al., 2012;Morena
et al., 2016), and lead to persistent changes in eCB-mediated
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FIGURE 2 | Hypothetical model of eCBs functions in regulating LTP during learning. We propose here a speculative model of eCBs contribution in controlling LTP
expression and the excitation/inhibition (E/I) balance during the different learning stages, based on the mechanisms described in several in vitro and in vivo studies.
During the initial phases of memory acquisition (I) eCBs could initially operate as high-pass filters, favoring LTP at strongly active synapses (Silva-Cruz et al., 2017).
Also, eCBs-mediated disinhibitory mechanisms (such as DSI or i-LTD operating at different scales) could induce LTP at specific excitatory synapses and fine-tune the
E/I balance during learning (Chevaleyre and Castillo, 2003; Xu et al., 2014; Busquets-Garcia et al., 2018). In parallel, eCBs, whose main modus operandi is
on-demand biosynthesis and release, behave as highly sensitive and robust detectors of synaptic activity, allowing LTP induction even after a few jittered coincident
activity patterns (Cui et al., 2015, 2018a). This feature may thus be used during fast learning and could contribute to episodic memory (Wang et al., 2016). Finally,
eCBs can control the astrocytic-dependent release of co-factors necessary for LTP induction (Robin et al., 2018). In the later phases of memory acquisition (II), eCBs
could increase the network susceptibility to synaptic modifications, near LTP induction focal points, with more or less spatial extent through heterosynaptic plasticity
mechanisms (Chevaleyre and Castillo, 2003; Gómez-Gonzalo et al., 2015; Martín et al., 2015). Importantly, since eCBs can act as bimodal regulators of synaptic
plasticity and interact with several neuromodulators, eCB-mediated LTP could also be switched back to normal, or turned to depression (Wang et al., 2014;
Caballero-Florán et al., 2016; Xu et al., 2018), depending for instance on late behavioral outcomes, such as in reinforcement learning. During consolidation
(III) eCB-mediated potentiation of inhibitory transmission and structural synaptic changes can stabilize acquired memory engrams (Monory et al., 2015; Ghosh et al.,
2018; Hu et al., 2019). Finally, reactivation of memories (IV) especially emotional ones, increases eCB signaling, which can operate in feedback and control the lability
of these memory traces by modifying the E/I balance (Li et al., 2008; Segev et al., 2018).

plasticity expression and polarity ex vivo (Glangetas et al., 2013;
Bosch-Bouju et al., 2016) and in vivo (Segev et al., 2018).
Mimicking anandamide reduction by selectively overexpressing
FAAH at hippocampal CA3-CA1 synapses led to increased
anxiety along with an enhancement of LTP expression in vitro,
while i-LTD and DSI remained unchanged (Zimmermann et al.,

2019). Yet, FAAH overexpression in BLA pyramidal neurons can
also attenuate stress and anxiety-like behaviors (Morena et al.,
2019): as an explanation, FAAH overexpression could dry out
tonic anandamide signaling at GABAergic synapses and shift the
excitation/inhibition balance towards inhibition of BLA output
neurons. These results highlight the need for considering the
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excitatory/inhibitory nature of neurons where CB1R is activated
to understand the impact of plasticity changes at the network
output level.

Conversely, evidence for elevated anandamide during
extinction training corroborates with the persistent facilitation
of fear extinction induced by pharmacologically increasing
anandamide levels in BLA, hippocampus or mPFC (Lin et al.,
2008; Gunduz-Cinar et al., 2012; Shoshan et al., 2017; Segev
et al., 2018) and with its impairment by CB1R antagonists or
FAAH overexpression (De Oliveira Alvares et al., 2008; Lin
et al., 2008; Abush and Akirav, 2009; Gunduz-Cinar et al., 2012;
Zimmermann et al., 2019). In particular, while increased FAAH
activity is observed in BLA and hippocampus following shock
exposure, local application of FAAH inhibitor renormalizes
stress-induced plasticity changes, re-allowing CA1-CA3
LTP expression while causing a decrease of BLA LTP in vivo
(Segev et al., 2018). These manipulations operated immediately
or 24 h after a situational reminder of fear-conditioning,
persistently attenuated fear expression in mice. Yet, enhanced
BLA i-LTD was also reported after local administration of
FAAH inhibitor under stressed conditions, and could selectively
enhance neuronal excitability in specific BLA glutamatergic
networks (Azad et al., 2004; Gunduz-Cinar et al., 2012).
Activation of hippocampal TRPV1, which was shown to enhance
CA1 LTP via the GABAergic system in vitro (Bennion et al.,
2011), could prevent the stress-induced switch from LTP
to LTD and stress-induced impairment of spatial memory
retrieval (Li et al., 2008). Overall, a targeted elevation of eCBs
appears as a strategy for coping with stress, with preliminary
clinical applications (Papagianni and Stevenson, 2019;
Mayo et al., 2020).

Drug Addiction
The facilitation of LTP in dopaminergic neurons is reported
after exposure to cocaine, ethanol, or nicotine (Parsons and
Hurd, 2015). For prolonged cocaine exposure, such facilitation,
accompanied by increased bursting of dopaminergic neurons,
is likely mediated by an eCB-dependent disinhibitory feedback
loop (Liu et al., 2005; Pan et al., 2008a,b). Indeed, cocaine intake
occludes ex vivo eCB-mediated i-LTD while manipulating eCBs
signaling (by local application of CB1R or mGluR5 antagonists,
or by blocking 2-AG synthesis) alleviates cocaine-induced
reduction of inhibitory transmission (Pan et al., 2008b;
Wang et al., 2015; Zhong et al., 2015). Chronic nicotine
self-administration facilitates the induction of CB1R-mediated
LTP in the bed nucleus of the stria terminalis, and this facilitation
resists to a long period of forced abstinence (Reisiger et al.,
2014). As this area is involved in cue-induced drug-seeking,
these persistent changes could be responsible for increased
vulnerability to relapse.

Alzheimer and Parkinson’s Diseases
In Alzheimer’s disease, β-amyloid accumulation results in
a reduction of hippocampal LTP, and notably prevents
eCB-mediated disinhibition and EPSP-to-spike potentiation
in vitro (Orr et al., 2014), a phenomenon that could contribute
to memory deficits. Knocking-out CB1R in an Alzheimer mouse

model worsens learning impairments, while treatments with
an eCB-reuptake inhibitor or exogenous cannabinoids improve
memory (Bedse et al., 2014). In parkinsonian rodents, striatal
homosynaptic eCB-LTP is prevented ex vivo and can be rescued
by Levodopa (Xu et al., 2018), and the globus pallidus exhibits
a reduced GABAergic transmission, which is reversed by the
co-activation of D2R and CB1R (Muñoz-Arenas et al., 2015).

Pain
In the spinal cord, eCBs have both anti- and pro-nociceptive
effects through inversed plasticity mechanisms, respectively
by depressing nociceptive and disinhibiting non-nociceptive
afferents (Pernia-Andrade et al., 2009; Kato et al., 2012).
The underlying mechanism was evidenced in the semi-intact
preparation of the nervous ganglia of the medicinal leech,
in which eCB-mediated heterosynaptic potentiation of
non-nociceptive synapses is critical to producing behavioral
sensitization in response to noxious stimuli (Higgins et al., 2013;
Wang and Burrell, 2018).

CONCLUSIONS

Although, it has encountered some skepticism at times,
various forms of eCB-mediated LTP have been characterized
in different brain areas. If their involvement in memory
has been proposed by a substantial body of experimental
evidence, further work is necessary to make a direct link
between the two in several paradigms, using targeted in vivo
recordings and pharmacological or genetic manipulations.
eCB-LTP should not be viewed as an unconventional or
atypical form of eCB-plasticity, but as the other side of the
eCB-mediated engram, making eCBs bidirectional regulators of
synaptic plasticity, similarly to most neurotransmitters. With the
increasing promising applications for cannabis and eCB-based
drugs in medicine, we need to consider eCBs bidirectional
effects, which also expand considerably their potential field of
therapeutic applications.
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