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Abstract: Osteoarthritis (OA) is the most common joint disease associated with pain and disability.
OA patients are at a high risk for venous thrombosis (VTE). Here, we developed an interpretable
machine learning (ML)-based model to predict VTE risk in patients with OA. To establish a predic-
tion model, we used six ML algorithms, of which 35 variables were employed. Recursive feature
elimination (RFE) was used to screen the most related clinical variables associated with VTE. SHapley
additive exPlanations (SHAP) were applied to interpret the ML mode and determine the importance
of the selected features. Overall, 3169 patients with OA (average age: 66.52 ± 7.28 years) were
recruited from Xi’an Honghui Hospital. Of these, 352 and 2817 patients were diagnosed with and
without VTE, respectively. The XGBoost algorithm showed the best performance. According to the
RFE algorithms, 15 variables were retained for further modeling with the XGBoost algorithm. The
top three predictors were Kellgren–Lawrence grade, age, and hypertension. Our study showed that
the XGBoost model with 15 variables has a high potential to predict VTE risk in patients with OA.

Keywords: osteoarthritis; venous thrombosis; VTE risk prediction; machine learning algorithm;
population-based cohort study

1. Introduction

Osteoarthritis (OA) is the most common joint disease worldwide, with an age-associated
increase in both incidence and prevalence [1,2]. It is estimated that approximately
302 million people globally suffer from this disease, and the associated healthcare resources
and financial burden can be substantial [3,4]. OA, a primary cause of pain, disability, and
joint replacement, is characterized by disease affecting the whole joint, including articular
cartilage degradation, synovium and ligament inflammation, and changes to the subchon-
dral bone [5–7]. Despite the symptomatic treatment of pain, stiffness, and swelling, there
are no FDA-approved disease-modifying drugs [8]. As a complex disease, a multitude
of possible etiologies contribute to the development of OA, including obesity, sedentary
lifestyle, trauma, and aging [9–11]. Early prevention and elimination of risk factors are criti-
cal in delaying disease progression [12]. Nevertheless, despite these identifiable underlying
causes, OA still cannot be effectively prevented.

Venous thrombosis is a relatively common and potentially fatal condition in patients,
and an increased risk of VTE has been reported in arthritis, particularly in rheumatic
arthritis (RA) [13–16]. Li et al. reported that RA patients have an increased risk of VTE,
pulmonary embolism, and deep vein thrombosis after diagnosis in comparison with the
general population [17]. This suggests that VTE may play a vital role in chronic and
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systemic inflammatory autoimmune disease. However, the relationship between OA
and VTE has not been elucidated. A recent study in a large population-based cohort
revealed that knee or hip osteoarthritis might increase incident VTE risk to 40% and 80%,
respectively, when compared to those without OA, which may be partly mediated through
joint replacement [18].

Thus, predicting the VTE risk among OA patients is critical to reduce morbidity and
mortality from VTE in OA patients. Machine learning (ML) is a computer-based method of
data analysis that is often used to construct predictive models based on large datasets [19].
In this study, we aimed to develop a model using the ML algorithm to identify those at
high risk of VTE in OA patients

2. Materials and Methods

We performed a single-center cross-sectional study of OA patients in Xi’an Honghui
Hospital between January 2018 and December 2020. Patients were consecutively recruited
from joint surgery department and were examined by venous ultrasound of the legs
to assess VTE risk. The inclusion criteria were as follows: (1) diagnosed with knee os-
teoarthritis (guidelines for the diagnosis and treatment of osteoarthritis (2018 edition)) [20];
(2) radiographically evaluated by X-ray at Kellgren–Lawrence grade stages 3–4. Those with
heart stent, ischemic stroke, cancers, or incomplete laboratory data were excluded from the
study. The study was approved by the Ethics Committee of Xi’an Honghui Hospital and
conducted in accordance with the Declaration of Helsinki. Written informed consent was
waived owing to the retrospective nature of the study. All confidential patient information
was deleted from the entire dataset prior to the analysis.

All patient demographics and laboratory data at admission were extracted manually
from electronic medical records using a standardized case report form.

2.1. Machine Learning Algorithms

To develop machine learning models, 35 parameters were used for the analysis. Before
developing the ML models, laboratory indices, which were continuous variables, were
converted into categorical variables based on their normal range values. In addition, the
patient’s age was treated as a continuous variable, with missing values replaced by median
values. All patients were randomly divided into a training set and test set at a ratio of 8:2.

Six ML algorithms, namely logistic regression (LR), random forest (RF), extreme
gradient boosting (XGBoost), adaptive boosting (AdaBoost), gradient boosting decision
tree (GBDT), and light gradient boosting machine (LGBM), were used to predict the VTE
risk. We used the receiver operating characteristic (ROC) curve as the evaluation metric
to compare the performance of the ML algorithm between the training and testing sets.
The best performance model was chosen, and recursive feature elimination (RFE) was
employed to screen the optimized variable combinations. For model interpretation, the
Shapley additive exPlanations (SHAP) algorithm was used to calculate the Shapley value
of each variable based on game theory to further explain the best performance model.

2.2. Statistical Analysis

All statistical analyses were conducted using Python software (version 3.8). A Fisher’s
exact test or an x2 test was conducted for binary variables, and Student’s t-test was used
for continuous variables. Owing to the imbalance of the dataset, the synthetic minority
oversampling technique (SMOTE) was used to deal with the training set. Six ML algorithms
were used to screen for the best performance prediction model. Using the RFE algorithm,
all variables were filtered one by one to obtain the best combination, which was then
established in a selected ML prediction model. We also used the SHAP algorithm to
interpret and evaluate the optimized model. Statistical significance was set at p ≤ 0.05.
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3. Results

We excluded subjects with missing data and subsequently enrolled 3169 patients
with an average age of 66.52 ± 7.28 years in the study (Figure 1). Of them, 2400 patients
were male and 769 patients were female, accounting for 75.73% and 24.27% of all patients,
respectively. All patients were divided into the VTE and non-VTE groups. There were 352
patients with VTE, with an average age of 68.05 ± 6.84 and 2817 patients without VTE,
with an average age of 66.33 ± 7.31. In the VTE group, 281 patients were male (79.83%) and
71 patients were female (20.17%). In the non-VTE group, 2119 patients were male (75.22%)
and 698 were female (24.78%). The baseline characteristics of patients stratified by VTE are
summarized in Table 1.
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Table 1. Characteristics of the patients stratified by VTE or not.

Class a Total None-Venous
Thrombosis

Venous
Thrombosis p b

N 3169 2817 352
Age (year) b 66.52 ± 7.28 66.33 ± 7.31 68.05 ± 6.84 <0.001
Gender

Male 2400 (75.73%) 2119 (75.22%) 281 (79.83%) 0.066
Female 769 (24.27%) 698 (24.78%) 71 (20.17%)

Hypertension
No 1730 (54.59%) 1543 (54.77%) 187 (53.12%) 0.597
Yes 1439 (45.41%) 1274 (45.23%) 165 (46.88%)

Diabetes
No 2751 (86.81%) 2437 (86.51%) 314 (89.20%) 0.185
Yes 418 (13.19%) 380 (13.49%) 38 (10.80%)

Coronary
heart disease

No 2207 (69.64%) 1974 (70.07%) 233 (66.19%) 0.152
Yes 962 (30.36%) 843 (29.93%) 119 (33.81%)
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Table 1. Cont.

Class a Total None-Venous
Thrombosis

Venous
Thrombosis p b

Kellgren–
Lawrence
grade

0 2269 (71.60%) 1943 (68.97%) 326 (92.61%) <0.001
III 181 (5.71%) 178 (6.32%) 3 (0.85%)
IV 719 (22.69%) 696 (24.71%) 23 (6.54%)

Eosinophil
ratio

Normal Range 2746 (86.65%) 2431 (86.30%) 315 (89.49%) 0.115
Abnormal 423 (13.35%) 386 (13.70%) 37 (10.51%)

Hematocrit
Normal Range 2535 (79.99%) 2254 (80.01%) 281 (79.83%) 0.991
Abnormal 634 (20.01%) 563 (19.99%) 71 (20.17%)

Mean platelet
volume

Normal Range 2782 (87.79%) 2462 (87.40%) 320 (90.91%) 0.070
Abnormal 387 (12.21%) 355 (12.60%) 32 (9.09%)

Thrombocytocrit
Normal Range 2858 (90.19%) 2527 (89.71%) 331 (94.03%) 0.013
Abnormal 311 (9.81%) 290 (10.29%) 21 (5.97%)

platelet-larger
cell ratio

Normal Range 2390 (75.42%) 2112 (74.97%) 278 (78.98%) 0.114
Abnormal 779 (24.58%) 705 (25.03%) 74 (21.02%)

Uric acid
Normal Range 2554 (80.59%) 2261 (80.26%) 293 (83.24%) 0.208
Abnormal 615 (19.41%) 556 (19.74%) 59 (16.76%)

Glucose
Normal Range 2665 (84.10%) 2369 (84.10%) 296 (84.09%) 0.941
Abnormal 504 (15.90%) 448 (15.90%) 56 (15.91%)

Antistreptococcal
hemolysin
“O”

Normal Range 3074 (97.00%) 2726 (96.77%) 348 (98.86%) 0.045
Abnormal 95 (3.00%) 91 (3.23%) 4 (1.14%)

Anti-CCP
antibody

Normal Range 2549 (80.44%) 2255 (80.05%) 294 (83.52%) 0.140
Abnormal 620 (19.56%) 562 (19.95%) 58 (16.48%)

Rheumatoid
factors

Normal Range 2902 (91.57%) 2577 (91.48%) 325 (92.33%) 0.661
Abnormal 267 (8.43%) 240 (8.52%) 27 (7.67%)

a Continuous variable are transformed to dichotomous variables according to their normal range. b Values are
presented as mean ± SD.

The patients were randomly stratified (8:2) into training and testing sets to evaluate
the model performance. Finally, a total of 35 characteristics were enrolled in the six ML
algorithms, including LR, RF, XGBoost, AdaBoost, GBDT, and LGBM, to identify the
model with the best predictive performance. Our results showed that the XGBoost model
demonstrated the best performance, with an area under the curve (AUC) of 0.741 (95%
CI: 0.676, 0.806) (Figure 2A,B). The AUC values of the other models are shown in Table 2.
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Table 2. The area under the curve (AUC) of training set and testing set.

Training Set (AUC, 95% CI) Testing Set (AUC, 95% CI)

LR 0.843 (0.832, 0.855) 0.690 (0.620, 0.760)
RF 0.872 (0.862, 0.882) 0.685 (0.618, 0.753)

XGBoost 0.980 (0.977, 0.983) 0.741 (0.676, 0.806)
AdaBoost 0.858 (0.847, 0.868) 0.687 (0.619, 0.755)

GBDT 0.965 (0.960, 0.970) 0.720 (0.656, 0.784)
CatBoost 0.973 (0.969, 0.977) 0.724 (0.657, 0.790)

To further optimize the XGBoost model, the RFE method was used to screen the most
important variables that can predict the VTE risk. Finally, 15 variables were employed to
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establish the final prediction model, and the new XGBoost model showed that the AUC of
the testing dataset was 0.727 (95% CI = 0.662, 0.792) (Figure 3A,B).
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Interpretation and Evaluation of Machine Learning Model

The SHAP method was also used to interpret the relative importance of each variable
in the XGBoost model. Our results showed that age, eosinophil ratio (EOSR), hemat-
ocrit (HCT), mean platelet volume (MPV), thrombocytocrit (PCT), platelet-larger cell ratio
(P-LCR), uric acid (UA), glucose, antistreptococcal hemolysin “O” (ASO), anti-cyclic cit-
rullinated peptide antibody (ACPA), rheumatoid factor (RF), Kellgren–Lawrence grade
(K–L grade), history of hypertension, diabetes, and coronary artery disease (CAD) were as-
sociated with the risk of VTE in OA patients. Particularly, K–L grade, age, and hypertension
were the three vital variables (Figure 4A,B).
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Figure 4. Interpretation and Evaluation of Machine Learning Model. (A) SHAP analysis on the
dataset, which shows the 15 most important features and their impact on the model output. Each dot
represents one patient, with blue color meaning the lowest range and red color meaning the highest
range of the feature; (B) Ranking of the features’ importance indicated by SHAP analysis.

4. Discussion

Extensive efforts have been made to delay OA patients progress to the end stage.
In this hospital-based cross-sectional study, we used the ML algorithm to predict VTE
risk in patients with OA. We found that using the XGBoost model with 15 variables can
predict VTE risk in OA patients, and this may have a growing prevalence due to the global
ageing population.

OA is not simply a matter of mechanical damage to the joint but involves several
additional risk factors [21]. Nevertheless, some patients still inevitably rapidly progress to
the end stages [22]. The 11th leading cause of disability worldwide has resulted in a rapid
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increase in orthopedic surgeries over the last few decades [4]. Rather than medication,
lifestyle modification is the most promising avenue for the prevention of OA [3,23]. Many
risk factors, including VTE, have been identified, and these may be partly mediated through
knee or hip replacement. In a large population-based cohort study, Zeng et al. reported
that VTE increased by approximately 40% among individuals with knee OA and by 80%
among individuals with hip OA compared to those without OA [18].

Machine learning is a crucial branch of artificial intelligence that utilizes historical
data to predict the likelihood of a future outcome [24,25]. As a multidisciplinary approach,
ML algorithms are increasingly being utilized to predict outcomes in lower-extremity
total joint arthroplasty [26]. Lu et al. used ML to establish a model to predict surgical
outcomes after non-compartmental knee arthroplasty [27]. Kunze et al. developed machine
learning algorithms based on partially modifiable risk factors for predicting dissatisfaction
after arthroplasty [28]. In this study, we found that the XGBoost algorithm was the best
performing algorithm. In this prediction model, 15 variables were found to be associated
with VTE risk. In addition to the conventional risk factors such as age, hypertension, and
diabetes, our study found that CAD, EOSR, HCT, MPV, PCT, P-LCR, UA, ASO, ACPA,
RF, and Kellgren–Lawrence grade were also correlated with VTE. These have not been
reported elsewhere.

The present study has certain limitations. First, although ML algorithms are widely
used in medical practice, the predictive value is limited due to the “black box” characteristic.
Thus, rather than being used as a clinical judgment tool, an ML algorithm model should be
used as a reference for physicians. Second, all the data analyzed in the present study were
from a single institution, and the imbalance of gender ratio has limited the generalization
of our results. Additionally, because of the nature of an observational study, some unmea-
sured confounding effects may persist; thus, additional validation and assessment of the
relationship between the variables and VTE in OA patients should be performed in a large
population. Nevertheless, despite such limitations, to our knowledge, this is the first study
to use a machine learning method to predict VTE risk in OA patients.

5. Conclusions

In conclusion, we developed a XGBoost model with a high accuracy in the prediction of
VTE risk in patients with OA, which might supply a complementary tool for the screening
of populations at high risk of VTE.
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