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Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and
pathogenesis, especially regarding pathogen evolution and the spread of antibiotic
resistance across species. The obligate intracellular chlamydiae, which cause a range
of diseases in humans and animals, were historically thought to be highly deficient in this
process. However, research over the past few decades has demonstrated that this was
not the case. The first reports of homologous recombination in the Chlamydiaceae family
were published in the early 1990s. Later, the advent of whole-genome sequencing
uncovered clear evidence for LGT in the evolution of the Chlamydiaceae, although the
acquisition of tetracycline resistance in Chlamydia (C.) suis is the only recent instance of
interphylum LGT. In contrast, genome and in vitro studies have shown that intraspecies
DNA exchange occurs frequently and can even cross species barriers between closely
related chlamydiae, such as between C. trachomatis, C. muridarum, and C. suis.
Additionally, whole-genome analysis led to the identification of various DNA repair and
recombination systems in C. trachomatis, but the exact machinery of DNA uptake and
homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we
reviewed the current state of knowledge concerning LGT in Chlamydia by focusing on the
effect of homologous recombination on the chlamydial genome, the recombination
machinery, and its potential as a genetic tool for Chlamydia.

Keywords: horizontal gene transfer, homologous recombination, Chlamydiaceae, RecBCD, RecFOR, co-infection,
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INTRODUCTION

The gram-negative Chlamydiaceae family consists of several pathogenic species that cause diseases
ranging from pneumonia to sexually transmitted infections (STI) in humans, livestock, pets, and
wildlife. In humans, Chlamydia (C.) trachomatis is the cause of chronic eye infections leading to
blindness (trachoma), and STI, while C. pneumoniae induces community-acquired pneumonia.
C. psittaci is a zoonotic pathogen primarily detected in birds causing flu-like symptoms to life-
threatening pneumonia in humans. C. abortus is the cause of ovine enzootic abortion (OEA) in
sheep and goats and may also induce miscarriage in women. In contrast, C. suis, another chlamydial
species with zoonotic potential, is found in the eyes and intestinal tract of pigs, often remaining
asymptomatic (Dean et al., 2013; De Puysseleyr et al., 2014; De Puysseleyr et al., 2017; Sachse and
Borel, 2020; Jordan et al., 2020). Although the chlamydial obligate intracellular life cycle is reflected
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by extensive streamlining and reduction of the genome (Palmer,
2002; Toft and Andersson, 2010), the Chlamydiaceae possess a
number of genes involved in DNA uptake, recombination, and
repair (Stephens et al., 1998; LaBrie et al., 2019) enabling intra-
and interspecies lateral gene transfer (Suchland et al., 2009;
Somboonna et al., 2011; Joseph and Read, 2012; Joseph et al.,
2015; Marti et al., 2017).

Lateral, or horizontal, gene transfer (LGT) involves transfer of
genetic material (DNA) from one cell to another and subsequent
integration into the genome of the recipient cell. In bacteria,
DNA transfer is primarily facilitated by transduction
(bacteriophage infection), conjugation/mobilization/conduction
(plasmid transfer), and transformation (uptake of naked DNA).
DNA integration is then directed by homologous or non-
homologous recombination (Redfield, 2001).

Here, we will review the current state of knowledge regarding
lateral gene transfer (LGT) in the Chlamydiaceae by focusing on
i) the impact of recombination on the Chlamydiaceae genome,
ii) the homologous recombinationmachinery of the Chlamydiaceae,
and iii) homologous recombination as a potential genetic tool.
THE IMPACT OF HOMOLOGOUS
RECOMBINATION ON THE
CHLAMYDIAL GENOME

The first reports providing evidence for intrastrain recombination
within C. trachomatis were published in the 1990s and were based
on gene-specific sequence analysis of ompA, which encodes the
major outer membrane protein (MOMP) (Lampe et al., 1993;
Brunham et al., 1994; Hayes et al., 1994; Hayes et al., 1995).
Whole-genome analysis of laboratory and clinical strains later
revealed that recombination events occurred across the entire
genome during the evolution of C. trachomatis (Jeffrey et al., 2010;
Joseph et al., 2011; Harris et al., 2012), as well as other chlamydial
species such as C. pneumoniae, C. psittaci, and C. suis (Read et al.,
2013; Roulis et al., 2015; Joseph et al., 2016; Seth-Smith et al.,
2017b). Interestingly, investigation of C. abortus revealed no sign
of recombination in currently circulating strains (Joseph et al.,
2015; Seth-Smith et al., 2017a).

Whole-genome analyses further identified regions of high
genomic diversity and, in parallel, regions with apparently higher
rates of recombination. In C. trachomatis and C. pneumoniae;
these included ompA (Hayes et al., 1994), the polymorphic
membrane protein-encoding genes (pmps) (Jordan et al., 2001;
Rocha et al., 2002; Brunelle and Sensabaugh, 2006), incA, and the
translocated actin-recruiting phosphoprotein-encoding gene
tarp (Joseph et al., 2012; Joseph and Read, 2012; Roulis et al.,
2015), as well as the plasticity zone (PZ) (Jeffrey et al., 2010).
Tarp is an important effector protein involved in the re-
structuring of the host cytoskeleton (Tolchard et al., 2018).
The PZ encodes for a range of different genes that are
hypothesized to have important functions in the pathogenicity
of the chlamydiae and may be a site of increased susceptibility for
DNA uptake, genetic variation, and functional gene loss (Read
et al., 2000; Thomson et al., 2008; Rajaram et al., 2015).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
In the evolution and diversification of the Chlamydiaceae
family, widespread gene rearrangement and translocation were
identified between C. pneumoniae and C. trachomatis (Tillier
and Collins, 2000). Furthermore, LGT events were detected
both within and among the four major strain clusters of
C. trachomatis, namely, the lymphogranuloma venereum
(LGV), the trachoma, and two urogenital (T1, T2) clusters
(Hadfield et al., 2017). Some studies have shown that this
could have a clinical impact in terms of virulence and
epidemiology (Somboonna et al., 2011; Andersson et al., 2016;
Hadfield et al., 2017; Borges et al., 2019). Moreover, the effect of
recombination can vary greatly between the four above-
mentioned lineages of C. trachomatis, with the ocular strains
being less affected than the urogenital lineages and the clonal
LGV lineage having undergone no significant re-combination
(Hadfield et al., 2017; Seth-Smith et al., 2021).

Overall, current data suggest that C. psittaci, C. pneumoniae,
and C. suis have undergone higher rates of recombination than
the entirety of the four C. trachomatis lineages. However, direct
comparison between studies remains difficult due to the varying
number of available genomes per species and because of the
different approaches used to calculate r/m and other statistics
that aim to quantify the recombination rate of a population
(Read et al., 2013; Joseph et al., 2015; Roulis et al., 2015; Joseph
et al., 2016; Hadfield et al., 2017; Seth-Smith et al., 2017b).

Additionally, one study proposed that ribosomal binding sites
and tRNA may be associated with recombinant breakpoints
(Gomes et al., 2006). However, these findings have yet to be
confirmed by in vitro studies. So far, in vitro studies dealing with
LGT following co-infection found little evidence for specific
patterns, regions, or sites of recombination (Jeffrey et al., 2013;
Marti et al., 2021), although there are notable differences between
interspecies and intraspecies crosses, with intraspecies crosses
generally leading to a higher proportion of donor DNA in the
recombinant strains (Suchland et al., 2019). Moreover, the same
study found that the replication termination is a target for
interspecies recombination.

One very interesting chlamydial species in the context of LGT
is C. suis. It is the only chlamydial species to have naturally
obtained a resistance gene, tetA(C), which encodes a tetracycline
efflux pump. This resistance allele and its genetic content were
integrated as a genomic island (Tet-island) into the C. suis
chromosome in an invasion-like gene (inv), probably during a
transposition event directed by the transposase-encoding
insertion sequence IScs605, although the exact mode of
transmission and integration could not be replicated in an in
vitro model involving C. suis (Dugan et al., 2004; Dugan et al.,
2007). This Tet-island is the only evidence for recent acquisition
of foreign DNA from other bacteria in Chlamydia spp. It shares
high nucleotide identity with a pRAS3-type plasmid from the fish
pathogen Aeromonas salmonicida ssp. salmonicida (Massicotte
et al., 2019). It has been hypothesized that the plasmid was
transferred via feeding of pigs with fish meal (Sandoz and
Rockey, 2010) and was selected for with the use of tetracycline
as a growth promoter in pig production facilities (Dugan et al.,
2004). The use of tetracycline in pigs as prophylactic and
March 2022 | Volume 12 | Article 861899
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therapeutic treatment has been shown to increase the rate of
C. suis strains positive for tetA(C) (Borel et al., 2012; Borel et al.,
2016; Wanninger et al., 2016), and whole-genome analysis and in
vitro studies have indicated that intraspecies spread of tetA(C) is
the result of homologous recombination (Joseph et al., 2016;
Marti et al., 2017; Marti et al., 2021).

It is concerning that the tetA(C) marker can readily and stably
integrate into C. trachomatis and C. muridarum strains in vitro
(Suchland et al., 2009), leading to the possibility that these strains
could acquire tetracycline resistance in clinical settings. This
possibility was strengthened when C. suis was detected and
isolated from the eyes, feces, and pharynges of veterinarians,
pig farmers, and abattoir workers, although tetracycline-resistant
C. suis strains have yet to be isolated from human samples (Dean
et al., 2013; De Puysseleyr et al., 2014; De Puysseleyr et al., 2017).
Because ocular C. trachomatis infection (inclusion conjunctivitis)
through autoinoculation with genital C. trachomatis strains D-K
has been reported (Haller-Schober and El-Shabrawi, 2002),
the possibility of Tet-island transmission from C. suis to
C. trachomatis cannot be excluded.

One remarkable finding that has emerged during natural LGT
in Chlamydia is the difference between cross-species vs.
intraspecies genetic transfer occurrence. We envision a model
where LGT within the inclusion is very common, to the extent
that clonal C. trachomatis recombines regularly in inclusions that
form following infection with a single EB. The selective driver for
such common genetic exchange is currently unclear but would be
consistent with the principles of Muller’s Ratchet, where it is
hypothesized that random mutation in haploid organisms would
lead to fully degraded genomes in the absence of LGT (Joseph
et al., 2011; Takeuchi et al., 2014). Other selective drivers, such as
the Hill–Robertson effect, where the overall responsiveness to
selection is reduced in finite populations, may also play a role
(Joseph et al., 2011). Therefore, we propose that the reason for
such common intraspecies LGT is to regenerate or maintain
wild-type genomes in an intracellular environment that
otherwise might be considered stressful and mutagenic
(MacLean et al., 2013; Maharjan and Ferenci, 2017).
THE CHLAMYDIAL
RECOMBINATION MACHINERY

Homologous recombination allows inter- and intragenomic
exchange of DNA and therefore plays a crucial role in genetic
diversification and DNA repair (Rocha et al., 2005). In bacteria,
homologous recombination consists of two major pathways, the
RecBCD (Figure 1A) and the RecFOR pathway (Figure 1B),
both of which facilitate DNA exchange between a com-plementary
sequence and single-strand DNA (ssDNA) using the RecA protein
(Rocha et al., 2005).

In Chlamydia, whole-genome sequencing revealed that the
genome contains various genes from the recombination and
DNA repair machinery (Stephens et al., 1998; Azuma et al.,
2006). However, only few studies have investigated the function
and exact mechanism of the chlamydial homologous re-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
combination machinery. The first chlamydial recombination-
associated protein to be analyzed was RecA in C. trachomatis,
which was found to have moderate recombinational activity and
possessed low efficiency after DNA damage by UV radiation
compared to other bacteria (Hintz et al., 1995; Zhang et al.,
1995). Chlamydial RecJ has a similar function as that of other
gram-negative bacteria, namely, exonuclease activity in RecBCD-
independent and conjugational recombination (Hsia and Bavoil,
1996; Rocha et al., 2005). It is expected that the RecBCD and
RecFOR pathways of Chlamydia work similarly to that of E. coli,
including formation and resolution of Holliday junctions due to
the presence of ruv genes (Bastidas and Valdivia, 2016).

Some Chlamydia-specific particularities and open questions
remain. For example, the histone-like protein Hc1 is involved in
the condensation of the chlamydial nucleoid and inhibits RecA
activity. Interestingly, however, Hc1 only inhibits its repair and
not its recombinational activity (Ennis et al., 2000). For the
RecBCD pathway, the exact identity of Chlamydia-specific Chi
sites is unknown, as indicated in Figure 1 (Gomes et al., 2006).

Overall, it appears that the recombination machinery of the
Chlamydiaceae family is complete, which underlines the
importance of homologous recombination for a bacterial
species that has undergone significant gene reduction (Palmer,
2002). However, more studies are necessary to confirm current
assumptions that are only based on genomic data. With
increasing options to genetically modify the chlamydiae
(Valdivia and Bastidas, 2018), these investigations have become
a possibility. First advances have already been made in recent
years by the creation of knockout mutants in which genes
involved in LGT are inactivated (Kokes et al., 2015; LaBrie et al.,
2019; Wang et al., 2019). Currently available knockout mutants
concerning LGT involving DNA uptake and ho-mologous
recombination are listed in Table 1.
HOMOLOGOUS RECOMBINATION AND
GENETIC ENGINEERING

Genetic manipulation is an indispensable tool to understanding
the biology of eukaryotic and prokaryotic cells. In the Chlamydia
research field, tools for genetic modification have only recently
been developed. The currently available methods have been
reviewed in detail (Bastidas and Valdivia, 2016); therefore, we
will only discuss genetic engineering in the context of
homologous recombination.

The first report of successful, albeit transient, transformation
of Chlamydia was published in the 1990s (Tam et al., 1994).
Fifteen years later, a study could stably introduce kasugamycin
and spectinomycin resistance into C. psittaci by introducing a
pUC derivative, which carried the ribosomal RNA (rrn) region of
C. psittaci with resistance-inducing point mutations, into the
wild type using electroporation (Binet and Maurelli, 2009).
Shuttle vectors comprising an E. coli vector and the chlamydial
plasmid later allowed stable and reproducible transformation of
Chlamydia (Wang et al., 2011), overhauling the field of
Chlamydia genetics.
March 2022 | Volume 12 | Article 861899
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One of the remaining challenges of genetic manipulation of
Chlamydia spp. is the inability of the pathogen to maintain
plasmids with replication systems that do not include the native
chlamydial plasmid. There has been significant progress in this
field when a very recent report used a recombinant construct
based on a broad-spectrum plasmid from Bordetella pertussis
(pBBR1 MCS4) to transform a C. trachomatis L2 strain. This
plasmid, pBVR1, contained C. trachomatis genomic sequences
that allowed integration of the element into the C. trachomatis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
chromosome. This construct was maintained as both an episome
and an integrated element in transformed strains. It is expected
that further work with the pBBR1 vector system will perhaps
allow the maintaining of non-chlamydial-plasmid-based genetic
elements in transformed strains (Garvin et al., 2021).

Additionally, co-culture models were established as an
alternative method to genetically modify the chlamydiae by co-
infecting cells with two C. trachomatis strains, each carrying
resistance-conferring mutations to either ofloxacin, lincomycin,
A B

FIGURE 1 | Homologous recombination in gram-negative bacteria. (A) The RecBCD pathway is activated following a double-strand break that causes the RecBCD
complex to bind on both ends and degrade DNA from the 3′ to 5′ end until one of the complexes encounters a Chi site. RecBCD then degrades the DNA from to 5′
to 3′ end while RecA (green) can bind to the 3′ extension. Next, the RecA-covered single-strand DNA invades a homologous sequence (synapsis formation) and
RuvABC (with or without RecG) is used to resolve the Holliday junction, exchanging DNA via recombination. (B) In the RecFOR pathway, a single-strand break is first
unwound with helicase RecQ and degraded with RecJ, while single-stranded binding protein (SSB) attaches to the exposed strand. This is followed by RecFOR
promoting the replacement of SSB with RecA followed by the same process as described in the RecBCD pathway. Proteins that were analyzed in detail regarding its
function and activity in Chlamydia are labeled in blue; protein/sites that are unknown or inexistent in Chlamydia are labeled in red. The figure was modified from
Rocha et al. (2005), Figure 1, and Snyder et al. (2013), Figures 10.2, 10.3, and 10.4.
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trimethoprim, or rifampicin, and selecting for double-resistant
recombinants. These studies detected recombination frequencies
of 10-4 to 10-3 and further proposed that LGT likely played an
important part in chlamydial evolution (DeMars et al., 2007;
DeMars and Weinfurter, 2008). Similar protocols further
demonstrated that interspecies transfer of the Tet-island from
C. suis to C. trachomatis and C. muridarum, but not the more
distantly related C. caviae, is possible. While C. muridarum
obtained an approximately 100 kb-long sequence (the Tet-
island and surrounding genes) as the result of a homologous
recombination-mediated crossover event, co-infection of C. suis
and C. trachomatis produced a mosaic strain with three instead
of two rrn operons (Suchland et al., 2009). Interspecies transfer
of the Tet-island via homologous recombination has been shown
for C. trachomatis (Jeffrey et al., 2013) and C. suis, both in the
presence (Marti et al., 2021) and absence (Marti et al., 2017) of
double selection. Interestingly, comparison of in vitro-generated
recombinant strains with clinical strains demonstrated that there
are statistically more breakpoints in in vitro C. trachomatis
strains compared to clinical strains, especially in the resistance-
conferring genes rpoB (rifamycin group) and gyrA (ofloxacin)
(Srinivasan et al., 2012).

The principle of co-infection and selection for recombinants
has since become crucial in genetic engineering of the Chlamydia.
For example, it has been used as a mapping tool in forward
genetics, either by chemical mutagenesis and subsequent selection
of recombinants using resistance markers (Nguyen and Valdivia,
2013; Nguyen and Valdivia, 2014) or by employing markerless
recombination approaches (Brothwell et al., 2016). Moreover,
suicide vectors that allow gene deletion following homologous
recombination have been successfully constructed and used
(Mueller et al., 2016; McKuen et al., 2017; Mueller et al., 2017).
Finally, the principle of interspecies LGT has been exploited to
create a hybrid strain library of C. trachomatis/C. muridarum
crosses: a tet-resistant C. trachomatis strain was crossed in vitro
with C. muridarum strains mutated by the plasmid-based Himar
transposition system that randomly integrated a chloramphenicol
marker into the genome (Suchland et al., 2019; Wang et al., 2019).
This method was then used to produce PZ chimeras where the
C. muridarum PZ replaced that of C. trachomatis, which
demonstrated that the C. muridarum-specific large putative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
cytotoxins are not responsible for cytopathic and cytotoxic
effects. This switch-out method further led to the detection of
an inclusion protein, CT147, and CTL0402, which plays a role in
the inclusion integrity (Dimond et al., 2021). A back-crossing
strategy, which is a technique that can be used to effect functional
complementation of mutants, was then used to restore both the
wild-type genotype and phenotype.
DISCUSSION AND OUTLOOK

Research over the past two decades has identified a paradox
with regard to the genetic exchange and transformation within
chlamydiae. First, decades of effort have demonstrated
that Chlamydia spp. are very challenging to transform
genetically, and even now the use of genetic systems remains
difficult. This challenge is further exemplified by the near
absence of LGT by members of the chlamydiae from bacteria
across species. In contrast, some chlamydiae, notably C.
trachomatis, undergo regular intraspecies LGT between
different isolates.

The rarity of interphylum LGT events is contrasted with the
presence of abundant LGT machinery retained in the chlamydial
genome, even despite the considerable gene reduction following
adaptation to its intracellular life cycle (Toft and Andersson,
2010). As described in this review, the recombination machinery
of Chlamydia is complete, although some questions remain, and
of the three major known forms of DNA uptake, two have been
described. Specifically, while the Chlamydiaceae family does not
possess a known conjugation machinery (Greub et al., 2004),
transformation and transduction are possible. For example, one
recent study showed that CT336 in C. trachomatis, a protein with
limited sequence similarity to the Bacillus ComEC protein, plays
an important role in DNA uptake via transformation (LaBrie et al.,
2019). However, the same study noted that other important genes
involved in the uptake of free dsDNA, namely, homologs of PilQ,
ComEA, and DprA, are absent, which led to the conclusion that
natural transformation in the Chlamydiaceae is different from that
of other gram-negative bacteria, similar to Helicobacter pylori
(LaBrie et al., 2019). Furthermore, chlamydiaphages (chlamydial
bacteriophages) in the Chla-mydiamicrovirus genus have been
TABLE 1 | List of knockout mutants concerning genes involved in lateral gene transfer.

Strain name Species/strain Mutation Locus (gene), function Literature

UWCM026 Cm/Nigg Transposon mutant (knockout) TC0212 (rmuC), DNA recombination protein Wang et al., 2019
UWCM031 Cm/Nigg Transposon mutant (knockout) TC0302 (recD), RecBCD complex Wang et al., 2019
ctl10707 (ct447) Ct/L2 Transposon mutant (knockout) CT447 (recJ), RecFOR pathway LaBrie et al., 2019
ctl10730 (ct470) Ct/L2 Transposon mutant (knockout) CT470 (recO), RecFOR pathway LaBrie et al., 2019
CTL2M934 Ct/L2 Transposon mutant, nonsense SNVa

(knockout)
CT339 (comEC), DNA uptake (transformation) Kokes et al., 2015; LaBrie

et al., 2019
CTL2M_Pool 27 Ct/L2 Nonsense SNVa (knockout) CT298 (radA), DNA repair protein (recombinase) Kokes et al., 2015
CTL2M_Pool 23 Ct/L2 Nonsense SNVa (knockout) CT040 (ruvB), Holliday junction ATP-dependent DNA

helicase
Kokes et al., 2015

CTL2M_Pool 30 Ct/L2 Nonsense SNVa (knockout) CT825 (rmuC), DNA recombination Kokes et al., 2015
CTL2M924 Ct/L2 Nonsense SNVa (knockout) CT660 (gyrA2), DNA gyrase subunit 2, DNA

replication
Kokes et al., 2015
March 2022 | V
Cm, C. muridarum; Ct, C. trachomatis.
aSingle-nucleotide variant (SNV) created with chemical mutagenesis. Nonsense mutants were listed in Kokes et al. (2015).
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described in various chlamydial species such as C. psittaci,
C. abortus, C. felis, C. caviae, C. pecorum, and C. pneumoniae,
but not in the more distantly related C. suis, C. muridarum, and C.
trachomatis (Pawlikowska-Warych et al., 2015; Bastidas and
Valdivia, 2016). Effort to use these phages to facilitate genetic
in-troduction has not yet been successful, but perhaps future
research will identify ways to use transduction as a tool of
genetic exchange in Chlamydia.

In conclusion, despite significant progress in our un-
derstanding of LGT in Chlamydia, many open questions
remain. For example, most in vitro studies concerning LGT
and homologous recombination have been conducted with
C. suis, C. muridarum, and C. trachomatis. While it is possible
to induce competence in C. psittaci, C. felis, and C. pneumoniae
(Shima et al., 2018; Shima et al., 2020), we know very little about
their DNA uptake system and if it is similar to that of
C. trachomatis, C. muridarum, and C. suis. There may be a
different mechanism for these species, as there appears to be a
barrier of recombination between C. suis, C. trachomatis, and
C. caviae (Suchland et al., 2009). Equipped with new genetic tools
and a more extensive knowledge of LGT in the Chlamydiaceae
family, we can tackle these challenging questions and further
explore the biology of these complex bacteria.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
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Vanrompay, D. (2017). Assessment of Chlamydia Suis Infection in Pig
Farmers. Transbound Emerg. Dis. 64, 826–833. doi: 10.1111/tbed.12446

De Puysseleyr, K., De Puysseleyr, L., Dhondt, H., Geens, T., Braeckman, L., Morré,
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