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ABSTRACT: Climate change is a profound crisis that affects every aspect of life, including public
health. Changes in environmental conditions can promote the spread of pathogens and the
development of new mutants and strains. Early detection is essential in managing and controlling
this spread and improving overall health outcomes. This perspective article introduces basic
biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano
biosensors, and single-molecule biosensors, as important sustainability and public health preventive
tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing
environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental
monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the
single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling
Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with
high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore,
the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit
essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the
paradigm shift needed to achieve them, and some potential applications.
KEYWORDS: Single-Molecule Bioelectronics, Biomolecular Electronics, STM Molecular Junctions, Environmental Monitoring,
Sustainable Materials, Biosensing, Sustainability

Climate change is the main challenge that humanity faces
and it directly and indirectly poses significant implications

for human health.1,2 Climate science is a vastly studied subject,
but an overwhelming consensus has been established in the last
decades.3,4 The latest models and observations indicate that
warming is accelerating at unprecedented rates.5 Beyond the
obvious health implications of extreme temperatures and
weather conditions resulting from the climate crisis, other
indirect consequences could threaten human well-being (and
possibly civilization itself in the long run).2 Besides immediately
stopping (or at least greatly reducing) carbon emissions, it is
clear that some adaptation considerations will be necessary.
Changes in temperature and weather patterns can create new
settings for diseases to thrive,6 resulting in new infectious
diseases or the resurgence of old ones.7 Therefore, it is important
to identify key drivers of health threats and develop targeted
interventions to mitigate their impact.8 E.g., climate and weather
affect the distribution and risk of many vector-borne diseases,
such as malaria;9,10 or warm spring temperatures and heavy
winter rainfall cause more mosquitoes to breed, making it easier
for the West Nile virus to spread in the European Union.7

Furthermore, climate change affects the prevalence of infectious
diseases by altering the behavior and range of disease vectors and
hosts.11 There is strong evidence pointing to the fact that the

COVID-19 pandemic is the result of an animal coronavirus
transmitted to humans, a process favored by the ecological and
biodiversity crisis.12,13 Also, the mutation rates of infectious
agents make them highly adaptable to changing environmental
conditions, which may increase disease outbreaks.14 Our ”arms
race” against COVID-19 has shown a dangerous fact: pathogens
with high mutation rates can evolve quickly, becoming resistant
to existing treatments and vaccines.15 As of July 2023, COVID-
19 has affectedmore than 690million people worldwide, leading
to more than 6.9 million deaths. Currently, the global death rate
for the pandemic is 1.02%.16 This pandemic has reiterated the
importance of early detection to reduce mortality and
hospitalization rates.17 Early diagnosis of infectious diseases
allows the effective isolation of confirmed cases, thus reducing
transmission.18 Early detection is crucial in many noninfectious
conditions as well, such as cancers and cardiovascular diseases.19

Cancer mortality rates increase significantly when detected in
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late stages. E.g., diagnosed pancreatic cancer has an overall 5-year
survival rate of only 5%.20 However, the prognosis is much better
when diagnosed during imaging of an unrelated condition than
in symptomatic cases; this underpins the importance of early
detection and diagnosis.21,22 Therefore, there is a clear need for
fast and sensitive biosensing methods and devices. The
development of new biosensors could facilitate the easy
detection of diseases,19,23 improving survival rates.24 Moreover,
new designs and materials could enable the manufacture of
automatic and sustainable biosensors, becoming innovative and
essential tools to address environmental and public health
challenges.25,26 The COVID-19 pandemic showed us dangerous
dynamics and feedback loops with serious implications. I.e., the
appearance of a new pathogen can require fast detection and
testing methods that, in many cases, are designed for single
use.27 Also, in the case of COVID-19, many policies encouraged
the use of single-use PPE and packaging.28 This, in turn,
promotes higher levels of consumption andwaste, worsening the
long-term challenges of a climate crisis driving these public
health crises.29,30 With the climate crisis becoming an
increasingly alarming threat to our planet, there is a shared
responsibility to make processes and products more sustainable,
including biosensors. In this perspective, different types of
biosensing techniques are overviewed, and the latest develop-
ments are discussed, showcasing single-molecule electrical
biodetection. The future of sustainable biodetection as a crucial
need is discussed. Human activities have resulted in accelerated
global warming and more likely extreme weather events5 that
make that new diseases could emerge or old ones spread in new
places,2 increasing the risk of pandemics. This requires new
monitoring and prevention methods to maintain a healthy
society, including fast and reliable detection mechanisms. The
resulting widespread use of single-use sensing or testing
methods could result in unprecedented levels of waste and
high use of resources contributing to greenhouse gas emissions
that reinforce and contribute to the accelerating global warming
situation. There is a need for a general paradigm shift to change
these dynamics.
A Brief Introduction to Biosensors. Biosensors are

analytical devices that detect and quantify biological sub-
stances.33,34 They can detect biomolecules by converting the
physical or chemical signal into an optical or electrical signal,
which can be further processed to yield analyte detection and its
concentration. The purpose of a biosensor is to provide rapid,
accurate real-time, and reliable information about the analyte of
interrogation.35−37 Biosensors can also be highly specific to a
particular analyte, enabling accurate detection, typically without
interference from other compounds in the sample.38,39 Leland
C. Clark, Jr. and Champ Lyons introduced the first biosensor in
1962.40−42 The field has witnessed considerable progress,
including the development of novel biosensors and enhance-
ments.43 Although there is a wide variety of biosensors with
biomedical applications to detect different analytes such as
cholesterol, lactate, or creatine,44 among others, one of the most
used biosensors is the glucose meter.45 It is based on enzymes
such as glucose oxidase (GOx) and glucose dehydrogenase
(GDH), and these enzymes currently dominate 75% of the
global market for biosensors and are projected to contribute to a
market worth $38 billion by 2027.45

Today, the use of nanomaterials such as functionalized
graphene oxide paper allows improved glucose detection.46

However, the basic glucose biosensor (shown in Figure 1) is
based on simple electrochemical principles and consists of a

meter and disposable test strips. Test strips are holders with a
printed circuit that contains the working, reference, and counter
electrodes of the miniaturized electrochemical cell. One end of
the strip is typically coated with GOx. When the enzyme is in
contact with blood glucose, it produces hydrogen peroxide.
Subsequently, the oxidation of peroxide generates an electric
current proportional to blood glucose concentration.47−49

As demonstrated by the paradigmatic example of the glucose
meter, biosensors can be miniaturized and are highly versatile,50

making them suitable for integration into small portable devices.
Biosensors can be produced using different manufacturing
techniques, such as microfabrication and nanotechnology, fine-
tuning their properties and performance.51,52 The ability to
identify specific biomarkers such as proteins, peptides, or nucleic
acids is essential for understanding and diagnosing diseases.53

To this end, novel bioreceptor and electrical transduction
mechanisms should allow greater sensitivity and specificity.54

Advances in different disciplines, such as molecular biology,
nanotechnology, and electrical engineering, have converged to
allow next-generation biosensors in the quest for rapid, sensitive,
specific, and reliable biodetection.55

Biosensors can be classified based on the biological element
and the transducing agent they use, as shown in Figure 2. These

Figure 1. Glucose biosensor. Glucose molecules are oxidized at the
working electrode surface by the glucose oxidase (GOx) enzyme and
converted to gluconic acid and hydrogen peroxide. The diagram also
shows a hand-held electrochemical detector and disposable test strips
used in continuous blood glucose monitoring. Adapted with permission
from.31,32 Copyright IUCR 1999 and NPG 2023.

Figure 2. One possible classification of biosensors based on analytical
methodologies, sensing principles, bioreceptors, and transducing
systems. The square shows the main focus of the examples shown in
the section below about single-molecule electrical biodetection.
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transducers convert the biorecognition event into measurable
signals. In this perspective, some common biosensors will be
reviewed, but a complete survey is beyond the scope of the work,
and there are several excellent reviews in the literature that
discuss different types of biosensing.56−58

Electrochemical Biosensors. Electrochemical biosensors are
one of the most widely used types of biosensors, and the
glucometer introduced above is an example. As shown in Figure
1, they are based on electrodes, which are often used to
immobilize biomolecules.59 These electrodes can be used to
measure biochemical events, such as enzyme−substrate
reactions or antigen−antibody interactions, by converting
them into electrical signals.60 More importantly, a crucial
feature is that they use electrical signals, which makes them fully
compatible with the electronics industry, an obvious advantage
for manufacturing.61,62 These features have made them a
popular choice in different biosensing applications, including
but not limited to the food industry, the medical industry, and
environmental monitoring.63 Additionally, their small size and
affordability make them good potential candidates for clinical
diagnosis, as they could meet some of the demands for the
detection of diseases at an early stage.64 Although electro-
chemical sensors may have limitations such as a restricted
temperature range, short shelf life, and cross sensitivity, their low
cost makes them an accessible option.65,66

Optical Biosensors. Optical biosensors are based on the
change in the optical characteristics of the analyte as it interacts
with the biorecognition element. This change is transformed
into an electrical signal by the transducer coupled to the
system.67,68 They are specially amenable for samples that are
colored or turbid, including biomolecules or microorganisms
such as viruses, bacteria or other pathogens.69 This sensing
method has the potential to be specific, compact and cost-
effective.68 Detection through optical devices can be performed
using either a label-based or a label-free methodology. Label-
based sensing requires that the bioanalyte be properly labeled to
obtain an appropriate optical response. Environmental monitor-
ing of pathogens, for example Escherichia coli or Salmonella
typhimurium in water and food, can be performed using different
label-based techniques such as fluorescence70 or colorimetry;71

however, this methodology shows certain limitations: the
labeling process, in addition to slowing the process, can modify

the activity of the bioanalyte. Moreover, a heterogeneous
labeling process can lead to an error in the quantification of the
biomolecule. This has prompted scientists to turn their attention
to label-free methods for ecology analysis. Label-free techniques,
in contrast, require only the simple interaction of the bioanalyte
with the transducer.
One of the most common72 of this type of techniques is

Surface Plasmon Resonance (SPR).73 The setup, as shown in
Figure 3(a), consists of a polarized light source, a detector, a
metal layer (usually gold) between a prism with a refractive
index n1 and a flow chamber with a refractive index n2, where n1 >
n2. When polarized light is incident through the prism at an angle
equal to or greater than the critical angle onto the metal layer,
total internal reflection (TIR) occurs and an evanescent wave is
formed. The evanescent electric field excites the free electrons in
the gold, and the resulting quasiparticle is known as a
plasmon.74,75 When SPR occurs, the intensity of the reflected
light decreases abruptly. The angle required for the resonance,
θSPR, is related to n2. Therefore, monitoring the θSPR change can
be used to analyze the interactions that occur on the gold surface
between the analyte-biorecognition element.76,77 The SPR
technology finds applications in drug discovery, medical
research, food quality control, and monitoring molecular
interactions.78 However, there are obvious limitations in the
miniaturizaiton, portability, and the pathway toward sustain-
ability for this kind of biodetection.

Mass-Based Biosensors.Amass-based biosensor operates on
the principle that binding events between the analyte and the
biorecognition element cause a change in the overall mass of the
biosensor system.79−81 This mass change can be detected
through a transducer, such as piezoelectric devices.82 By
responding to mechanical stress, piezoelectric biosensors
generate an electrical signal that can be correlated with the
concentration of the analyte.83 An example of a mass-based
biosensor is the quartz crystal microbalance (QCM) biosensor
(Figure 3(b)).84,85 This technology has found numerous
applications in research and environmental monitoring.86 In
biological applications, QCM sensors87,88 offer certain advan-
tages over other biosensor technologies, such as outstanding
sensitivity, simplicity, and affordability which makes it a
promising tool in analytical chemistry and beyond. This
versatility stems from its ability to detect molecules, chemicals,

Figure 3. Schematic diagram of (a) Surface Plasmon Resonance (SPR), and (b) piezoelectric-based biosensors. Adapted with permission under a
Creative Commons CC BY 4.0 License from ref55 (7b and 8a), Copyright 2021, MDPI.
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polymers, and even biological samples.89,90 But one of the
predominant unresolved challenges in this field relates to
modulating the methodology of crystal coating to ascertain the
formation of uniform and cohesive deposition layers. By
focusing on sustainability, the full potential of QCM sensors
can be fully unlocked to make them a more viable option for
wider applications.91

Nanobiosensors and Single-Molecule Biosensors. The
influence of nanoscience and nanotechnology becomes evident
when considering the advancements in biosensor technology
over the past several decades.92 The use of nanomaterials such as
functionalized nanoparticles, nanowires or nanotubes has
enabled increased sensitivity, improved selectivity and improved
performance in nanobiosensor applications.93 This is due to the

Figure 4. The f irst single-molecule electrical study on a biologically relevant oligonucleotide.96 (a) Schematic of the 15 bp RNA:DNA sequences
studied. The blue side represents the DNA probe with thiol linkers and the red side represents the RNA sequences targeted. For E. coliO157:H7 X = A,
Y = U, and Z = G (perfectly matched). In the other three cases, there is a mismatch. For E. coli O175:H28 X = G, for E. coli ED1a Y = C and for
Photobacterium damselae Z = A. (b) Idealized schematic of the experimental setup showing the RNA:DNA molecule bound between two gold
electrodes. (c) Representative conductance versus distance traces obtained from O157:H7 hybrids during break junction measurements. The black
curves (with steps) are measured when a molecule binds between the electrodes, and the gray curves occur when no molecules bind. All curves are
offset horizontally for clarity. (d) Conductance histograms for the four RNA:DNA hybrids and two control experiments performed for the single-
stranded DNA probe and blank buffer. Histograms are vertically offset for clarity. A total of 5000 traces were collected for each sample. Reproduced
with permission from ref,96 Copyright NPG 2018.
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exotic characteristics of nanomaterials compared to bulk and
micromaterials: shape and size-dependent properties, large
surface area, and low cost. However, several challenges still limit
the practical application of next-generation biosensors to detect
biomolecules and prevent diseases. These include low

concentrations of analytes that require sensitivity, mutations,
and evolution of target sequences in oligonucleotides and
proteins, and the need to balance cost and performance in the
development of sensors for various applications.61,94

Figure 5. Single-molecule RNA detection approach for cancer biomarkers.22 (a)Liquid biopsy samples contain circulating nucleic acids that can be
detected with a complementary DNA probe capable of binding to STM electrodes.(b)STM-BJ detection of the hybridized biomarker, resulting in a
step in the conductance-distance signal.(c)Sequences for G12C 18nt mismatch (healthy) and perfect match (cancerous).(d)Example conductance vs
distance curves (Black:blank, Blue:mismatch, Green:Perfect match).(e)Histograms for G12Cmismatch and perfect match overlapped with phosphate
buffer blank (Blue: G12C 18nt mismatch, Green: G12C 18nt Perfect match, Black: Phosphate buffer blank).(f)Conductance histograms for G12C
titration experiments (concentration varies from 300 μM to 0. The control experiment in phosphate buffer solution (black) shows no peaks in the
histogram.(g)Limit of detection (LoD), Example of SNR calculation for a 6 pM concentration sample. (h) Average SNR for each concentration (with a
linear fit) to obtain the concentration for a SNR = 3, Blue vertical line: theoretical concentration where a single molecule is present in the sample
volume: around 0.1 aM). Adapted with permission under a Creative Commons CC BY 4.0 License from ref22 Copyright 2023, Nature Publishing
Group.
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One possibility is to explore the properties of individual
molecules, something that cannot be exploited through
traditional detection methods. This could address the need for
the detection of biological molecules with single-molecule
resolution.95 Researchers can push boundaries with these
biosensing technologies, opening up new possibilities for highly
sensitive and specific detection methods. Some proof-of-
concept examples based on the electrical detection of individual
RNA biomarkers follow.
Recent developments in single-molecule electrical biosensors

have demonstrated proof-of-concept devices that can detect
microorganisms96,97 and cancer biomarkers22 with high
specificity. They are based on RNA BioMolecular Electronics98

and, in particular, usually use the scanning tunneling
microscopy-assisted molecular break junctions (STM-BJ)
technique. The approach has been used to target specific
regions of mRNA, such as those that encode Shiga toxins in E.
coli.96 This method eliminates the need for PCR-based
amplification and cell culture steps, making it faster and more
efficient than traditional pathogen detection methods. The
current-distance STM-BJ approach96 uses an STM to repeatedly
bring electrodes into contact and retract them in a buffer
solution while applying a moderate bias voltage to measure the
current in the molecular junction (Figure 4b). Conductance vs
distance traces (Figure 4c) can be recorded and combined into
conductance histograms (Figure 4d), which show distinct
characteristics for the target nucleic acid sequence and are highly
responsive to changes in length,99−102 conformation,103 and
basepairing alterations.96,104 With this STM-BJ approach, a
tailored DNA or RNA probe complementary to the target
nucleic acid biomarker is functionalized to have chemical
anchoring groups at both ends. This allows the closing of a
biomolecular electronics circuit established through the
individual double-stranded biomolecule that bridges both
STM electrodes. It is important to note that this approach is
distinct from electrical sequencing technologies based on ionic
currents. In contrast to these methods, the charge transports
through the bases parallel to the strand, whereas sequencing
approaches block the ionic current in a nanopore with the
nucleic acid105 or, in some exotic cases, measures the charge
transport perpendicular to each base.106

As a single biomolecule sensor, this approach offers
remarkable specificity and can accurately discern single-base
mismatches96 since the conductance histograms demonstrate
that changes in an individual base can significantly affect
electrical conductance. Furthermore, this method offers the
advantage of extremely high sensitivity, with a detection limit in
the low attomolar range.22,96,107 Furthermore, some recent
studies have shown that this technique produces different
electrical signals efficiently based on the conformation103,108 and
the helicity109 of individual nucleic acids. However, the method
has some disadvantages, as this single molecular biosensor can
detect known sequences quickly and sensitively, but it is not
designed to identify novel sequences. The success of the STM-
BJ technique also relies on its stability and reproducibility.
Likewise, sample preparation, regular calibration of the STM,
strict standardized data analysis, and meticulous documentation
of experimental conditions enhance the chance of producing
repeatable scientific data. These aspects are some of the clear
challenges that have to be solved for automatizing and
miniaturizing this single-molecule electrical biodetection
method. Recent efforts are also paving the way in this direction,

demonstrating molecular electronic studies with microfabri-
cated devices.110

Recently, the same approach has been adapted for the
detection of cancer biomarkers.22 The scheme, as shown in
Figure 5 (ab), again involves the use of specific dithiol-modified
DNA probes to target a liquid biopsy sample containingmultiple
circulating tumor nucleic acids (ctNA) for single-molecule
electrical detection of RNA cancer biomarkers (a KRAS
mutation, in this case). Alternative chemical linkers could be
used in DNA probes (e.g., amines), as this does not significantly
affect the conductance signal in the oligonucleotide junction, as
previously demonstrated.103 When the DNA probe hybridizes
with the target RNA, the biomolecular electronics circuit is
”closed”, and electrical fingerprint measurements are recorded.
When this experiment is repeated several times, single-molecule
electrical fingerprints can be accumulated to perform statistical
analysis, resulting in a conductance histogram that shows the
most likely conductance value for this particular DNA:RNA
hybrid. Figure 5 shows the STM-BJ applied to measure the
conductance of G12C KRAS mutations associated with a high
incidence of colorectal or pancreatic adenocarcinomas.111

Titration experiments have shown a low limit of detection
(low aM range, effectively an individual biomolec ule) for this
proof-of-concept electrical biosensor, with a signal-to-noise ratio
(SNR) of around four. In this case, it is not trivial to define an
SNR for a single-molecule technique, and a method based on
comparing histogram counts with background noise counts that
occur in control blank buffer experiments was established.22

These results are a significant step in the direction of rapid and
early detection of cancers with high sensitivity and specificity.
The results of the measurements on a KRAS G12C biomarker
are shown in Figure 5 (cd). The graph showing the conductance
distance curve of the G12C sequence is shown in green as an
example raw data trace. The same graph for the wild-type KRAS
sequence is represented in blue. This experiment had a KRAS
G12C DNA probe that could hybridize, causing a single-base
mismatch when encountering wild-type KRAS (present in all
human samples). Perfect match G12C DNA:RNA conductance
measurements are higher than those for mismatched sequences,
allowing the clear distinction between the cancer biomarker and
a regular wild-type KRAS RNA sequence. The histograms in
Figure 5(e) indicate the most probable conductance value
obtained by fitting a Gaussian distribution to the peak of the
G12C histogram (the mutant is four times higher than that of
the mismatched wild-type RNA sequence), allowing the
discrimination of individual cancer biomarker molecules from
the regular wt KRAS sequence, which will probably be present in
any sample of human origin.
Titration experiments were performed on KRAS G12C to

determine the system’s limit of detection(LOD). By varying the
concentrations of the 18-base pairs KRAS G12C perfect match
DNA:RNA hybrids from 6 zM to 300 μM, the conductance
measurements as shown in Figure 5(f) were obtained. The black
histogram represents the control experiment corresponding to a
buffer blank. To determine the limit of detection (LOD), the
minimum target concentration that yields a signal-to-noise ratio
(SNR) of at least three was established. In Figure 5(g), the SNR
values obtained from various concentrations of target RNA are
shown, with a vertical blue line marking the expected
concentration of a single molecule (0.1 aM). The experiments
demonstrated that the LOD effectively detects an individual
molecule in 100 μL with an SNR of around 4. This is the lowest
LOD obtained with this kind of biosensor, as the lowest to date
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was approximately 20 aM (see the E. coli96 study discussed
above). At concentrations lower than LOD, the results were
similar to those of the control buffer experiments, and the SNR
value became stochastic and generally low.
This biodetection method is also a suitable approach for

detecting COVID-19 biomarkers down to the single base
resolution.97 Figure 6(d) shows a diagram for the single-
molecule electrical detection of RNA sequences related to
human coronavirus families, including highly pathogenic strains
such as SARS-CoV, MERS-CoV, and SARS-CoV-2,112,113 the
Delta variant, and two Omicron subvariants (BA2 and BA5).114

This single-molecule electrical biosensing strategy enables us to
differentiate between various coronavirus variants on the basis of
their unique sequences and the resulting electrical fingerprints.
As shown in Figure 6, conductance histograms for these variants
of coronaviruses were obtained; histogram a in Figure 6 shows
the single-molecule conductance of a sequence that is conserved
in the entire SARS-CoV family, while histograms b and c show
the conductance histograms for conserved sequences specific for
SARS-CoV-2 and the Delta variant, respectively. The results of
the study highlight the effectiveness of the screening method in
distinguishing various types of SARS-CoV-2. This capability is
essential for early diagnosis and screening. These findings align
with recent theoretical approaches that suggest using variations
in conductance resulting from single nucleotide differences to
detect COVID-19 and its variants of concern (Alpha, Beta,
Gamma, Delta, and Omicron).115,116 These results also pave the
way for future possibilities such as highly automatized and

miniaturized electrical biosensors to monitor these RNA
sequences, if obvious roadblocks in miniaturization and
microfabrication of nanoelectrodes can be solved. In a scenario
where these sensors can be miniaturized and parallelized into
several single-molecule electrical detection channels, future
strategies can be proposed for the electrical fingerprinting of
COVID-19 samples (Figure 6(d)). The table showcases the
possible signals for each channel (columns) that can be expected
for various samples (rows), assuming that all the individual
electrical measurements of single molecules depicted here can
be executed on a single platform with five channels as an
example. Even with only five channels, it is reasonably possible
to predict and identify new COVID-19 samples and identify the
strain with high probability (including new ones related to
known variants of concern). With the advancements in
miniaturization and automation, this idea could be expanded
to several parallel detection channels and combined with
machine learning or other artificial intelligence approaches. This
can lead to unprecedented resolution and predictive capabilities,
making this a blueprint for developing an approach to detect
(and identify) novel pathogens during outbreaks, epidemics,
and potential pandemics. Or, simply, this could be used to
prevent these outbreaks by monitoring the environment for
RNAs from ”usual suspects” and pathogens that are likely to
become a concern with new climates. This concept can be
extended to most infectious diseases or any other public health
application.

Figure 6. Electrical detection of biomarkers from SARS-CoV-2 variants and subvariants (A) conductance histogram for SARS-family (B) conductance
histogram for SARS-CoV-2 (C) conductance histogram for Delta (D) Strategy to detect emerging variants of the human coronavirus families with
STM-BJ method. This figure was adapted with permission under a Creative Commons CC BY 4.0 License from ref97 Copyright 2023, ELSEVIER.
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Table 1 puts all these ideas in context, showing the typical
LOD of different biosensing approaches as a figure of merit for
comparison, as well as the advantages and disadvantages of
various biosensing approaches. When comparing these merit
figures, single-molecule electrical biodetection reveals itself as a
promising biodetection method. This, combined with the fact
that it is compatible with the conventional electronics industry
and is all electrical, makes it a good candidate for the next
generation of biosensors in several crucial applications.
However, single-molecule electrical biosensing presents a series
of obvious challenges that have to be solved before this becomes

a reality. First, there is evidence showing that this approach will
not perform well in complex media where several other
biomolecules can block nanoelectrodes, resulting in fouling.117

This can be solved by integrating sample preprocessing steps
prior to biodetection and/or integrating this technique with
electrochemical detection and purification.117

■ WHAT THE FUTURE SHOULD BRING: TOWARD
SUSTAINABLE BIOSENSING

In light of rapid technological progress and an increasing
environmental crisis, biosensing technology also has exciting

Figure 7. Environmental analysis using life cycle analysis methodology on the industrial production of biosensors. Reproduced with permission under
a Creative Commons CC-BY 4.0 from ref130 Copyright 2023, American Chemical Society.

Figure 8. Schematics of examples of biosensors using sustainable materials. Paper-based, cellulose-based, and green nanomaterial-based optical sensors
offer recyclability and mass production using sustainable methods; adapted with permission from Creative Commons CC BY-NC-ND 4.0 License
from refs143−145 Copyright 2022, Elsevier.
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and crucial potential to create a sustainable future.126

Sustainable biosensors should play a vital role in adapting and
addressing these global challenges. As the emergence of new
pathogens is faced,2 the need for fast and affordable detection
methods is crucial. Unfortunately, many of these methods are
designed for single use, adding only to pollution and the growing
waste levels, and will eventually worsen these crises or result in
new ones. This fact stresses the importance of taking action to
make our processes and products more sustainable, including
the case of biosensors discussed here. Whatever sensing
technology ends up being the most practical for each
application, challenges in design, engineering, and even in the
early lab research and development phases are also clear
opportunities to consider sustainability as a key factor.
All aspects of the biosensing market need to be considered

and a Life Cycle Analysis (LCA) should be performed when
proposing new biosensors so that they can become important
tools in environmental monitoring. The assessment of the
potential environmental impacts is vital and LCA serves as a
crucial tool for this. It helps identify opportunities for
environmental improvement, informs decision makers, guides
indicator selection and measurement techniques, and also
supports environmental performance marketing efforts. LCA
methodology is widely used to evaluate the environmental
sustainability of emerging technologies and new products in
their initial phases.127−129

Figure 7 shows a potential avenue for determining the
environmental impact and efficiency of a biosensor, and this
should be considered from its raw materials to its disposal
strategy.131 Taking into account the varying environmental
factors that touch on local land use and global climate change, it
is possible to improve sustainability in the field of biosensing
through a more precise assessment of environmental conditions
and impacts of the sensors themselves.132 By integrating LCA
and studying fabrication strategies, one could pave the way for
the development of sustainable sensors and biosensors. New
approaches should allow the creation of compact and excep-
tionally effective sensors, while reducing (or ideally avoiding)
the associated environmental footprint.133 The LCA for
biosensors will likely have implications for sensor design and
development at different levels, which can also influence each
other and result in synergies. At bare minimum, we should
consider the following.

• The raw materials necessary for the biosensor
• The production process and its energy efficiency
• The lifetime of the biosensor
• The potential for reusing, repurposing, or recycling the
sensors or parts of them

• The final ”disposal” of nonrecyclable parts, if any.
Although the first two factors seem the most obvious and

those more related to the biosensor initial R&D process, all of
them should be taken into account when proposing new
biosensors or developing close to an initial prototype.
Considering which materials are used in biosensing devices
can be a good start, but, eventually, a whole paradigm shift is
needed toward a new mentality that integrates all the factors
from the earliest stages of biosensor development. In the
following paragraphs, some of the applications and possibilities
of future sustainable biosensors are discussed. In Figure 8,
examples of a first approach to sustainable biosensing are shown.
Here, the most crucial aspect is the materials chosen for the
device, but a new holistic view is needed to go beyond that, and

start considering all the possibilities for the next generations of
biosensors.
Creating biosensors that meet specific requirements and

scaling them up for commercial use can be challenging due to
various factors. Thesemay includemaking sure they are sensitive
and selective in the detection of substances they are meant to
detect, ensuring that they are stable and reliable, making them
cost-effective, meeting regulatory standards, simplifying the
manufacturing process, ensuring that they are easy to use, and
meeting market demands, between others.134 In materials
science, biorecognition elements such as enzymes, antibodies,
andDNA are important for sensing, and luckily biomolecules are
biodegradable. However, the stability and shelf life of the
biocomponents can be limited, and this should be taken into
account either by stabilizing them or by devising strategies to
reuse and regenerate the sensors. One of the most crucial parts
on the raw materials side will be the choice of the Supporting
Information for the biosensor itself (like in Figure 8). Finding
eco-compatible materials with the desired properties is not
trivial. Materials that could be used to create disposable
electrodes include paper135 or (truly) biodegradable plastic-
based materials136 that can be used to immobilize biomolecules
of interest. Lately, paper-based biosensing electrodes have
gained popularity due to their convenient disposable features,137

but it is likely that bioplastics through 3D printing or similar
technologies could also play a key role in the near future.
Biopolymer-based hydrogel materials represent a sustainable
alternative to synthetic polymers in various biomedical and
environmental applications.138 Also, from the nanoscience field,
the unique conductivity of graphene has been shown to enhance
the performance of biosensors by improving signal sensitivity.139

However, challenges such as limited mechanical strength and
compatibility with existing production lines need to be
addressed before these new materials can fully replace
conventional alternatives. The achievement of miniaturization
and portability of biosensors in real-world applications requires
an integrative strategy that incorporates LCA and a commitment
to sustainable material selection. SPR or STM-BJ are incipient
biodetection technologies that may only be a necessary option
for certain applications, and a proper LCA should be
implemented before scaling them up. This could begin with
the selection of substrate materials, where eco-friendly options
are prioritized for their unique properties like sensitivity and
reusability. Future biosensing technologies should focus in
minimizing energy and resource use, aligning with green
chemistry and circularity.140,141 Sustainable biosensors have a
wide range of potential applications in various fields, including
clinical diagnostics, the food industry, and environmental
monitoring.
Biosensors can potentially increase productivity, reduce

waste, and advance sustainability in industrial sectors. For
example, in the food industry biosensors can be used to detect
contaminants and pathogens142 in food products, ensuring food
safety and reducing the risk of contracting foodborne diseases.
Furthermore, industrial processes such as fermentation can be
monitored and improved with the help of biosensors.51

Environmental monitoring is another area where sustainable
biosensors can have a significant impact. Biosensors can detect
and monitor pollutants and toxins in air, water, and soil. For
example, biosensors can be used to detect toxic compounds in
water sources, allowing early detection and intervention to
prevent contamination.146 Biosensors can also monitor soil
conditions such as temperature, pH, pollutants, nutrients or
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fertilizers to optimize agricultural practices and reduce
waste.147,148 The application of sustainable biosensors in
environmental monitoring can improve community health and
well-being while protecting natural resources. As an additional
example, there is the paper biosensor,149 which uses the
principles of paper microfluidics to provide information about
the analyte.150 Paper biosensors are typically composed of
porous cellulose paper with reagents such as antibodies, nucleic
acids, or nanomaterials immobilized in the pores to react when
exposed to liquid samples.151 They are similar to electro-
chemical and optical biosensors because they are cost-effective.
However, an additional benefit of paper-based biosensors is their
simple and user-friendly designs. Paper-based biosensors do not
require additional lab equipment to provide their results,
allowing them to be used remotely.152 These qualities have
made paper-based biosensors a commonly used tool in many
different settings, ranging from the detection of biomarkers in
the body to the detection of contaminants in water sources.151

For example, eco-friendly paper-based sensors now offer
affordable and convenient on-site monitoring of exhaled
H2O2.

153 However, paper-based approaches may suffer from
low sensitivity or specificity necessary for some applications.
Nevertheless, they are an attractive option toward sustainable
recyclable biosensing.
On the other hand, new materials based on well-known and

novel biodegradable plastics could also offer many advantages in
terms of sustainability and tunability (if regulations ensure that
their expansion does not interfere with basic food sources).154

These materials could be promising for microfabrication or
nanofabrication using 3D printing or traditional methods to
employ them as electrode substrates in electrochemical or
electrical biosensors. The objective is to advocate for this kind of
strategies that allow for the scaling up of the most needed
biosensors with their promising applications without feeding
back into the root causes of most of the crises (climate and
ecological emergency) by generating even higher waste levels
and environmental problems.

■ CONCLUSION
In summary, in this perspective, basic concepts related to
biosensing and biodetection were introduced, briefly reviewing
its history and some of the most common types of biosensors.
The focus was on recent demonstrations of single-molecule
electrical biosensors for different applications such as pathogen
or cancer screening using biomolecular electronics RNA
molecular junctions. The case was made here for sustainable
biosensing as a paradigm shift in the field to make biosensors a
useful tool for adapting to the climate emergency without
contributing to making it worse, opening avenues for environ-
mental monitoring and pollution prevention. The application of
basic sustainability concepts, such as life cycle analysis, has been
proposed. Only with such a strategy or similar sustainable efforts
could biosensors fulfill their promising applications.
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