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Abstract: Cellulose-fiber-reinforced plain weave composites absorb lots of water from humid en-
vironments because of their inherent susceptibility to moisture. Moisture absorption experiments
with cellulose fiber plain weave composites have been reported by some researchers; however, few
theoretical studies have been performed to date to predict their moisture diffusion behavior. In
this paper, the moisture diffusion behavior of cellulose-fiber-reinforced plain weave composite is
predicted using a novel superposition method considering its microweave pattern. The overall
moisture uptake of the composite is treated as moisture absorption superposition of the fiber bundles
part, resin part, undulated fiber bundles and resin-rich part in the unit cell. The moisture diffusion
of the undulated fiber bundles and resin-rich part is more complicated than the other parts; thus, a
solution for a unique three-phase diffusion problem is used to solve this special moisture diffusion
issue. Both finite element analysis and experiments are carried out to validate the proposed approach,
with the results showing that the predictions can effectively characterize the moisture diffusion
behavior of cellulose-fiber-reinforced plain weave composites.

Keywords: superposition method; jute fiber; moisture uptake; plain weave composite; three-phase
diffusion model

1. Introduction

Due to increasing pressure related to environmental concerns, more recycled materials
are required. Cellulose fibers (such as curaua, sisal and jute) offer the advantages of low
relative density, low cost and good recyclability compared with synthetic fibers [1–3], so
their composites hold promise for future use in automotive, civil engineering and other
fields [4–9]. Despite these advantages, the main drawback of cellulose fiber composites
is their high hydrophilicity when they are applied in humid environments [10,11]. Some
studies on the moisture diffusion behavior of these composites have been performed,
investigating the fiber–matrix properties [12,13], surface treatment approaches [14,15]
and fiber configurations [16,17], which play significant roles in their moisture diffusion
behaviors. Additionally, the weave patterns of plain weave or woven composites also make
important contributions to their moisture diffusion properties [18]. The undulated fiber
bundles and resin-rich regions in these composites make the moisture permeation process
complicated [19]. For high-performance applications, the moisture diffusion behaviors
of these composites should be effectively predicted to better support their long-term
service [20,21].

The moisture diffusion behaviors of unidirectional cellulose fibers and synthetic fiber
composites almost obey Fick’s law [22–24]. Li and Xue [22] studied the moisture diffusion
mechanism of unidirectional jute-fiber reinforced-composites and found that the water
absorption follows Fickian behavior, while the unique microstructure and composition
effects on the degradation of the jute fibers were also discussed. Saidane et al. [23] investi-
gated the moisture diffusion behavior of unidirectional jute-fiber-reinforced composites,
concluding that the moisture diffusion in each direction of the composite follows Fickian
behavior, while the water absorption in the fiber direction is higher than in other directions
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because the hollow part in its morphology offers an easier path for moisture diffusion.
Almeida et al. [24] studied the moisture diffusion behavior of carbon-fiber-reinforced,
epoxy-filament-wound composite laminates exposed to hydrothermal conditioning, with
the results showing that Fickian diffusion occurs for these composites.

Non-Fickian behaviors were found in both cellulose fiber and synthetic fiber woven
composites [18,19,25–27]. Perrier et al. [25] investigated the water uptake of hemp-fiber-
reinforced plain weave composites, showing that the weave pattern had an influence on
moisture diffusion, while non-Fickian absorption was observed, which have may been
related to the different types of fiber reinforcement. Cherif et al. [18] found that the classical
Fickian model cannot correctly describe water diffusion in flax-fiber-reinforced woven
composites. An initial fast diffusion stage followed by a slow diffusion stage were observed
in two kinds of specimens with different weave patterns. The two-phase diffusion model
was proposed to represent two independent cases of Fick’s diffusion; the first phase is
related to quick water diffusion due to fiber and interface porosity, while the second phase
corresponds to unopened macroporosities in the materials. Bao and Yee [19] discussed the
non-Fickian behavior in plain weave composites of synthetic fibers. The observed quick
diffusion may have been associated with voids, while the slow stage was related to the
moisture diffusion of the resin phase due to resin-rich pockets. A dual-diffusivity model
was then successfully established to describe this non-Fickian behavior. Eggers et al. [27]
investigated the moisture diffusion behavior of filament-wound composite rings under
harsh environments. The initial experiment results at room temperature and with hot
water fit Fick’s law, while ±60/±90 composites showed non-Fickian behavior, namely fast
transient diffusion at the beginning followed by a slower diffusion rate.

Although some analytical methods, such as the Langmuir model and dual-diffusivity
model, can predict the moisture diffusion behavior of both cellulose fiber and synthetic
fiber woven composites, few theoretical models have been developed considering the
effects of undulated fiber bundles and resin pockets in the microweave structure of these
composites. In this paper, the moisture diffusion behavior of cellulose fiber plain weave
composites was investigated theoretically using a superposition method, and the water
absorption levels of the undulated fiber tow and resin-rich parts were also modeled using
a three-phase diffusion model. Finite element analysis and moisture uptake experiments
were carried out on the jute-fiber-reinforced composites to validate the proposed model.

2. Method and Experiment
2.1. Theoretical Method
2.1.1. Geometry of Plain Weave Composite

Figure 1 illustrates a classic plain weave geometry, whereby a crossed weft and
warp tows compose the reinforced phase of the composite. Due to the periodicity in
the microstructure in the composites, the total moisture uptake of the composites can be
represented by the unit cell depicted in Figure 1a. The unit cell strategy is an effective
method for dealing with different mechanical property issues in plain weave composites.

For moisture diffusion problems involving plain weave composites through the thick-
ness direction, the complicated geometry of the unit cells make the theoretical prediction
models hard to develop; therefore, the cross-sections of the weft and warp tows in this
paper are treated as rectangular and the undulated fiber tows are assumed to be cubes to
simplify the analysis. The simplified unit cells composing the plain weave composite and
the geometry parameters are shown in Figure 1b. Here, a, b, c and θ are the represented
tow thickness, tow width, tow distance and tow weave angle, respectively.
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Figure 1. Idealized unit cell of a plain weave composite and its geometry parameters. (a) Unit cell of a plain weave
composite; (b) Geometry parameters of the unit cell.

2.1.2. Superposition Method for Moisture Diffusion of Plain Weave Composite

Since the moisture diffusion in different regions in the plain composite through
the thickness direction is microstructure-dependent, analysis of the water immersion is
achieved using the superposition method for each independent part. Here, we assume that
the moisture exchange between each adjacent part can be neglected, as the total moisture
uptake of the unit cell is a superposition of each part.

The superposition method is depicted in Figure 2. The orange regions are fiber tows,
while the empty regions in the unit cell are resin materials. This unit cell is divided into
9 parts according to the type of each structure, the details of which are shown in Figure 2a.
Parts 1, 3, 7 and 9 in Figure 2b represent tow parts, which can be treated as unidirectional
composites. The moisture in these parts actually diffuses through the transverse direction
of unidirectional composites. As shown in Figure 2c, we found that parts 2, 4, 6 and 8
had a similar structure, i.e., the upper and lower faces in these parts were resin materials,
while the middle structures in these parts were undulated tows. If c = d, we would find the
moisture absorption of these parts to be equal. The transient moisture diffusion in parts 2,
4, 6 and 8 may be more complicated than in other parts, due to the undulated tows and
different types of materials in these parts; thus, the prediction of moisture diffusion is a
key problem in this paper. Part 5 is a pure resin material, which is shown in Figure 2d. Its
moisture uptake obeys Fick’s law.

For moisture diffusion through the thickness direction in part 4, the analysis of the
simplified equivalence structure of part 4 is illustrated in Figure 3. We first cut part 4
(Figure 3a) in half due to its symmetrical properties, whereby half of part 4 is depicted in
Figure 3b. Obviously, the moisture absorption of part 4 is twice of half of part 4. From
Figure 3b, it can be seen that water immersion in upper face of the half-part will first
diffuse through resin regions; however, water will also diffuse into the orange region
at the beginning. This phenomenon will make the water absorption in the initial stage
complicated. If the orange region represents the cellulose fiber tow, the moisture diffusion
of the half-part will increase slowly at the initial stage, since the diffusivity of the cellulose
fiber tow is larger than the resin phase. Then, the moisture diffusion will quickly increase
because of the cellulose fiber tow. To predict this moisture diffusion behavior, the fast
diffusion of cellulose fiber tow and slow diffusion of resin material are considered here
by using a simplified equivalence method. The undulated fiber tow and triangular and
trapezoidal resin phases are assumed to be equivalent to rectangle structures, so that the
analysis is simplified as a three-phase diffusion problem. The areas of different phases in
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the equivalent model are equal to the former fiber tow and resin regions. Next, we will talk
about three thickness cases for the upper resin.
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1. Minimum equivalence. If we directly ensure that the area of the upper triangular
resin phase is equal to the equivalent model, i.e., the thickness of the upper resin in
the equivalent model is 4/a, the moisture diffusion will be underestimated because
moisture diffusion in the cellulose fiber tow is not enough to be considered. We will
later prove this phenomenon; this model is named the minimum equivalence model,
as shown in Figure 3c.

2. Maximum equivalence. If the thickness of the upper resin phase is 0, as depicted
in Figure 3d, the moisture diffusion will be obviously overestimated. This model is
named the maximum equivalence model.

3. Approximate equivalence. As illustrated in Figure 3e, the moisture uptake of half of
part 4 is actually situated between minimum equivalence and minimum equivalence.
The thickness of the upper resin phase is τa. This model is named the approximate
equivalence model.

The total moisture uptake of the unit cell is the water absorption superposition of
part 1 MP1(t), part 4 MP4(t) and part 5 MP5(t). Since MP4(t) is equal to twice the moisture
uptake of approximate equivalence of half of part 4 MPe4(t), the total moisture uptake of
the unit cell is given as:

M(t)= 4MP1(t) + 8MPe4(t) + MP5(t) (1)

2.1.3. Three-Phase Diffusion Equation

The three-phase diffusion model for part 4 is shown in Figure 4. The saturated
moisture concentration and diffusivity of the upper and bottom phase are C1 and D1,
respectively. The saturated moisture concentration and diffusivity of the middle phase
are C2 and D2, respectively. The thicknesses of phases 1, 2 and 3 are a1-a2, a2-a3 and a3,
respectively. The moisture concentrations in phases 1, 2 and 3 are C1(x,t), C2(x,t) and C3(x,t),
respectively, and their moisture diffusion equations are:

∂C1(x, t)
∂t

= D1
∂2C1(x, t)

∂x2 , a2 < x < a1, t > 0 (2)

∂C2(x, t)
∂t

= D2
∂2C2(x, t)

∂x2 , a3 < x < a2, t > 0 (3)

∂C3(x, t)
∂t

= D1
∂2C3(x, t)

∂x2 , 0 < x < a3, t > 0 (4)
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The boundary conditions are:

C1(a1, t) = C1, t ≥ 0 (5)

C3(0, t) = C1, t ≥ 0 (6)

The initial conditions are:

C1(x, 0) = 0, a2 < x < a1 (7)

C2(x, 0) = 0, a3 < x < a2 (8)

C3(x, 0) = 0, 0 < x < a3 (9)

The interface conditions are:

C1(a2,t)
C1

= C2(a2,t)
C2

, t ≥ 0

D1
∂C1(a2,t)

∂x = D2
∂C2(a2,t)

∂x , t ≥ 0
(10)

C2(a3,t)
C2

= C3(a3,t)
C1

, t ≥ 0

D2
∂C2(a3,t)

∂x = D1
∂C3(a3,t)

∂x , t ≥ 0
(11)

The solutions are:

C1(x, t) = C1

(
1 +

∞

∑
m=1

2d1

βmd4
e−D1β2

mt

)
(12)

C2(x, t) = C2

(
1 +

∞

∑
m=1

4d2

βmd4
e−D1β2

mt

)
(13)

C3(x, t) = C1

(
1 +

∞

∑
m=1

2d3

βmd4
e−D1β2

mt

)
(14)

where d1, d2, d3 and d4 are given in Appendix A. Here, we define µ = iβm (m = 1, 2, 3, . . .)
as the root of the equation below; thus, βm can be obtained by following the below equation:

(
1− σ2r2) sin βm[−(a1 − a2 − a3) + k(a2 − a3)] +

(
1 + 2σr + σ2r2) sin βm[(a1 − a2 + a3) + k(a2 − a3)]+(

1− 2σr + σ2r2) sin βm[−(a1 − a2 + a3) + k(a2 − a3)] +
(
1− σ2r2) sin βm[(a1 − a2 − a3) + k(a2 − a3)] = 0

(15)

where σ = (kD2/D1), k = (D1/D2)
1/2,C2/C1 = r. Then, the moisture absorption levels of

the three phases are:

M1(t) =
∫ a1

a2

C1(x, t)dx = C1

(
a1 − a2 +

∞

∑
m=1

2d5

β2
md4

e−D1β2
mt

)
(16)

M2(t) =
∫ a2

a3

C2(x, t)dx = C2

(
a2 − a3 +

∞

∑
m=1

4d6

kβ2
md4

e−D1β2
mt

)
(17)

M3(t) =
∫ a3

0
C3(x, t)dx = C1

(
a3 +

∞

∑
m=1

2d7

β2
md4

e−D1β2
mt

)
(18)

where, d5, d6 and d7 are given in Appendix A.
The total moisture uptake MPe4(t) = M1(t) + M2(t) + M3(t).
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2.2. Experiment
2.2.1. Experimental Material and Setup

Jute fibers have good specific mechanical properties and are widely used in many
fields; thus, jute fibers were selected as the reinforcement in plain weave composites in
this paper. The jute fiber fabrics were provided by Nanjing Hitech Composites Co., Ltd.
(Nanjing, China) The compression molding approach was used to manufacture composites.
The epoxy-impregnated plain weave jute fiber composites were placed in the mold to cure
at room temperature for 48 h. Two types of jute fiber plain weave composites were made,
and the composite plates were cut and shaped to rectangular form using a diamond saw
blade (Nanjing Hitech Composites Co., Ltd, Nanjing, China). The geometry parameters of
the specimens are given in Table 1. The water absorption experiment was performed after
the initial drying.

Table 1. The geometry parameters of the specimens.

Dimension a (mm) b (mm) c (mm) d (mm)

Plain a 0.852 1.514 1.926 1.926

Plain b 0.852 1.514 2.628 2.628

2.2.2. Water Absorption Experiment

The water absorption experiment was implemented after the specimens were dried
in an oven (Nanjing Hitech Composites Co., Ltd, Nanjing, China) at 60 ◦C for 24 h. The
specimens were taken into an environmental chamber (Nanjing Hitech Composites Co.,
Ltd, Nanjing, China) with a relative humidity (RH) of 100% at 60 ◦C. The waterproof
coating was used to clog the lateral surfaces of specimens to ensure the moisture diffusion
through the thickness direction. The specimens were periodically taken out of the chamber
during the aging process. To evaluate the weight increase, the specimens were wiped dry
with tissue paper and weighed using an electronic balance. The weighing was repeated
up to saturation, which meant that the specimens did not show significant variations in
mass. The water absorption of the composite was evaluated using the relative uptake of
the weight according to:

Mt =
Wt −W0

W0
× 100% (19)

where W0 and Wt are the weight of the dry and wet specimens at time t. To calculate the
diffusion parameters for one dimension, Fick’s diffusion was needed, the expression of
which expression was given as follows:

Mt = Mm

{
1−

∞

∑
n=0

8

π2(2n + 1)2 exp

[
−D

(
2n + 1

h
π

)2
t

]}
(20)

where h is the specimen thickness, D is the diffusivity and Mm is its maximum moisture
uptake in equilibrium state. The diffusivity D in Fick’s law is given by:

D = π

(
hk

4Mm

)2
(21)

where k is the slope of the linear part of Mt versus the
√

t curve.

3. Results and Discussion
3.1. Validation of Three-Phase Diffusion Model

The three-phase diffusion equation was solved using Equations (16)–(18). We first
utilized FEA to validate the exact solution. Two cases for the moisture uptake for part 4
were considered: one case was D1 (0.005) < D2 (0.02), C1 (0.5) < C2 (1); the other case was
D1 (0.02) > D2 (0.005), C1 (1) > C2 (0.5). Two different cases were validated using FEA
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with different phase thicknesses, the results of which are shown in Figures 5 and 6 and the
dimension parameters of which are shown in Table 2.
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Table 2. The dimension parameters of the three cases.

Case a1–a2 a2–a3 a3

1 0.2 1.4 0.4
2 0.6 0.8 0.6
3 1 0.2 0.8

It can be seen that the FEA results are in good agreement with the proposed three-
phase model, with various scales for different phases. To obtain correct theoretical results,
the boundary condition should use continuous normalized concentration using Equa-
tions (10) and (11). This boundary condition was discussed in our last article [28].



Polymers 2021, 13, 2347 9 of 14

3.2. Comparison with FEA
3.2.1. The Determination of Value τ

The value τ may be affected by the thickness, dimensions (c/a) and diffusivities of
different materials in part 4. To obtain the approximate equivalent structure of part 4, the
fiber material, which is cellulose fiber D1(0.005) < D2(0.02), was firstly examined, the
results of which are shown in Figures 7 and 8. For different dimensions, we found that if
τ = 1/8, the three-phase model prediction coincided with FEA; τ = 1/4 represents the
minimum equivalence, the moisture uptake of which is smaller than the FEA data. The
reason for this is that the equivalence underestimates the fast diffusion in cellulose fiber
tows. If τ = 1/16, the equivalence immerses the moisture into the structure too quickly, so
that the theoretical calculations are faster than the FEA data.
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If the fiber material is synthetic fiber, D1(0.02) > D2(0.005). Comparisons between
the theoretical and FEA results are shown in Figures 9 and 10. From the results, it can
be seen that the value τ = 1/4, 1/8, 1/16 will have less effect on the moisture uptake
with different dimensions of part 4 compared with the case (D1 < D2). This is because the
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domain moisture contribution is in resin phase and slight changes of the phase thickness
will have less effect on the moisture uptake; thus, we also let τ = 1/8, which could be the
upper face thickness condition for the approximate equivalence.
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From the analysis above, the conclusion was draw that if τ = 1/8, the theoretical
model will agree with FEA data for both cellulose fiber and synthetic fiber cases. The
approximate equivalence represents the right balance between the minimum equivalence
and maximum equivalence, τ = 1/8, which approximately simulated the fast diffusion
and slow diffusion in part 4.

3.2.2. Moisture Uptake of the Whole Unit Cell

The moisture diffusivities of undulated fiber tows are related to their longitudinal
and transverse diffusivities. The longitudinal diffusion diffusivity D1 of the cellulose-fiber-
reinforced composite was generally larger than the transverse diffusion diffusivity D2,
since the hollow middle part of the cellulose fiber in the longitudinal direction, called the
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lumen, provided a fast path for moisture immersion [23]. The moisture diffusion diffusivity
of declining fiber tows in part 4 can be calculated by:

Dz = D1 sin2 θp + D2 cos2 θp (22)

Using the geometry parameters of each material in the unit cell as shown in Table 3,
the moisture uptake of the whole unit cell was obtained by Equation (1) and the FEA
results were compared with theoretical calculations, as depicted in Figure 11. From the
comparison, we could find that the predictions using the proposed model fit well with the
FEA results, proving that the superposition method could be an effective way to predict
the moisture uptake of plain weave composites.

Table 3. The geometry parameters of the three cases for the unit cell.

Case a b c

1 1 3 2
2 1 3 1
3 0.5 3 2
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3.3. Experimental Validation

Jute fibers have good specific mechanical properties and are widely used in many
fields; thus, jute fibers were selected as the reinforcement for plain weave composites in
this paper. The moisture diffusion parameters of the specimens are given in Tables 3 and 4.
In Table 4, the transverse diffusivity D2 and saturated moisture content Mf of the jute fiber
composite are about 4 and 6 times larger than resin materials Dr and Mr, respectively,
resulting in fast moisture diffusion in part 1, 3, 7 and 9 and slow moisture diffusion in the
upper resin phase in parts 2, 4, 5, 6 and 8.

Table 4. The moisture diffusion parameters of the specimens.

Parameters D1(mm2/h) D2(mm2/h) Dr(mm2/h) Mf(%) Mr(%)

Composite 0.0216 0.0165 0.0045 8.6 1.4

The moisture diffusion behaviors of composite a and b were tested in the experiment
and comparisons with the theoretical results are given in Figures 12 and 13. It can be
seen that the proposed method matches the experimental results for both plain weave
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composites, with slow moisture diffusion being found corresponding to Fick’s law. The
initial fast moisture diffusion was associated with the horizontal jute fiber tows, which
had higher diffusion diffusivity. Although the middle undulated fiber tows had higher
diffusivity, the following slow moisture diffusion was caused by resin-rich areas, which
decreased the overall moisture diffusion in the composites.
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4. Conclusions

In this paper, the moisture diffusion behavior of jute-fiber-reinforced plain weave com-
posites was predicted using a superposition method and considering the microstructures in
the composites. The experimental data showed good agreement with the theoretical model,
proving that the proposed model effectively described the moisture diffusion behaviors of
jute-fiber-reinforced plain weave composites. The moisture diffusion in jute fiber bundles
was obviously faster than that of resin. It was found that the slow moisture diffusion in the
upper and bottom face resin regions caused a decrease in the moisture uptake tendency.

The three-phase diffusion equation was developed to model moisture diffusion in
resin-rich and undulated fiber tows regions. This equation demonstrated that the theo-
retical calculations fit the FEA results well. The three-phase diffusion equation may also
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have potential applications in moisture absorption problems in sandwich structures with
different phase thicknesses and in undulated fiber tow structures in woven composites.
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Appendix A

d1 = d11 + d12 + d13 + d14 + d15, d11 = 4σr sin βm(a1 − x),
d12 =

(
1− 2σr + σ2r2) sin βm[(a2 − a3 − x) + k(a2 − a3)]

d13 = −
(
1 + 2σr + σ2r2) sin βm[(a2 − a3 − x)− k(a2 − a3)],

d14 =
(
1− σ2r2) sin βm[(a2 + a3 − x) + k(a2 − a3)]

d15 = −
(
1− σ2r2) sin βm[(a2 + a3 − x)− k(a2 − a3)]

(A1)

d2 = d21 + d22 + d23 + d24, d21 = (1 + σr) sin βm[(a1 − a2) + k(a2 − x)],
d22 = (1− σr) sin βm[(−a1 + a2) + k(a2 − x)]
d23 = −(1 + σr) sin βm[(−a3) + k(a3 − x)], d24 = −(1− σr) sin βm[(a3) + k(a3 − x)]

(A2)

d3 = d31 + d32 + d33 + d34 + d35, d31 = 4σr sin βmx,
d32 =

(
1 + 2σr + σ2r2) sin βm[(a1 − a2 + a3 − x) + k(a2 − a3)]

d33 = −
(
1− 2σr + σ2r2) sin βm[(a1 − a2 + a3 − x)− k(a2 − a3)],

d34 =
(
1− σ2r2) sin βm[(−a1 + a2 + a3 − x) + k(a2 − a3)]

d35 = −
(
1− σ2r2) sin βm[(−a1 + a2 + a3 − x)− k(a2 − a3)]

(A3)

d4 = d41 + d42 + d43 + d44, d41 =
(
1− σ2r2)[−(a1 − a2 − a3) + k(a2 − a3)] cos βm[−(a1 − a2 − a3) + k(a2 − a3)]

d42 =
(
1 + 2σr + σ2r2)[(a1 − a2 + a3) + k(a2 − a3)] cos βm[(a1 − a2 + a3) + k(a2 − a3)]

d43 =
(
1− 2σr + σ2r2)[−(a1 − a2 + a3) + k(a2 − a3)] cos βm[−(a1 − a2 + a3) + k(a2 − a3)]

d44 =
(
1− σ2r2)[(a1 − a2 − a3) + k(a2 − a3)] cos βm[(a1 − a2 − a3) + k(a2 − a3)]

(A4)

d5 = d51 + d52 + d53 + d54 + d55 + d56 + d57 + d58 + d59 + d50, d51 = 4σr,
d52 =

(
1− 2σr + σ2r2) cos βm[(a2 − a3 − a1) + k(a2 − a3)]

d53 = −
(
1 + 2σr + σ2r2) cos βm[(a2 − a3 − a1)− k(a2 − a3)],

d54 =
(
1− σ2r2) cos βm[(a2 + a3 − a1) + k(a2 − a3)]

d55 = −
(
1− σ2r2) cos βm[(a2 + a3 − a1)− k(a2 − a3)], d56 = −4σr cos βm(a1 − a2)

d57 = −
(
1− 2σr + σ2r2) cos βm[−a3 + k(a2 − a3)], d58 =

(
1 + 2σr + σ2r2) cos βm[−a3 − k(a2 − a3)]

d59 = −
(
1− σ2r2) cos βm[a3 + k(a2 − a3)], d50 =

(
1− σ2r2) cos βm[a3 − k(a2 − a3)]

(A5)

d6 = d61 + d62 + d63 + d64 + d65 + d66 + d67 + d68, d61 = (1 + σr) cos βm(a1 − a2)
d62 = (1− σr) cos βm(−a1 + a2), d63 = −(1 + σr) cos βm[(−a3) + k(a3 − a2)]
d64 = −(1− σr) cos βm[(a3) + k(a3 − a2)], d65 = −(1 + σr) cos βm[(a1 − a2) + k(a2 − a3)]
d66 = −(1− σr) cos βm[(−a1 + a2) + k(a2 − a3)], d67 = (1 + σr) cos βm(−a3)
d68 =

(
1 + 2σr + σ2r2) cos βm[−a3 − k(a2 − a3)], d6 = (1− σr) cos βm(a3)

(A6)
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