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a b s t r a c t

Bisphosphonates have demonstrated anti-tumour activity in preclinical studies of bone metastatic

disease, thus it was natural to transition these agents into the adjuvant cancer therapy setting.

Surprisingly, the results of adjuvant breast cancer trials have shown either modest to no benefit or even

harm. We sought to explore whether the preclinical results supporting bisphosphonate use provided

clues to help explain the current clinical data. Interestingly, the majority of preclinical data suggested

that bisphosphonate treatment was more efficacious when administered after the establishment of

osseous metastases. This is similar to the findings of one clinical study whereby patients with biopsy

evidence of osseous micrometastases derive greater survival benefit from bisphosphonate treatment.

Another clinical study found bisphosphonates were associated with increased incidence of visceral

metastases, similar to what has been previously published in preclinical models using ‘‘preventative’’

dosing strategies. While the current clinical data suggest bisphosphonates may be more efficacious in

post-menopausal or oestrogen depleted patients, or those with hormone receptor positive tumours, to

date no appropriately designed preclinical studies have evaluated these effects. Furthermore, putative

mechanisms that regulate response to bisphosphonates in other tumour types remain to be evaluated

in breast cancer. Despite the initial optimism regarding adjuvant bisphosphonate therapy, the

conflicting clinical results from large trials suggest that we should return to the bench to further

investigate factors that may influence response to bisphosphonate treatment or identify appropriate

characteristics that would indicate the sub-groups of patients most likely to benefit from bispho-

sphonate treatment.

& 2012 Elsevier GmbH. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

Following the publication of a number of preclinical studies
suggesting that bisphosphonate treatment could significantly impair
the growth of osseous breast tumours, and stabilise bone metas-
tases, a number of clinical studies were initiated to evaluate the
effects of adjuvant bisphosphonate treatment in newly diagnosed
breast cancer patients. Now that many of these studies have reached
clinical maturity, their published results have been either positive
[1–4] negative [5–8], or even detrimental [9], (see Table 1). Although
certain factors have been suggested to influence the clinical
responses noted with bisphosphonate use (Fig. 1), formal
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demonstration of their association has yet to be determined. Given
these conflicting clinical outcomes and the extensive preclinical data
that was supposed to support the adjuvant development of these
agents, it is time to revisit the published preclinical results in order
to determine whether they predicted the current clinical outcomes.
2. Preclinical studies: Of mice, rats and women?

2.1. Preclinical animal models and dosing regimens

To date, a number of factors that may influence tumour
response to bisphosphonates have been suggested by preclinical
studies (Fig. 2). The studies referenced by the published clinical
trials cite data restricted to 4 different preclinical models of
osteolytic bone metastases, one human, one mouse and two rat-
derived tumour cell lines. While in all cases inhibitory effects on
skeletal metastases were observed (summarised in [10]), the
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1

Characteristic Diel et al. [2],
Annals of
Oncology, 19:2007

Powles et al. [1],
Breast Cancer
Research, 8:R13

Gnant et al. [3,4],
The Lancet, 12:631

Coleman et al. [5], New Eng J
of Med, 365:1396

Kristensen et al. [6],
Acta Oncologica,
47:740

Saarto et al. [9],
Acta Oncologica,
43:650

Bisphospho-
nate used

Clodronate Placebo Clodronate Placebo Zoledronic
acid

Placebo Zoledronic acid Placebo

Pamidronate Placebo Clodronate Placebo
Dosing

schedule
and route

1600 mg
orally daily
for 2 years

No 1600 mg
orally daily
for 2 years

Yes 4 mg IV
every
6 month
for 3 years

No 4 mg IV every 3–4
weeks for 6 cycles then
every 3–6 months for
5 years

No 150 mg
orally
twice
daily for
4 yrs

No 1,600 mg
orally daily
for 3 yrs

No

Use of anti-
estrogens

47% received
tamoxifen

45%
received
tamoxifen

80% of
cohort
received
tamoxifen

100% of
cohort
received
either
Tamoxifen
or

anastrozole 78.3% on
endocrine
or
endocrin-
eþ

chemotherapy 78.6% on
endocrine or
endocrineþ

chemotherapy Endocrine
therapy
excluded

Endocrine
therapy
excluded

100% of
cohort
received
tamoxifen
or
toremifene

Cohort size 157 145 530 539 900 903 1681 1678 460 493 139 143
Mean age NR NR 52.8 52.7 44.5 44.5 NR NR b b

52
T-stage

T1 38% 37% 26% 26% 75.7% 76.7% 32.2% 31.2% 41% 44% 51% 46%
T2 45% 46% 57% 57% 21.2% 21.7% 50.6% 51.7% 50% 50% 42% 46%
T3 or greater 17% 16% 9% 10% 17.0% 17.1% 7% 5% 7% 6%
Unknown 8% 7% 2.1% 2.6% 0.2% 0.1% 2% 1% 0 3

Lymph node
positive

51% 54% 37% 38% 30.5% 30.5% 97.8% 97.7% 75% 75% 99% 99%

Menopausal status
Pre-
menopausal

36% 39% 50% 49% NR NR 44.7% 44.8% 67% 66% 48% 57%

Post-
menopausal

64% 61% 50% 51% NR NR 33% 34% 52% 43%

Post-
menopausal
o5yrs

14.7% 14.5%

Post-
menopausal
45yrs

30.9% 31.1%

Unknown 9.8% 9.5% 0% 0.2%
ER status

Positive 75% 71% 46% 45% 94.6% 93.3% 78.5% 78.4% 13.5% 17.2% 61% 68%
Negative 25%a 29%a 26% 25% 3.3% 3.9% 20.8% 21.1% 60.4% 52.9% 35% 23%
Unknown 28% 30% 2.1% 2.6% 0.8% 0.4% 26.1% 29.8% 4% 9%

PR status
Positive 62% 63% 21% 22% 89.9% 89.5% NR NR 11% 11% 50% 60%
Negative 38%a 67%a 15% 14% 7.6% 8.3% NR NR 29% 28% 45% 31%
Unknown 64% 65% 2.5% 2.2% NR NR 60% 61% 5% 9%

Pretreatment
evidence of
bone
metastasis

Yes Yes No No No No No No No No No No

Positive Positive Positive Negative Negative Negative

– Increased OS at
8.5 years
post-treatment.

– No difference in DFS
or incidence of
metastases at
8.5 years
post-treatment.

– Decreased
incidence of bone
metastases at
5 years post-
treatment.

– Trend for better OS
at 5 years post-
treatment.

– Reduced incidence
of DFS events at
5 years
post-treatment.

– No difference in
OS.

– No differences in OS, DFS at 5 years
post-treatment.

– no differences in
OS, DFS or
incidence of
metastases at
5 years post-
treatment

– no significant
differences in OS
or frequency of
metastases at 10
years post-
treatment

– decreased DFS
and increased
extraskeletal
metastases in
clodronate group
at 10 years
post-treatment

NR—Not Reported.
a Not originally reported therefore may contain negative and unknown categories.
b Mean age for treatment groups was not reported however was stratified across 4 groups originally; for pamidronate and control cohorts there were 61.3% and 63.1%

of patients younger than age 50 respectively.
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models differed in their results with respect to their effects on
extraskeletal metastases. The studies using preclinical models of
human breast cancer, involved intracardiac injection of tumour
cells into immunocompromised mouse models where tumours
would subsequently form in the bone. It is important to remem-
ber that as these studies are performed in immunocompromised
animals, the effects of tumour-elicited immune responses on the
efficacy of bisphosphonate treatment are not evaluable. A number
of the studies using human xenografts have employed two
strategies for bisphosphonate delivery. Bisphosphonates were
given after bone metastases had been established following
intracardiac injection of breast cancer cells, termed ‘‘therapeutic
dosing’’. Alternatively, bisphosphonate administration was prior
to injection of tumour cells, and hence prior to establishment of
bone metastases, termed ‘‘preventative dosing’’. Although osseous
metastases appeared to be inhibited by both types of intervention
with bisphosphonates, there were unexplained increases in soft
tissue metastases in a number of studies when the preventative
dosing strategy was followed [11–13]. This is similar to the effects
seen in the clinical study by Saarto et al. [9] in which patients



Fig. 1. Factors influencing efficacy of bisphosphonate therapy in clinical

investigations.

Fig. 2. Factors shown to influence bisphosphonate therapy in preclinical studies.
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received clodronate from the start of their systemic therapy. Of all
the clinical studies reported to date, the study by Saarto et al. [9]
contained a relatively larger proportion of hormone receptor
negative patients (Table 1) compared to most of the other clinical
studies who have not reported adverse effects on the incidence
of extraskeletal metastases. Thus, it would be of great interest
to determine whether the enhanced incidence of extraskeletal
metastases is a predominant feature of hormone receptor nega-
tive as compared to hormone receptor positive disease.

A few studies have been performed using oestrogen receptor
(ER) positive murine 4T1 breast cancer cells. In these orthotopic
models, cells implanted into the mammary fat pad will metasta-
sise to the bones as well as to other extraskeletal sites. Using this
model system, the inhibitory effects of bisphosphonate treatment
on osseous metastases were observed when drug was given in a
therapeutic dosing regimen, i.e. after radiologic detection of bone
metastases [11]. Importantly, no effects of a single administration
of bisphosphonate were observed on lung metastases, highlight-
ing the fact that in this immunocompetent orthotopic model
bisphosphonates appeared to have a primary effect in the bone
microenvironment as previously suggested [12,14,15]. Interest-
ingly, in the same model system, repeated dosing of zoledronic
acid in a therapeutic dosing regimen did result in significant
decreases in both lung and liver metastatic burden [16]. However,
in contrast to zoledronic acid, repeated dosing of the bispho-
sphonates clodronate or pamidronate did not inhibit lung metas-
tases growth in the same model [16]. Unfortunately, the effects of
bisphosphonates on the growth and metastasis of breast tumours
using a preventative dosing regimen were not evaluated in this
orthotopic model in any of the above-mentioned studies, hence
their effects in an ‘‘adjuvant therapy’’ setting were not evaluated
in this context. It is noteworthy that the clinical trial that has
demonstrated the greatest impact on survival following use of
bisphosphonates in the ‘‘adjuvant’’ setting, that by Diel et al. [2]
would have also used a therapeutic dosing strategy, as study
entry required biopsy evidence of tumour cells in their bone prior
to treatment. Taken together with numerous preclinical studies
demonstrating significant inhibition of bone metastases with a
therapeutic dosing regimen, these clinical results suggest that
future trials should possibly be designed with this prescreening
for micrometastases in mind.

2.2. Patient Hormonal status

When one examines all the clinical trial results published to
date, there appears to be a possible enhanced benefit derived
from adjuvant bisphosphonate treatment in a post-menopausal or
oestrogen depleted cohort of patients [1–3]. To date, there have
been no preclinical animal model studies evaluating the efficacy
of bisphosphonates in the menopausal setting. Evaluation of the
efficacy of bisphosphonates in either ovarectomized or 4-vinylcy-
clohexene diepoxide (VCD)-treated mice, which induces meno-
pause in mice that most closely mimics that in women [17],
would thus be of great interest. However, population studies of
bisphosphonate use in post-menopausal women being treated for
osteoporosis, have shown significant reductions in the incidence
of invasive breast cancer [18,19]. This supports the argument that
perhaps the use of bisphosphonates as a strategy for prevention
of development of bone metastases should only be pursued in
post-menopausal cohorts. A similar finding however, has also
been reported in younger cohorts (mean age of �54 years with a
range from 20–70) [20], thus raising more potential questions
than answers.

2.3. Tumour receptor status

The clinical trials also suggest that patients with hormone
positive tumours may derive more benefit from adjuvant bispho-
sphonate treatment [1–3]. Interestingly, the majority of preclini-
cal studies evaluating the efficacy of bisphosphonates using
human breast cancer cells have generally been performed using
a single cell line, MDA-MB-231 breast tumour cells. Although
these cells are known to readily form osteolytic lesions when
injected intracardially, they are an ER and Her2 negative cell line
[12,13,15]. The fact that these tumour cells are oestrogen non-
responsive may suggest that preclinical responses noted using
these cells are not reflective of responses in the clinical setting,
where breast cancer patients who develop bone metastases
predominantly have ER positive tumours [21–23]. There is a lack
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of preclinical data directly comparing the efficacy of bispho-
sphonates in ER positive vs negative breast cancer cells. We have
been able to find only one published article describing the effects
of bisphosphonates on tumour growth using the ER positive, Her2
negative human breast tumour cell line, MCF7 which primarily
forms osteoblastic as opposed to osteolytic lesions, after intra-
cardiac injection [15]. This article also suggested that treatment
with bisphosphonates prior to injection of MCF7 tumour cells,
i.e. in a preventative dosing regimen, inhibited development of
osteosclerotic metastases. In contrast, treatment with bispho-
sphonates following development of bone metastases, i.e. in a
therapeutic dosing regimen, had no effect on osseous metastases.
Unfortunately, within this article, the experimental data are not
presented.

As mentioned above, a few studies have also been performed
using ER positive murine 4T1 breast cancer cells. However, as
bisphosphonate treatment was initiated after radiologic detec-
tion of bone metastases in these studies [11], their efficacy in a
preventative adjuvant setting was not evaluated. As such, the
efficacy of bisphosphonates in the inhibition of bone metastases
growth derived from ER positive vs negative tumours in an
adjuvant therapy setting has not been examined. It would be of
interest to perform studies in genetically modified cells of the same
parental background, e.g. ER negative MDA-MB-231 cells modified
to re-express the ER, and evaluate their response to bisphosphonate
therapy head to head in preclinical animal models.

There is also a lack of preclinical literature evaluating the effects
of sex steroids (e.g. oestrogen) on the efficacy of bisphosphonates.
We were able to find only one study which has specifically
evaluated the effects of steroids on bisphosphonate inhibition of
tumour cell growth. Using in vitro steroid free culture medium
conditions, the authors observed that instead of inhibiting tumour
growth, administration of clodronate actually enhanced prolifera-
tion of the ER positive MCF7 breast tumour cell line [24]. The
authors further demonstrate that administration of tamoxifen in
combination with clodronate, reversed the tumour promoting
capabilities of clodronate previously observed in the steroid free
culture conditions, hence showing a dependence of bisphosphonate
inhibition on ER activity. In contrast, treatment of the ER negative
cell line MDA-MB-231 with clodronate inhibited tumour growth
regardless of whether cells were cultured in steroid containing
versus steroid free culture media [24]. These data highlight that
not only may the ER status of the tumour be important for patient
overall response to bisphosphonate therapy, but that simultaneous
regulation of oestrogen activity in these treated patients may be of
equal importance. This is clearly a line of investigation that warrants
further preclinical and clinical evaluation.
3. Factors that may modulate response to bisphosphonate
therapy

3.1. Immunomodulation

Preclinical studies also suggest that a number of alternative
factors may modulate the efficacy of bisphosphonates in patients.
It has been shown that treatment of tumour cells with bispho-
sphonates can result in the cellular production of isopentenyl
pyrophosphate/triphosphoric acid I-adenosin-50-yl ester 3-3-
methylbut-3-enyl ester (IPP/ApppI) metabolites which are subse-
quently recognised by a subpopulation of gd T-cells (specifically
Vg9Vd2) as phospho-antigens (recently reviewed in [25]). As gd
T-cells can recognise non-peptide antigens independently of
association with MHC molecules, they can readily recognise and
lyse tumour cells expressing these non-peptide antigens despite
the downregulated MHC expression that is often observed in
tumour cells. In fact, a correlation between the levels of bispho-
sphonate-induced expression of IPP/ApppI in breast tumour cells
and the resulting effective gd T-cell mediated killing of these cells
has been demonstrated [26]. Treatment of MCF7 breast cancer
cells with either of the nitrogen-containing bisphosphonates
pamidronate or zoledronic acid was shown to induce Vg9Vd2
activation and subsequent lysis of treated MCF7 cells [27]. It has
also been shown that luminal breast cancer cell lines (ER and/or
PR positive, MCF or T47D cells) were induced to express high
levels of these metabolites and were readily killed by gd T-cells
[26]. In contrast, basal breast cancer cell lines (ER, PR and HER2
negative MDA-MB-231/B02 cells) failed to accumulate IPP/ApppI
metabolites following bisphosphonate treatment and were not
killed by gd T-cells [26]. Moreover, gd T-cells were found to readily
infiltrate subcutaneous ERþbreast cancer xenograft tumours in
mice upon zoledronic acid treatment, and this correlated with
tumour shrinkage, while similar infiltration of gd T-cells did not
occur in zoledronic treated ER-xenograft tumours [26]. This leads to
the intriguing hypothesis that the enhanced benefit derived from
bisphosphonate treatment noted in many of the breast cancer
patients with ER positive tumours in the clinical trials, could be
due in part to an enhanced anti-tumour immunity state induced
following activation of these gd T-cells in this patient cohort.

While still not extensively studied, there is some supporting
clinical evidence that activated gd T-cells may play a role in
patient response to bisphosphonate therapy. In a small phase I
trial with terminal metastatic breast cancer patients, treatment
with zoledronic acid and low dose IL-2 resulted in mobilisation of
peripheral Vg9Vd2T-cells [28]. Although the patient cohort was
small, a significant correlation with sustained levels of circulating
Vg9Vd2T-cells was noted for patients with improved outcomes,
while patients who did not have sustained levels continued to
clinically decline. Although not reported in any of the published
literature regarding the large adjuvant bisphosphonate breast
cancer trials, it is well recognised that some patients get flu like
symptoms following their first dose of bisphosphonates, suggest-
ing that a priming of the immune system may occur in some
cases. It would be very interesting to determine whether those
patients that develop these flu-like symptoms also derive the
greatest benefit from bisphosphonate therapy. Alternatively,
clinical correlative studies could be performed to determine
whether a correlation between the level of activation of gd T-cells
in bisphosphonate treated patients and efficacy of treatment in
the adjuvant setting exists.

3.2. Sequencing of additional therapies

The effects of concurrent or sequential chemotherapy on the
efficacy of bisphosphonates should also be considered. Induction
of apoptosis of the ER positive MCF7 or ER negative MDA-MB-231
cells was substantially increased when the bisphosphonate zole-
dronic acid was used in combination with paclitaxel compared to
administration of either drug alone [29]. It has also been reported
that treatment with zoledronic acid prior to doxorubicin treat-
ment in preclinical animal models of breast cancer resulted in
no significant inhibition of subcutaneous human MDA-MB-436
xenograft tumour growth [30]. In contrast, if the doxorubicin and
zoledronic acid were given concurrently, or if zoledronic acid
was given following doxorubicin treatment, subcutaneous tumour
growth was significantly impaired [30]. Another study evaluated the
effect of similar dosing strategies using the highly osseotrophic
MDA-MB-231/BO2 derivative cell line that forms bone metastases
following intravenous injection. In this case, the authors saw slight
but statistically significant inhibition of bone metastases growth
when doxorubicin and zoledronic acid were given concurrently,
however more substantial inhibition of osseous tumour growth was
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observed when zoledronic acid was given 24 h following doxorubicin
treatment [14]. In contrast, when the authors quantified the
extraosseous lesions, they observed no significant effect on
tumour growth with any of the dosing regimens [14]. Considering
that these lesions were formed by the same tumour cells injected
via the same route, these results further support the notion that it
is the ability of the bisphosphonates to modify the bone micro-
environment that contributes to their predominant anti-tumour
activity in vivo.

For the most part, the clinical trials we have discussed within
this manuscript have used concurrent administration of bispho-
sphonates with adjuvant treatments. Given that most of these
studies have not demonstrated significant clinical benefit, and
preclinical data suggesting that bisphosphonates may be most
efficacious when given following chemotherapy, future studies
dissecting out the most efficacious dosing regimens should be
performed both preclinically and clinically.
3.3. Mechanisms of resistance to bisphosphonates

Other factors that may contribute to a lack of patient response
which warrant further examination involve the induction of potential
mechanisms of resistance to bisphosphonate treatment. Although
some preclinical studies have suggested that bisphosphonates have
direct anti-tumour activities and can induce tumour cell apoptosis, it
is not likely that this is playing a significant role in the patient setting,
given that the doses required for these effects are extremely high (at
either 10 mM [31], or in excess of 50–100 mM [32–35] in the majority
of reports) and likely not achievable within the local patient tumour
microenvironment. Moreover, factors produced by breast cancer cells
can promote osteoclast survival and overcome the direct apoptotic-
inducing effects of bisphosphonates on osteoclasts [36], which may
also in part contribute to a lack of response to bisphosphonates in a
patient setting. In osteosarcoma cells, response to zoledronic acid is
dependent on the level of expression of farnesyl diphosphate synthe-
tase (FPPS), one of the major targets of bisphosphonates in tumour
cells [37]. Bisphosphonate resistance in myeloma cells following long-
term exposure, has been shown to correlate with up regulation of
FPPS [38]. Thus it remains possible that patient response could be
predicted following evaluation of the levels of expression of factors
such as this, although to date no clear evidence demonstrating a link
between sensitivity to bisphosphonates and levels of FPPS expression
has been shown in breast cancer.

Bisphosphonate treatment of breast tumour cells has also been
shown to induce activation of p38 which impairs bisphospho-
nate-induced apoptosis via its ability to promote progression
through the cell cycle G2/M checkpoint [39,40]. Use of p38
inhibitors was able to overcome resistance to bisphosphonates
in osteosarcoma [41] and breast cancer [39] cells. One of the
downstream targets of p38, heat shock protein 27 (HSP27), has
also been shown to be significantly up-regulated in bisphospho-
nate resistant osteosarcoma cell lines [42]. The authors further
demonstrated that upon silencing of HSP27, sensitivity to bispho-
sphonates could be restored in these resistant cells. Elevated
levels of HSP27 have been associated with decreased overall
survival and decreased survival after first recurrence in breast
cancer patients [43]. A role for HSP27 in mediating resistance of
breast cancer cells to drugs, including doxorubicin [44,45], and
herceptin [46] has also been previously demonstrated. Thus these
data suggest that patients with high p38 activity or elevated
HSP27 expression may be more refractory to bisphosphonate
treatment. Clearly, given the lack of disease free and overall
survival benefit seen in the largest adjuvant bisphosphonate trial
to date [5], investigation into these alternative mechanism
regulating response to bisphosphonates, strategies to enhance
their efficacy in vivo, and putative biomarkers that can predict
patient response to these agents should be pursued.
4. Discussion

Despite considerable initial excitement, the negative outcomes
of many large randomized clinical trials evaluating efficacy of
bisphosphonates in the adjuvant breast cancer setting have been
disappointing. However, due to the osteotrophic nature of the
bisphosphonates, they remain an exciting area of treatment
strategy for breast cancer patients at risk of developing bone
metastases. In order to make future progress, correctly interpret-
ing the currently reported clinical results and identifying the
treatment population and strategy most likely to achieve benefit
are critically important. Clearly analysis of the benefit derived
from bisphosphonates in certain subpopulations of breast cancer
patients needs to be fully elucidated. It appears that few of the
clinical studies were designed around the strategies that were
found to be the most efficacious in preclinical evaluations. We
also noted that the majority of preclinical studies utilise model
systems that are not reflective of the phenotype of the majority of
human breast tumours that are osteotrophic. Unless we begin to
design our preclinical evaluations based on what is most reflec-
tive of the disease in a patient setting and not necessarily around
what is the most reliable and convenient preclinical model
system, we may continue to observe unexpected results in
patients. Similarly, we must design rational clinical studies that
use similar strategies to what has been shown to be the most
efficacious in the most relevant preclinical models, otherwise
contradictory results are sure to follow. Furthermore, we should
not miss the opportunity to understand how bone-targeted
agents such as bisphosphonates can change the risk of relapse
outside bone in some subpopulations: is this a host modification
phenomena or a new pathway to eliminate micrometastatic
disease? While we digest the current literature regarding bispho-
sphonate use in adjuvant breast cancer treatment, it will also be
important to await the outcome of other bone-targeted agents
like denosumab, in order to determine whether this approach will
be more efficacious or will show similar results to the bispho-
sphonates in the adjuvant setting.
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