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Abstract: A spacecraft attitude control system provides mechanical and electrical control to achieve
the required functions under various mission scenarios. Although generally designed to be highly
reliable, mission failure can occur if anomalies occur and the attitude control system fails to properly
orient and stabilize the spacecraft. Because accessing spacecraft to directly repair such problems
is usually infeasible, developing a continuous condition monitoring model is necessary to detect
anomalies and respond accordingly. In this study, a method for detecting anomalies and characterizing
failures for spacecraft attitude control systems is proposed. Herein, features are extracted from
multidimensional time-series data of a simulation of the attitude control system. Then, the artificial
neural network learning algorithms based on two types of generation models are applied. A Bayesian
optimization algorithm with a Gaussian process is used to optimize the hyperparameters for the neural
network to improve the performance. The performance is evaluated based on the reconstruction error
through the algorithm using the newly generated data not used for learning as input data. Results
show that the detection performance depends on the operating characteristics of each submode in the
operation scenarios and type of generation model. The diagnostic results are monitored to detect
anomalies in operation modes and scenarios.
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1. Introduction

Complex systems can sometimes fail or behave abnormally, which can affect the success or failure
of a given mission. Therefore, detection of these related phenomena occurring in the system is important
for decision making in order to successfully perform a mission. Several statistical methods have been
developed to address various issues including, more recently, machine learning techniques [1]. The two
main challenges associated with failure detection are fault diagnosis (FD) and anomaly detection (AD):
FD is intended to determine what failure occurred, and AD is used to determine the extent of the
deviation from the proper operating range of the system due to the failure [2]. AD does not rely on prior
information about the type or form of failure as it only determines if the system is operating outside of
its normal range. This approach is gaining attention as a way to evaluate the health of large, complex
systems, such as aerospace systems. However, it is difficult to know in advance the mechanism by
which faults occur and to obtain data regarding fault conditions because most aerospace systems are
designed with high-reliability [3,4]. Further, in complex systems, anomalies occur via complicated
pathways. Therefore, a method for processing multidimensional data coming from multiple channels
is required.

In this study, a spacecraft system is considered as a representative example of a typical large system
in aerospace. A spacecraft system anomaly is defined as any mission-degrading event affecting an
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on-orbit operational spacecraft. Examples include onboard computer errors or failures, attitude control
system malfunctions, radio contact loss, solar panel efficiency degradation, and many other mechanical
and electronic symptoms [5]. In particular, three anomalies can have catastrophic consequences for the
entire spacecraft system: loss of control related to sensor failure, input voltage drop, and abnormal
temperature rise of boards or sensors [5]. A functioning spacecraft attitude control system detects
attitude errors caused by external disturbances and uses them to stabilize the spacecraft’s position and
orbit. These disturbances can include gravity differences owing to the spacecraft altitude, magnetic
field interactions, altitude-related solar radiative pressure changes, or movement in antennas or solar
panels [6]. Using various sensors such as gyroscopes, star sensors, solar sensors, and earth sensors,
the control system stabilizes the spacecraft in the desired direction by rotating the spacecraft itself
or its own mass within the spacecraft. If a failure occurs within the system and the system fails to
perform the required function of orienting and stabilizing the spacecraft, the spacecraft can become
inoperable. Due to the limited physical accessibility of spacecraft, these problems can be impossible to
directly repair. Therefore, it is necessary to respond through continuous condition monitoring, and AD
is required to improve autonomy and stability in the operation of spacecraft missions.

Time-series data transmitted from each subsystem, part, and sensor are needed to diagnose
the spacecraft system’s mechanical condition. Data analysis methods and statistical techniques for
detecting anomalies using time-series data have long been studied using traditional data-processing
techniques [7–10]. Some studies utilize such techniques in a way that reflects the characteristics
of the data used. For example, one study has proposed an integrated model of the mixture of
probabilistic principal components analyzers (MPPCA) [11] for housekeeping data, in particular
the real-valued continuous variables and categorical mixture distribution for modeling categorical
discrete variables [12]. However, in the data feature extraction step, existing traditional data-processing
techniques require specialized knowledge of related areas, costing much effort and time to process the
data. In addition to the emergence of deep-learning techniques, new models for time-series analysis
and prediction have been developed, reducing the need for specialists in the feature extraction stage.
Under these models, data features can be extracted by learning through algorithms; the deep-learning
method allows data features to be extracted through deep-learning algorithms. Recently, numerous
methods and combinations thereof have been applied, e.g., convolutional neural network, recurrent
neural network, long short term memory (LSTM), autoencoder (AE), generative adversarial network
(GAN), and variational autoencoder (VAE).

Some researches reviewed major deep-learning techniques that can be used to diagnose abnormalities
in time-series data and demonstrated the effectiveness and advantages of deep-learning applications
over existing statistical techniques by presenting high-performance research examples [13–16]. Feature
extraction learning models of multivariate time-series data have been presented using the deep-learning
technique [14], but the networks used were not deep, and the size of the data set was not particularly
large [15]. O’Meara presented three applications of deep-learning neural networks for analyzing
spacecraft telemetry data: an AE neural network for feature vector extraction and AD, and a multi-layer
LSTM network for telemetry forecasting and anomaly prediction [16]. The general conclusion reached
after initial experiments and iterative algorithm changes was that neural networks are powerful tools
for many interesting applications in spacecraft telemetry monitoring. In the automated telemetry health
monitoring system developed in their paper, neural networks were ultimately created: AE neural
network for feature vector extraction and AD and multi-layer LSTM network for remote measurement
and anomaly predictions [16–20]. The previous research results show that deep-learning offers key
advantages over existing statistical techniques of feature extraction for spacecraft systems, in which
there are large amounts of data to be processed.

In this study, methods for detecting anomalies in a spacecraft attitude control system using deep
learning technology are evaluated. This study aims to verify that the proposed AD method based
on the selected neural network model is suitable for diagnosing the state of the spacecraft attitude
control system. Measuring AD performance requires a healthy differential model, so we use simulation
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data that can be clearly labeled as normal and abnormal. The data set utilizes soft-sensor-based
data generated by LUNar Attitude and Orbit Control System (AOCS) SIMulator (LUNASIM) [21],
a satellite attitude control simulator developed in-house at the Korea Aerospace Research Institute
(KARI) to test the performance of attitude control flight software for the Korea Pathfinder Lunar
Orbiter (KPLO) [22]. A series of processes for AD using multidimensional time series spacecraft AOCS
data includes the following works: (a) preprocessing of multi-channel time series data (including
purification, integration, cleanup and transformation) and data feature extraction using deep neural
networks; (b) selecting diagnostic methods based on generative models considering actual data
conditions (e.g. number of samples and level of labeling); (c) improving algorithm performance and
robustness by applying automatic determination of hyperparameters using Bayesian optimization (BO)
with a Gaussian process (GP) and data processing considering the characteristics of physical model
and applied deep networks; (d) reviewing the suitability and validity of the system by comparing
the predicted results between two selected generation models (VAE [23] and generative adversarial
networks AD (GANomaly) [24]); (e) presenting AD monitoring cases in the spacecraft attitude control
system based on the diagnosis results.

2. Problem and Data Description

This section describes the problem to be solved, the simulator used to generate data and
characteristics of the data.

2.1. Problem Description

A spacecraft attitude control system determines and controls a spacecraft’s attitude and momentum
using various sensors and actuators within the limits defined by the payload pointing and the stability
requirements until the mission is completed. Although the spacecraft is designed to be highly
reliable in general, anomalies can lead to deviations from the requirements. Certain anomalies are
apparent from the telemetry alarms, such as when a sensor fails; however, other anomalies may
manifest as a collection of factors, trends, or nonlinear differences from the normal telemetry that
are not apparent. Such a spectrum of anomalies presents special challenges when the spacecraft has
difficulty making ground contact because of low communication bit rates, large distances, irregular
contact times, and inconveniently located ground stations, such as during a lunar mission. An AD
system using machine learning could be an effective tool in this case because it could proactively
and semi-autonomously detect possible anomalies. In this study, we develop a model for detecting
anomalies in the attitude control system signals for the development of KPLO. Table 1 shows the
typical spacecraft attitude control system units and their corresponding output signals that are used
by KPLO.

Table 1. Components for spacecraft attitude control system.

Units Components Main Output Signal

Sensors
Star sensor (STA) Attitude (3-axis)
Gyroscope (GRA) Angular rate

Coarse Sun sensor (CSSA) Attitude (2-axis)
Actuators Reaction wheel (RWA) Torque

KPLO is KARI’s first lunar mission; therefore, the operational data is not available. We used
simulated attitude control performance data generated by LUNASIM [21]. Certain aspects of the KPLO
mission are similar to low-Earth and geosynchronous orbit missions; however, key differences exist
that prevent us from blindly applying existing Earth-orbit AD standards. For example, a coordinate
system transition occurs when entering the lunar orbit [22]. Moreover, the spacecraft experiences large
angular rates and disturbances while preparing for the lunar orbit and during the lunar orbit insertion
at equinoxes for reorienting the solar arrays. Large angular rates are also experienced at the apogee
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and perigee during the lunar transfer orbit. An AD must consider these unique data characteristics to
prevent false positives. In the next section, we provide a general description of LUNASIM, its output
data, and the various types of simulated faults.

2.2. LUNASIM

LUNASIM [21] is being developed in-house at KARI to test the performance of attitude control
flight software for the KPLO, a lunar orbiter mission currently in its critical design phase. LUNASIM
is composed of attitude control flight software (FSW), equipment, environment, and dynamics
models, I/O handlers, and simulation infrastructure. It can run flight software in a software-only
model-in-the-loop mode on a PC, or in hardware-in-the-loop mode with flight software running on
an actual onboard computer (OBC) interfacing with equipment hardware and model software for
environment and dynamics.

KPLO attitude control FSW switches to discrete submodes when operating. Attitude control
submodes group together similar attitude control methods and parameters into a set of predictable
states or control laws. Each submode behaves differently, and each is assigned different performance
envelopes. In particular, some submodes may use thrusters and Sun sensors for attitude control while
others do not, thus training must be done on each mode separately. Table 2 lists the submodes.

Table 2. List of modes.

Mode Name Sensors(s) Actuator(s) Description

LAM Star Trackers (STA)
Gyros (GRA) Reaction Wheels (RWA) Large Angle Maneuver (LAM) to set up

Del-V attitude
TP STA, GRA RWA Target Pointing (TP) mode for imaging

SP STA, GRA RWA
Sun-Pointing (SP) mode for solar array
charging and Earth
communications maintenance

WOL STA, GRA Attitude Control
Thrusters (ACT)

Wheel Off Loading (WOL) mode for
dumping RWA momentum using thrusters

TSH CSSA, GRA ACT
Thruster-based Safe-Hold (TSH)mode just
after launch vehicle separation and critical
spacecraft failures

LUNASIM reads test scenarios (Table 3) as a series of pairs of event commands and times that
may include submode transitions but also other maneuver commands. For example, the scenarios in
Table 3 including LAM submode transitions also perform 180 degree rotation. Test scenarios may be of
various durations. All scenarios start at 0, and brackets indicate the moment in time at which the mode
transition occurs. For example, the first TP in LAM1 lasts from 199 to 698 s. The first mode transition
usually does not start at 0 and this is because some extra (dummy) time is allocated at the beginning of
scenarios to allow time for turning on equipment, etc. Scenario results are written as time-series tables
in a database. All data are output at 8 Hz, matching the frequency at which flight software runs on
the OBC.

Crucially, LUNASIM contains fault injection features that allow the test operator to inject a
pre-defined set of faults at certain points during a simulation run. Available faults include: 1) failure of
one of four reaction wheel assemblies (RWA), 2) wheel speed anomaly in RWA #1, 3) spike in gyro
reference assembly (GRA)-measured spacecraft angular rate, 4) spike in course Sun sensor array (CSSA)
#1 and #4. These injectable faults are adapted from a subset of fault management test code that has
been developed for other spacecraft and are representative of faults that have a realistic chance of
occurring on orbit.

Wheel speed anomalies and GRA and CSSA spikes can be simulated at arbitrary and multiple
points during a run. We define special event commands that invoke (and cancel) these faults at the
appropriate times, e.g., by setting a variable to a hard-coded ‘failure’ value. This, in turn, causes
the simulator dynamics to react in a nonlinear fashion that is visible in telemetry variables but not
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necessarily describable in a deterministic way. Wheel failure is a special case in that it is simulate d
for the entire length of a run. This is because the operation concepts are: (1) Reboot to thruster-based
safe-hold mode on a wheel failure, (2) Via ground command, start using the remaining three wheels only.
As we are interested in attitude control performance after exiting safe-hold mode, our wheel-failure
scenarios assume that the failure has already occurred and continues indefinitely.

Table 3. List of test scenarios.

Scenario Name Modes/Transition Times (sec) Length (sec)

LAM1 TP (199)→ LAM (699)→ SP (2500) 3664
MT1 TSH (2)→ SP (1200)→ TP (3999) 6000
MT2 TP (2)→ SP (1799)→ TP (3000) 4000
MT3 SP (2)→ LAM (2100)→ TP (3900) 4500
MT4 SP (2)→ LAM (2100)→ SP (3900) 4500
MT8 SP (2)→WOL (2199)→ SP (2800) 4000
MT9 TP (2)→WOL (2199)→ TP (2800) 4000
SP1 SP (2) 14,399
SP2 SP (2) 7200
TP1 TP (9) 4800
TP3 TP (9) 4800

TSH1 TSH (2) 14,399
TSH2 TSH (2) 7200
WOL1 WOL (9)→ TP (999) 3000
WOL2 WOL (9)→ SP (999) 3000

LUNASIM also models equipment noise such as gyro rate and angular noise over time, sun sensor
current fluctuations, wheel voltage noise, etc. While a full treatment of LUNASIM noise models is
beyond the scope of this work, the faults and maneuvers triggered in the test scenarios typically result
in instantaneous signals with magnitudes that are many times greater than the mean and are visually
distinguishable from noise, and with diminishing but persistent magnitudes afterward.

2.3. Data Schema

For every simulation run, LUNASIM writes a total of 31 tables, grouped roughly by functionality.
These tables include spacecraft rate and stability, control error, knowledge error, various equipment
(e.g., star trackers, thrusters, Sun sensors, solar array drive mechanisms (SADMs), RWAs, and GRAs),
Kalman filter, disturbance torques, and current attitude control submode. While each table contains
a different number of columns, each table follows the same general layout: a time column as the
primary key (simulation time, starting from 0 s), followed by columns that usually map to variables
used in simulator models or flight software. Such variables may represent continuous or discrete
(e.g., true/false) variables. A sample table schema is shown in Table 4.

Table 4. A sample table schema.

Variable Column Description Units Type

Current_time Simulation Time sec Continuous
(W_body(23)-pL- > ACS_swwsc(24))*R2D Estimated Rate Error between Model and FSW deg Continuous
(W_body(1)-pL- > ACS_swwsc(1))*R2D Estimated Rate Error between Model and FSW deg Continuous
(W_body(2)-pL- > ACS_swwsc(2))*R2D Estimated Rate Error between Model and FSW deg Continuous
AD_error(0)*R2D Knowledge Error deg Continuous
AD_error(1)*R2D Knowledge Error deg Continuous
AD_error(2)*R2D Knowledge Error deg Continuous

For this work, we concatenated (left join) all tables on their time columns and regrouped data by
attitude control submode, creating a table for each submode (LAM, SP, TSH, TP, WOL; see Table 2).
Attitude control submodes group together similar attitude control methods and parameters into a set
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of predictable states or control laws. Each submode behaves differently, and each is assigned different
performance envelopes, allowing training on each mode separately. In particular, some submodes
may use thrusters and Sun sensors for attitude control while others do not. For this reason, the set of
injectable failures also differs based on the submode.

Table 5 gives a summary of faults injected per scenario.

Table 5. Summary of faults per scenario.

Scenario Name LAM1 MT1 MT3 MT4 MT8 MT9 SP1 SP2 TP1 TP3 TSH1 TSH2 WOL1 WOL2

RWA 1,2,3,4
failure 4 - 4 4 4 4 4 4 4 4 - - - -

RWA 1 wheel
speed spike 4 4 4 4 4 4 4 4 4 4 - - 4 4

Gyro rate spike 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CSSA 1,4 count

spike - 1 - - - - - - - - 4 4 - -

Combined RWA1
wheel speed +
Gyro rate spike

1 1 1 1 1 1 1 1 1 1 - - 1 1

Combined CSSA
spike + RWA 1
wheel speed

- 1 - - - - - - - - - - - -

Combined Gyro
rate + CSSA

spike
- - - - - - - - - - 1 1 - -

Combined CSSA
spike + RWA 1
wheel speed +
Gyro rate spike

- 1 - - - - - - - - - - - -

3. Preliminaries

In this study, the model learns using only normal data in an unsupervised mode, and then it is
applied to abnormal data as an AD model. This method then detects anomalies by measuring the
reconstruction error when new data is input. The key is that restoration would not work properly for
abnormal data, because the generative model was trained using only normal data. This, in turn, means
that the reconstruction error of a given sample is a good estimator for detecting an abnormal state.
In this study, we utilize two unsupervised learning algorithms to detect abnormal states solely based
on normal data sets: VAE [23] and GANomaly [24].

3.1. Variational Autoencoder (VAE)

VAE is an improvement on existing autoencoders (AE) [25], and it differs in that it samples latent
code from a probability distribution. An AE always generates the same code for the same input, but
VAE is a probabilistic model that tries to reconstruct data from the input data space via maximum
likelihood estimation and variational inference. The model comprises two parts, encoder and decoder.
The key is that VAE trained with only normal data cannot reconstruct abnormal data well; this means
the reconstruction error of a given sample is a good estimator for detection of an abnormal state.
In VAE, the mean and standard deviation of a normal distribution are estimated through the encoder,
and the data x are restored by sampling the code z, ( eφ : x→ z) . Further, we could generate new
samples similar to the original input data (x) by inputting the codes sampled from the distribution
p(z) of the latent vectors (z) to the decoder, (dθ : z→ x) . [26]. In VAE, the encoder and decoder model
parameters of the conditional distributions are denoted as qφ(z|x) and Pθ(x|z), which were assumed to
be Gaussian distributions. The cost function for training the model is as follows:

Lυ(x, φ, θ) = Eq(z|x)

[
‖ x− dθ(z) ‖22

]
+ λDKL

(
qφ(z|x) ‖ p(z)

)
, (1)

where θ and φ denote hidden parameters of neural nets and λ = σ2
x is a tuning parameter equal to a

known variance of data [26]. Eq(z|x)

[
‖ x− dθ(z) ‖22

]
is the reconstruction error and upon minimizing it
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through backpropagation, the AE is trained. DKL
(
qφ(z|x) ‖ p(z)

)
, the Kullback–Leibler divergence [27],

is aimed to minimize the reconstruction loss of x during training. An important part of the training is the
reparameterization trick, which creates random decoder inputs in the following manner: z = µz + σzε,
where µz and σz are outputs of the encoder, and ε is the sampled form p(z) [26].

3.2. GANomaly

GANs are holistic models for reconstructing data from a latent space by optimizing Jensen Shannon
Divergence (JSD) of generated and real-world samples [28]. The first GAN-based attempt to detect
anomalies was AnoGAN [29]. AnoGAN trains on a GAN in which the generator attempts to deceive
the discriminator, while the discriminator attempts to discriminate the authenticity of a given normal
datum. This kind of competitive play can sample normal data from latent variables of a probability
distribution function. However, AnoGAN algorithm is not automated end-to-end because it needs
an additional optimization process. In our work, we adopted a popular GAN-based AD framework:
GANomaly. GANomaly borrows an AE-style generator to solve the additional optimization problem,
and an encoder-style discriminator for parsing the representation of a given training data set. Overall,
the objective function for the generator is as follows:

L = wadvLadv + wconLcon + wencLenc , (2)

where wadv, wcon, and wenc are the weighting parameters that adjust the impact of the individual losses
to the overall objective function [24]. Adversarial loss (Ladv) is the difference between the output from
discriminator (f(x)) and output from autoencoder (f(x̂)) to reduce the instability of GAN training [24].
Contextual loss (Lcon) is to optimize toward the learning contextual information about the input data
(x) by measuring the distance between the input (x) and the generated images (x̂) [24]. Encoder loss
(Lenc) is to minimize the distance between the bottleneck features of the input (z) and the encoded
features of the generated image (ẑ) [24].

3.3. Bayesian Optimization

BO typically works for continuous functions by assuming the unknown function sampled from
a GP and maintaining a posterior distribution for this function as observations are made or as the
results of running learning algorithm experiments with different hyperparameters are observed [30].
This method can be used for carefully tuning the learning parameters and model hyperparameters in
machine learning algorithms. Snoek et al. [30] presented methods and improved results for performing
BO for hyperparameter selection of general machine learning algorithms.

We determine the optimized parameter:

p∗∗ = argmaxp∈A f (p), (3)

where, A is the space of the possible hyperparameters, and f is the objective function. We assumed that
f(p) is a black-box function that does not know what the output is when the input is inserted. Based
on the observed data Di = [(p1, f (p1)), (p2, f (p2)) · · · (pn, f (pn))], the function f(p) is estimated using
the GP prior:

f (p) ∼ GP[m(p), k(p, p′)]. (4)

The BO principle is based on the following Bayes’s theorem:

P( f
∣∣∣Di) ∝ P(Di

∣∣∣ f ) ∗ P( f ), (5)

where P( f
∣∣∣Di) is the posterior probability of a model knowing the data; P(Di

∣∣∣ f ) is the likelihood of the
data Di knowing model f ; and P( f ) is the prior probability of f . The function f (pi) is moved to the
next observation point (pn+1, f (pn+1)) with the acquisition function. We use the Matérn kernel, which
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is a stationary kernel and a generalization of the RBF kernel [31]. It has an additional parameter ν that
controls the smoothness of the resulting function. It is parameterized by a length-scale parameter l >

0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same number of
dimensions as the inputs x (i.e., anisotropic variant of the kernel). The kernel is given by:

k
(
pi, p j

)
= σ2 1

Γ(ν)2ν−1

(
γ
√

2νd
(
pi/l, p j/l

))ν
Kν

(
γ
√

2νd
(
pi/l, p j/l

))
. (6)

As ν→∞, the Matérn kernel converges to the RBF kernel. When ν = 1/2, the Matérn kernel
becomes identical to the absolute exponential kernel. In particular, ν = 3/2 and ν = 5/2 are popular
choices for learning functions that are not infinitely differentiable (as assumed by the RBF kernel) but
are at least once (ν = 3/2) or twice differentiable (ν = 5/2).

The acquisition function uses the most commonly used expected improvement (EI) function.
Based on the objective function estimated to date, the EI outputs a number indicating the availability
of the input value (p) by considering the probability improvement of deriving a function value greater
than the maximum function value (f(p+) = maxi f(pi)) of the points (f(p1), f(p2), . . . , f(pn)) investigated so
far and the difference between the function value and f(p+). The expression of EI when using GP is
summarized as follows:

p+ = argmaxpn f (pn), (7)

EI(p) = E[max( f (p) − f (p+), 0)]

=

 (µ(p) − f (p+) − ξ)Φ
(
µ(p)− f (p+)−ξ

σ(p)

)
+ σ(p)φ

(
Zµ(p)− f (p+)−ξ

σ(p)

)
, i f σ(p) > 0

0, i f σ(p) = 0

, (8)

where ξ is a parameter that controls the relative intensity between the exploration and exploitation;
φ is the normal probability density function; and Φ is the cumulative density function.

4. Method

As most spacecraft operate in a normal state, far fewer samples of abnormal data can be acquired
than those of normal data. To resolve this problem, a probability-based unsupervised AD model
is trained. After training the generation model using only normal data, abnormal data can be
distinguished from normal data by measuring the reconstruction error when new simulated data
not used for learning are input. This study aims to validate that the proposed AD method based on
the selected generation model is suitable for diagnosing the status of a spacecraft attitude control
system. The spacecraft attitude control system is operated in various scenarios according to the range
of missions it was intended for, and each scenario included several operation modes. To measure AD
performance of the two generation models considered in this study according to the data characteristics
acquired for each submode operated in the operating scenarios, a healthy probabilistic model for
discrimination is required. For this reason, the simulation data that can be clearly labeled with normal
and abnormal status are used. The data sets are generated using LUNar Attitude and Orbit Control
System (AOCS) SIMulator (LUNASIM) [21], a spacecraft attitude control simulator developed in-house
at the Korea Aerospace Research Institute (KARI) to test the performance of attitude control flight
software for the Korea Pathfinder Lunar Orbiter (KPLO) [22]. The training data for the learning model
comprises normal data, and the test data comprises normal and anomaly data.

Furthermore, a series of processes for AD using multidimensional time-series spacecraft AOCS
data include data preprocessing (including purification, integration, cleanup, and transformation),
feature extraction using deep networks, and learning models represented by algorithms considering
robustness and performance optimization. Additionally, a selection method based on a generation
model considering the actual data status (i.e., the sample count and labeling level) and reviews of
conformity and applicability are evaluated by comparing the prediction results between two selected
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generation models (VAE and GANomaly). Finally, cases of AD monitoring in a spacecraft attitude
control system based on the diagnostic results are summarized.

4.1. Data Preprocessing

Each data file is a time-series sampled at 8 Hz, with 1063 values (i.e., columns and variables)
for each timestamp. The range of each variable is substantially different; therefore, a normalization
process is required. Without a normalization process, a learning model can be created that relies only
on specific variables over a very large range [32].

We use min-max normalization because it is more stable than standardization such that all
normalized data fall between 0 and 1, as shown in the following equation:

X = (x − xmin)/(xmax − xmin), (9)

where xmin is the minimum value encountered for a given variable over the entire data set, and xmax is
the maximum value encountered for a given variable over the entire data set. However, the min–max
normalization may be inaccurate in the presence of outliers. The data set used in this paper did not
have any outliers in the simulated data; therefore, we chose the min–max normalization method.

4.2. Algorithms

In this paper, the data set generated from LUNASIM is labeled with information about normal
and abnormal. In most real systems, the normal state data are much larger than the abnormal state.
Considering the data status, we select the AD model using only the normal data for training. Then,
we predict the state of the newly input data, which include normal and abnormal data acquired by
LUNASIM. Considering the large number of datasets in the system, we use the convolutional neural
network (CNN)-based approach to maximize the class by extracting the “optimized” features directly
from the raw data for the problem.

In this paper, we use the AD methods based on generation models, which include GANomaly
presented as the latest AD method based on GAN and AE-based VAE. In the problem of image
restoration based on the existing AE and GAN, 2-D convolution and 2-D transposed convolution are
mostly used for the encoder and decoder, respectively. CNN is specially modeled and produced for
2D signals; therefore, the appropriate conversion from 1D to 2D is made for application to 1D signal
processing, such as time-series data [33].

However, the 2D-CNN technique suffers from hardware performance limitations because of its
complexity, large number of computations to be performed, and large number of datasets that are
required for learning. To compensate for these shortcomings, an alternative called 1D-CNN has been
recently developed to reduce the computational complexity by performing simple array operations
instead of matrix computations performed in 2D [34,35]. 2D-CNN is an operation designed to capture
the spatial relations between the neighboring pixels in an image, but time sequences of sensor data such
as gyroscope or accelerometer data do not have any spatial relation. We assume that the data columns
are independent and the location of the feature within the segment (fixed-length) of the overall data
is not highly relevant. Therefore, we use VAE and GANomaly generation model based on 1D-CNN,
which is a 1D convolution for encoding and 1D transposed convolution for decoding. The filter size
is 8, the stride is 4, and the epoch value is 100. Other major hyperparameters (learning rate, lamda,
and warm-up period) are automatically determined within the algorithm using BO [30].

The architectures of the applied VAE algorithm are constructed as shown Figure 1a and listed in
Tables 6 and 7. In VAE, we calculate an anomaly score from the reconstruction error of a given test
dataset. The anomaly score function of the VAE can be derived from Equation (1) as follows:

fVAE(x) = Eq(z|x)

[
‖ x− dθ(z) ‖22

]
, (10)
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Figure 1. Algorithm architectures: (a) anomaly detection (AD) algorithm architecture using variational
autoencoder (VAE) structure; (b) AD algorithm architecture using generative adversarial networks AD
(GANomaly) structure.

Table 6. Encoder part of VAE algorithm.

Layer Input→ Output Operation

Input (n, 1063, 8) *→ (n, 1063, 8) Min/Max Normalization
Hidden (n, 1063, 8)→ (n, 531, 4) 1D Convolution, 1D Batch Normalization, Activation Function (ReLU)
Hidden (n, 531, 4)→ (n, 265, 2) 1D Convolution, 1D Batch Normalization, Activation Function (ReLU)
Hidden (n, 265, 2)→ (n, 132, 1) 1D Convolution, 1D Batch Normalization, Activation Function (ReLU)
Flatten (n, 132, 1)→ (n, 132) Flatten
Hidden (n, 132)→ (n, 100) Linear, Batch Normalization, Activation Function (ReLU)

Output Mean Layer (n, 100)→ (n, 32) Linear

S.D. Layer (n, 100)→ (n, 32) Linear

* (batch size, number of channels, kernel size).

Table 7. Decoder part of VAE algorithm.

Layer Input→ Output Operation

Input (n, 32) *→ (n, 32) Parameterization
Hidden (n, 32)→ (n, 100) Linear, Batch Normalization, Activation Function (ReLU)
Hidden (n, 100)→ (n, 264) Linear, Batch Normalization, Activation Function (ReLU)
Hidden (n, 264)→ (n, 132, 2) Reshape

Hidden (n, 132,2)→ (n, 265, 4) 1D Transposed Convolution, 1D Batch Normalization,
Activation Function (ReLU)

Hidden (n, 265, 4)→ (n, 531, 5) 1D Transposed Convolution, 1D Batch Normalization,
Activation Function (ReLU)

Output (n, 531, 5)→ (n, 1063, 8) 1D Transposed Convolution

* (batch size, number of channels, kernel size).

Normal cases should have low reconstruction errors, whereas anomalies should have high
reconstruction errors.

The detailed network structure and loss functions for optimization are depicted in Figure 1b,
Tables 8 and 9, respectively. During the test stage, the model uses encoder loss (Lenc) given in Equation
(2) for scoring the abnormality of the given dataset. Hence, for a test sample x̂, our anomaly score
A(x̂) is defined with bottleneck features of the input GE(x̂) and the encoded features of the generated
output E(G(x̂)) as follows [24]:

A(x̂) =‖ GE(x̂) − E(G(x̂)) ‖, (11)
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Table 8. Encoder parts of GANomaly.

Layer Encoder Number Input→ Output Operation

Input

I (n, 1063, 8) *→ (n, 1063, 8) Min/Max Normalization

II (n, 1063, 8) -

III (n, 1063, 8) -

Hidden

I

(n, 1063, 8)→ (n, 531, 4)
1D Convolution, 1D Batch
Normalization, Activation
Function (ReLU)

II

III

Hidden

I

(n, 531, 4)→ (n, 265, 2)
1D Convolution, 1D Batch
Normalization, Activation
Function (ReLU)

II

III

Hidden

I

(n, 265, 2)→ (n, 132, 1)
1D Convolution, 1D Batch
Normalization, Activation
Function (ReLU)

II

III

Flatten

I

(n, 132, 1)→ (n, 132) FlattenII

III

Hidden III (n, 132)→ (n, 100) Linear

Output

I (n, 132)→ (n, 100) Linear

II (n, 132)→ (n, 100) Linear

III (n, 100)→ (n, 1) Linear, Sigmoid

* (batch size, number of channels, kernel size).

Table 9. Decoder parts of GANomaly.

Layer Input→ Output Operation

Input (n, 100) * -

Hidden (n, 100)→ (n, 264) Linear, Batch Normalization, Activation
Function (ReLU)

Hidden (n, 264)→ (n, 132, 2) Reshape

Hidden (n, 132, 2)→ (n, 265, 4) 1D Transposed Convolution, 1D Batch
Normalization, Activation Function (ReLU)

Flatten (n, 265, 4)→ (n, 531, 5) 1D Transposed Convolution, 1D Batch
Normalization, Activation Function (ReLU)

Output (n, 531, 5)→ (n, 1063, 8) 1D Transposed Convolution

* (batch size, number of channels, kernel size).

To evaluate the overall anomaly performance, we computed the anomaly score S =

{si : A(x̂i), x̂i ∈ D̂} for the individual test sample x̂ within the test set D̂. Then, we applied feature
scaling to obtain the anomaly scores within the probabilistic range of [0, 1].

s′i =
si −min(S)

max(S) −min(S)
, (12)
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4.3. Hyperparameter Optimization

Before training a neural network, choosing appropriate hyperparameters is crucial in obtaining
a well-generalized neural network for the target task. Traditional ways to select hyperparameters
include grid search and random search.

Both methods determine ranges of hyperparameter values and train the neural network by
choosing hyperparameters. Although these two methods are sound ways of choosing hyperparameters,
the computational complexity increases exponentially with the number of hyperparameters. To alleviate
the computational complexity problem, Snoek et al. [30] proposed a BO. This BO utilizes a GP
as a prior for a posterior distribution and samples a performance function whose domain is the
set of hyperparameters from the posterior distribution. Finally, by choosing the most successful
hyperparameters, this method can select hyperparameters without an exponentially expensive search.

In this paper, proper hyperparameters, such as learning rate and lambda for VAE, learning rate
for GANomaly, and warm up period are proposed using BO. In VAE, some units of the latent variable
are inactive owing to the KL-divergence term in the loss function, as shown in Equation (1), but these
units remain inactive during training, preventing them from learning. This implies that the units are
pruned away before they learn a useful representation. To solve this problem, Sønderby et al. propose
a warm-up technique [36]. This method learns the GP based only on the reconstruction error and
then gradually increases the weight of variational regularization term (KL-divergence) in loss function
as the learning progresses. In this paper, not only batch normalization but also warm-up technique
is applied to improve the robustness and performance of the algorithm. We use the performance
indicator area under receiver operating characteristics (AUROC) as an object function to automatically
find the best hyperparameters for a neural network. The related equations are described in Section 3.3.

The optimization starts with a sampling of three random hyperparameters and restricts the range
of learning rate, lambda (λ) and warm up period to [10−5, 10−3], [0.2, 0.8], and [30, 500] respectively.
Using the optimization method, the optimized parameters according to the two types of generation
models and the performance when they are applied can be seen in Table 10.

Table 10. Hyperparameters determined by Bayesian optimization.

Mode
VAE GANomaly

Warm Up Period Lr λ AUROC Warm Up Period Lr AUROC

LAM 153.8 10−3.022 0.208 1.000 197.3 10−3.305 1.000
SP 300 10−5.000 0.200 0.686 50 10−4.649 0.851
TP 100 10−5.000 0.800 0.916 50 10−5.000 0.977

TSH 300 10−4.892 0.208 1.000 200 10−5.000 1.000
WOL 244.5 10−0.300 0.200 0.997 27.12 10−5.000 0.887

5. Results and Discussion

5.1. Learning Models and Operation Modes

We present the AD results from the two deep-learning networks, VAE and GANomaly using data
generatd by the satelite attitude control simulator LUNASIM. The reults of performance for two AD
models are compared mode by mode via AUROC, as shown in Table 10. From the results, GANomaly
(which utilizes GAN and AE simultaneously) gives more accurate results than VAE. This additional
accuracy may arise from GANomaly’s dual minimization of both reconstruction error and JSD between
input and generated samples.

Looking at the results more closely, SP mode show low AUROC values for both models (VAE and
GANomaly). The SP mode is aimed at the Sun or Earth orientation in the Earth transition orbit,
and includes a rotational movement of the main body for this purpose, thereby causing a large range
of variation; this procedure allows a greater attitude error range than other modes. For this reason,
it may be more difficult in SP mode to distinguish between normal and abnormal data. VAE is an
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AE variant and probability generative model that regulates latent variables to follow a multivariate
normal distribution. The objective function of VAE consists of two parts: MSE for maximum likelihood
estimation and KL divergence for regularization. Although the KL divergence objective allows VAE to
sample more informative latent variables, the sampling process for the reparameterization can cause
some noise in the reconstructed output. Therefore, when the normal data and the abnormal data are
not clearly different, the VAE trained only on normal data will generate abnormal samples instead of
normal ones. Conversely, in the case of GANomaly, there is no such sampling process in the middle of
the neural network. Additionally, because the GANomaly utilizes AE to reconstruct input data and
GAN to match a distribution of generated samples to the target distribution (distribution of normal
samples), GANomaly produces less noisy data than VAE. As a result, GANomaly can discriminate
abnormal samples using reconstruction error more effectively than VAE. For this reason, SP and TP
modes show much better results for GANomaly than for VAE and are not suitable for applying VAE
techniques. In other words, normal and abnormal data can be separated easily by VAE in modes like
LAM, TSH and WOL due to the simplicity of the training data set, but such separation cannot be
achieved by VAE for SP and TP, which may have some noise in the training data set.

In particular, the performance in the SP mode is lower than that in other modes. Since this is
not a frequent task such as solar orientation and Earth orientation in SP mode, overfitting may occur
because there are relatively many overlapping features owing to the small change in behavior. Thus,
a model that fits well with the training data is created, but the performance may be degraded for the
test data to be predicted. To compensate for this, learning is performed by resampling 8 Hz data to
4 Hz and 1 Hz. The results are shown in Figure 2, and the smaller the sampling value, the better the
performance. The performance for the SP in Table 11 is the result of the resampled data. The raw
data output from the sensor is sampled at 8 Hz, but it is confirmed that the effect of overfitting is
reduced, and performance is improved as shown in Table 11 by reducing the overlapping features
through down-sampling. From the results, the diagnostic results of the SP mode presented in the
results (Section 5) are derived by resampling at 1 Hz.
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Table 11. Performance in the S P mode with resampled data (8 Hz, 4 Hz, 1 Hz).

SP Mode
VAE GANomaly

Warm Up Period Lr λ AUROC Warm Up Period Lr AUROC

8 Hz 300 10−5.000 0.200 0.686 50 10−4.649 0.851
4 Hz 200 10−4.999 0.203 0.764 30 10−2.805 0.906
1 Hz 271.6 10−5.000 0.800 0.917 142.8 10−1.000 0.931
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5.2. Assistive Tools for AD

AD between normal and abnormal data is easier and clearer to determine using learning techniques
than using monitoring of existing model output values. We look at some specific model inference
examples (Figure 3a). As a simple example, we introduced a fault in LUNASIM’s gyroscope model
output from 1000–1001 s (Figure 3b). Artificially increasing the gyroscope model roll rotation rate
causes nonlinear changes in the modeled spacecraft control error (Figure 3c) and integrated angular
rate (Figure 3d); both of these may persist for a few hundred seconds after the fault. Control error here
refers to the difference between desired attitude and estimated attitude; the instantaneous deviation in
the control error appears small because the fault is introduced when the control error is quite large.
By applying deep-learning models to this phenomenon, distinctions between normal and abnormal
can be detected, as shown in Figure 4. The sudden increase in reconstruction errors in Figure 4 after
1000 s indicates that abnormal data have occurred that are clearly different from the learned model
based on normal data. Figure 5 shows that while the anomaly was injected only briefly at 1000 s,
differences from normal data. Knowledge error is defined as the difference between the true attitude of
the spacecraft vs the attitude estimated using data from gyroscopes and star trackers and fused using
an Extended Kalman Filter; an anomalous change in gyroscope rate data, though instantaneous, may
result in a persistent bias in the attitude estimate and can explain why the reconstruction error of our
models does not immediately return to normal.Sensors 2020, 20, x FOR PEER REVIEW 14 of 21 
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Figure 3. An anomaly example in LUNar Attitude and Orbit Control System SIMulator (LUNASIM):
(a) a model example; (b) a fault in LUNASIM’s gyroscope model; (c) nonlinear changes in the modeled
spacecraft control error; and (d) nonlinear changes in integrated angular rate.
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Figure 4. Results of AD using the deep-learning models: (a) the result of variational autoencoder (VAE)
model; (b) the result of GANomaly model.
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Figure 5. Anomaly continuing after injection point: (a) in case of anomaly injected; (b) in case of
normal condition.

Monitoring for the diagnosis of spacecraft systems has been conducted with the critical point
(CP) based alarm method. However, because random values are conservatively set using the expert’s
experience and judgment in setting CP, frequent alarms are caused during development and operation.
This makes the operator more resistant to problems, which can cause errors in troubleshooting.
The deep neural network-based AD system proposed in this study can be used as a tool to improve the
accuracy and reliability of the existing CP-based anomaly detection. In other words, an optimized
threshold can be set based on the accumulated data.

We randomly generate some fault signals under CP to verify the algorithm. Table 12 shows the
calculation parameters and performance. In the LAM mode, a spike occurs in the Gyro rate as shown
in Figure 6. From the results in Figure 7, the AD model can detect abnormalities. Therefore, in addition
to the secondary role, the deep neural network-based AD model can also mechanically detect what
humans cannot detect.

Table 12. Model performance for AD under CP.

Model
LAM Mode

Warm Up Period Lr λ AUROC

GANomaly 100.0 10−5.0 - 1.0
VAE 279.9 10−5.0 0.2 1.0
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Figure 6. Gyro failure type of Large Angle Maneuver (LAM) mode generated under critical point (CP).Sensors 2020, 20, x FOR PEER REVIEW 16 of 21 
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5.3. Efficient Monitoring Tool According to Purpose

AD results can be processed and monitored according to purpose. LUNASIM outputs
scenario-based data, so monitoring based on operational scenarios is easy in terms of data processing.
If an anomaly is detected among the modes constituting the scenario, the results of the modes are
checked in detail. We present AD results from two monitoring perspective: the operation scenario
and mode.

5.3.1. AD in Operation Scenario

This method diagnoses abnormal modes for each operating scenario. Figure 8 shows the results
of AD for MT8 operating scenarios in VAE- and GANomaly-based learning models. The MT8 scenario
consists of SP and WOL modes. With reference to AUROCs (Table 10), both techniques in WOL
mode show good detection performance, and the results of the GANomaly-based model are reliable
in SP mode. In this case, it is possible to identify anomaly types in the mode as a whole in each
operating scenario.
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5.3.2. AD in Operation Mode

If an anomaly occurs during spacecraft operation, the anomaly can be detected in each operating
mode. Figure 9 shows the failure types in the LAM operating mode. A failure detected with a
continuous reconstruction error of 0.996 or higher indicates an RWA failure, and the peak near 1000
and 2000 s is caused by an RWA wheel speed spike. Also, a failure persisting from around 1500 to
2000 s, indicates a gyroscope rate spike. The pattern of each type of failure is distinct, so it is easy to
distinguish among failures given knowledge of typical failure types.
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Figure 9. Anomaly types in LAM mode: (a) the result of GANomaly model; (b) the result of VAE model.

Figure 10a shows the observed results in the MT8 and MT9 scenarios in the event of gyroscope
failure in TP mode. In both scenarios, failure patterns tended to be similar, followed by failures
around 2500 s. Reconstruction errors are consistently high in the MT8 scenario, but not so in MT9.
In this regard, the knowledge error values of gyroscopes presented in Figure 10b,c can be analyzed to
determine what caused them. In the MT8 scenario, the yaw axis knowledge error was continuously
high after abnormal behavior at 2500 s, and in the MT9 scenario, the value increased at the anomalous
behavior but converged afterwards. As shown, even if the failure type is the same, there may be a
difference in the failure occurrence pattern for each scenario. By monitoring the diagnosis result, it is
possible to identify the cause of the failure in the system. If the cause is normal behavior, it is used as
normal data to retrain the learning model.
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Figure 10. Gyro failure type of each scenario in Wheel Off Loading (WOL) mode: (a) the results of the
MT8 and MT9 scenarios in the event of gyroscope failure in TP mode; (b) knowledge error in MT8
scenario; (c) knowledge error in MT9 scenario.

5.3.3. Learning Model Update

For a single type of failure, it is possible to detect a scenario in which a failure occurs in a
mode-based learning model. In other words, abnormal situations in operating scenarios can be
identified in each observed mode. Figure 11a illustrates the pattern of failure in each scenario when
RWA and gyro failures are mixed in TP mode.
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(a) failures in MT2, MT9, TP1, and TP3 scenario when RWA and gyro failures are mixed in TP mode;
(b) anomalies of gyroscope rate in the MT2 scenario; (c) anomalies of wheel speed in the MT2 scenario.

The TP1 and TP3 scenarios show similar aspects for the same type of failure, while the MT2 and
MT9 scenarios initially tend to be similar, but then present anomalies in the MT2 scenario in the vicinity
of 3500 s. After checking the gyroscope rate and wheel speed of the data, as shown in Figure 11b,c,
a moderately large but normal maneuver observed at 3500 s appear to be misclassified. Therefore, it is
necessary to update the learning model by classifying this maneuver as normal data.

6. Conclusions

A machine learning-based diagnostic model is developed to perform AD on lunar orbiter AOCS.
Based on the data generated by applying various scenarios to perform the exploration mission in
LUNASIM, a lunar orbiter AOCS simulator, we apply semi-supervised based AD and create algorithms
based on generation models such as VAE and GANomaly. Data characteristics are extracted by deep
learning method such as 1D-CNN, and hyperparameters are automatically determined by applying BO
with GP to improve learning performance. Anomalies are detected by measuring the generation error
for newly input data. The GANomaly model performs better than VAE. Normal and abnormal data
may appear similar in modes allowing a relatively large margin of error when operating in an attitude
control system. In VAE, if the difference between normal and abnormal data is unclear owing to the
noise caused by the reconstructed output in the sampling process for reparameterization, the VAE
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trained on normal data can produce abnormal samples rather than normal samples. GANomaly,
however, uses reconstruction errors more effectively than VAE to distinguish abnormal samples.
The reconstruction-based AD models still do not provide state-of-the-art AD performance and in this
regard, we expect that a deterministic AD model may improve upon the results of this study in the
future. Moreover, the accuracy and reliability of the neural networks’ abnormality detection may be
improved by adding probability calibration techniques like temperature scaling and outlier exposure.
In the present work, we confirm that AD models are selected based not only on the degree and kind
of separation between normal and abnormal input data but also on the neural network’s processing
function, process, and method. The present study also provides examples of case monitoring on a
case-by-case basis, based on the spacecraft’s mission scenario and operational mode.

FD is necessary to additionally perform identification of the failure type after AD in order to be
utilized more effectively in actual operation. However, this requires more data labelled for each failure
type, so there is a limit to using simulation results, and actual data accumulated through long-term
operation is required. After identifying the failure based on AD, the method of determining the degree
of impact on the overall system performance by considering the severity of each failure and using it as
a basis for decision-making can be studied as a basis for autonomous operation in the future.

Author Contributions: Conceptualization, H.A. and H.-L.C.; Investigation, H.A. and D.J.; Methodology, H.A.;
Data curation, D.J. and H.A.; Software, H.A. and D.J.; Visualization, H.A.; Writing—original draft, H.A.;
Writing—review & editing, H.A. and H.-L.C.; Supervision, H.-L.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Korea Aerospace Research Institute.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, P.; Li, Y.; Reddy, C.K. Machine learning for survival analysis: A survey. ACM Comput. Surv. 2019, 51, 110.
[CrossRef]

2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
3. Yairi, T.; Kawahara, Y.; Fujimaki, R.; Sato, Y.; Machida, K. Telemetry-mining: A machine learning approach

to anomaly detection and fault diagnosis for space systems. In Proceedings of the 2nd IEEE International
Conference on Space Mission Challenges for Information Technology (SMC-IT’06), Pasadena, CA, USA,
17–20 July 2006.

4. Ibrahim, S.K.; Ahmed, A.; Zeidan, M.A.E.; Ziedan, I.E. Machine Learning Techniques for Satellite Fault
Diagnosis. Ain Shams Eng. J. 2019. [CrossRef]

5. Galvan, D.A.; Hemenway, B.; Welser, I.; Baiocchi, D. Satellite Anomalies: Benefits of a Centralized Anomaly
Database and Methods for Securely Sharing Information among Satellite Operators; Rand National Defense Research
Institute: Santa Monica, CA, USA, 2014.

6. Siahpush, A.; Gleave, J. A brief survey of attitude control systems for small satellites using momentum
concepts. In Proceedings of the 2nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA,
18–21 September 1988.

7. Chatfield, C. The Analysis of Time Series: An Introduction; Chapman and Hall/CRC: London, UK, 2016.
8. Cryer, J.D.; Kellet, N. Time Series Analysis; Springer: New York, NY, USA, 1991.
9. Brillinger, D.R. Time Series: Data Analysis and Theory; SIAM: Philadelphia, PA, USA, 1981; Volume 36.
10. Anderson, T.W. The Statistical Analysis of Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 19.
11. Tipping, M.E.; Bishop, C.M. Mixtures of probabilistic principal component analyzers. Neural Comput. 1999,

11, 443–482. [CrossRef] [PubMed]
12. Yairi, T.; Takeishi, N.; Oda, T.; Nakajima, Y.; Nishimura, N.; Takata, N. A data-driven health monitoring

method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction.
IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1384–1401. [CrossRef]

13. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv arXiv:1701.01887, 2017.
14. Ahn, H.; Choi, H.-L.; Kang, M.; Moon, S. Learning-Based Anomaly Detection and Monitoring for Swarm

Drone Flights. Appl. Sci. 2019, 9, 5477. [CrossRef]

http://dx.doi.org/10.1145/3214306
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.asej.2019.08.006
http://dx.doi.org/10.1162/089976699300016728
http://www.ncbi.nlm.nih.gov/pubmed/9950739
http://dx.doi.org/10.1109/TAES.2017.2671247
http://dx.doi.org/10.3390/app9245477


Sensors 2020, 20, 1991 20 of 20

15. Längkvist, M. Modeling Time-Series with Deep Networks; Örebro University: Örebro, Sweden, 2014.
16. OMeara, C.; Schlag, L.; Wickler, M. Applications of Deep Learning Neural Networks to Satellite Telemetry

Monitoring. In Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018; p. 2558.
17. Wei, W.; Wu, H.; Ma, H. An autoencoder and LSTM-based traffic flow prediction method. Sensors 2019,

19, 2946. [CrossRef] [PubMed]
18. Park, P.; Marco, P.D.; Shin, H.; Bang, J. Fault Detection and Diagnosis Using Combined Autoencoder and

Long Short-Term Memory Network. Sensors 2019, 19, 4612. [CrossRef] [PubMed]
19. Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy

Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural
Network. Sensors 2019, 19, 972. [CrossRef] [PubMed]

20. Chen, K.; Mao, Z.; Zhao, H.; Jiang, Z.; Zhang, J. A Variational Stacked Autoencoder with Harmony Search
Optimizer for Valve Train Fault Diagnosis of Diesel Engine. Sensors 2020, 20, 223. [CrossRef] [PubMed]

21. Jung, D.; Kwon, J.W.; Baek, K.; Ahn, H.W. Attitude Control Simulator for the Korea Pathfinder Lunar Orbiter.
In Asia-Pacific International Symposium on Aerospace Technology; Springer: Singapore, 2018; pp. 2521–2532.

22. Jung, D.; Kwon, J.W.; Seo, H.H.; Yim, J.R. New Concepts for the Korea Pathfinder Lunar Orbiter Attitude
Control System Simulator. In Proceedings of the 2017 Asia-Pacific International Symposium on Aerospace
Technology, Seoul, Korea, 16–18 October 2017; pp. 637–638.

23. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv arXiv:1312.6114, 2013.
24. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Ganomaly: Semi-supervised anomaly detection via

adversarial training. In Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2018; pp. 622–637.
25. Bourlard, H.; Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition.

Biol. Cybern. 1988, 59, 291–294. [CrossRef] [PubMed]
26. Škvára, V.; Pevný, T.; Šmídl, V. Are generative deep models for novelty detection truly better? arXiv

arXiv:1807.05027, 2018.
27. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
28. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.

Generative adversarial nets. In Proceedings of the Neural Information Processing Systems, Montreal, QC,
Canada, 8–13 December 2014; pp. 2672–2680.

29. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with
generative adversarial networks to guide marker discovery. In Proceedings of the International Conference
on Information Processing in Medical Imaging, University in Boone, Boone, NC, USA, 25–30 June 2017;
pp. 146–157.

30. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms.
In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012;
pp. 2951–2959.

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

32. Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex
industrial problems. IEEE Trans. Nucl. Sci. 1997, 44, 1464–1468. [CrossRef]

33. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D Convolutional Neural Networks
and Applications: A Survey. arXiv arXiv:1905.03554, 2019.

34. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage
detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]

35. Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional
neural networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]

36. Sønderby, C.K.; Raiko, T.; Maaløe, L.; Sønderby, S.K.; Winther, O. How to train deep variational autoencoders
and probabilistic ladder networks. In Proceedings of the 33rd International Conference on Machine Learning
(ICML 2016), New York, NY, USA, 19–24 June 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19132946
http://www.ncbi.nlm.nih.gov/pubmed/31277390
http://dx.doi.org/10.3390/s19214612
http://www.ncbi.nlm.nih.gov/pubmed/31652821
http://dx.doi.org/10.3390/s19040972
http://www.ncbi.nlm.nih.gov/pubmed/30823579
http://dx.doi.org/10.3390/s20010223
http://www.ncbi.nlm.nih.gov/pubmed/31906062
http://dx.doi.org/10.1007/BF00332918
http://www.ncbi.nlm.nih.gov/pubmed/3196773
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/23.589532
http://dx.doi.org/10.1016/j.jsv.2016.10.043
http://dx.doi.org/10.1109/TIE.2016.2582729
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem and Data Description 
	Problem Description 
	LUNASIM 
	Data Schema 

	Preliminaries 
	Variational Autoencoder (VAE) 
	GANomaly 
	Bayesian Optimization 

	Method 
	Data Preprocessing 
	Algorithms 
	Hyperparameter Optimization 

	Results and Discussion 
	Learning Models and Operation Modes 
	Assistive Tools for AD 
	Efficient Monitoring Tool According to Purpose 
	AD in Operation Scenario 
	AD in Operation Mode 
	Learning Model Update 


	Conclusions 
	References

