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Abstract: Heterosis is an interesting topic for both breeders and biologists due to its practical
importance and scientific significance. Cultivated rice (Oryza sativa L.) consists of two subspecies,
indica and japonica, and hybrid rice is the predominant form of indica rice in China. However,
the molecular mechanism underlying heterosis in japonica remains unclear. The present study
determined the genome sequence and conducted quantitative trait locus (QTL) analysis using
backcross recombinant inbred lines (BILs) and BILF1 lines to uncover the heterosis-related loci for
rice yield increase under a japonica genetic background. The BIL population was derived from an
admixture variety Habataki and japonica variety Sasanishiki cross to improve the genetic diversity
but maintain the genetic background close to japonica. The results showed that heterosis in F1

mainly involved grain number per panicle. The BILF1s showed an increase in grain number per
panicle but a decrease in plant height compared with the BILs. Genetic analysis then identified eight
QTLs for heterosis in the BILF1s; four QTLs were detected exclusively in the BILF1 population only,
presenting a mode of dominance or super-dominance in the heterozygotes. An additional four loci
overlapped with QTLs detected in the BIL population, and we found that Grains Height Date 7 (Ghd7)
was correlated in days to heading in both BILs and BILF1s. The admixture genetic background of
Habataki was also determined by subspecies-specific single nucleotide polymorphisms (SNPs). This
investigation highlights the importance of high-throughput sequencing to elucidate the molecular
mechanism of heterosis and provides useful germplasms for the application of heterosis in japonica
rice production.
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1. Introduction

Food security is a major global problem as the competition for arable land between food and
energy crops, and population growth, continue to increase. Improving crop productivity has been the
key focus of national and international efforts in breeding crops such as maize and rice. The vigor of
indica rice hybrids often exhibits phenotypes that surpass their parents in terms of growth and fertility,
which is also known as heterosis. In crop production, successful agronomic exploitation of yield
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heterosis has been achieved in the past decades. Three major competing but non-mutually-exclusive
hypotheses (dominance, overdominance, and epistasis) have been proposed to explain heterosis at the
genetic level [1–6]. However, the progress in elucidating the molecular mechanism underlying crop
heterosis has lagged.

In the past decades, heterosis has become a priority research target for both breeders and scientists
based on its practical importance and scientific significance. Heterosis in crop breeding was first
applied to hybrid maize in the 1930s, and the three-line method or cytoplasmic male sterility (CMS)
system contributed to the commercialization of hybrid rice in the 1970s. Crop heterosis has been
extensively applied to rice and maize production, significantly improving global yield compared with
traditional inbred lines [7]. Currently, the planting area of hybrid rice accounts for 50–60% of the total
rice planting area, and about 80% of indica rice is hybrid and is mainly planted in southern China.
A study used recombinant inbred lines (RIL) derived from a cross between PA64s and 93-11, and RIL
backcross F1 populations were analyzed to elucidate the molecular mechanism of heterosis among
indica and javanica varieties [8]. A mega sequence project for 10,0742 F2 lines revealed the genomic
architecture of heterosis for yield traits in rice using the cross combination of Oryza sativa subspecies
(ssp.) indica–indica (three-line system), indica–indica (two-line system), and O. sativa ssp. indica–O. sativa
ssp. japonica crosses [9]. Nevertheless, research on heterosis in japonica is limited. Almost all japonica
varieties are conventional rice, and the hybrid japonica accounts for less than 3% among total japonica,
which is mainly distributed in northern China and the middle range of China. The disappearance of
hybrid japonica rice is due to the lack of genetic diversity among japonica cultivars.

In this study, we used a backcross RIL derived from the cross between Habataki (an admixture
variety between the indica and japonica variety) and japonica variety Sasanishiki, and F1 plants were
backcrossed to Sasanishiki once before inbreeding. The backcross improved genetic diversity through
the introgression of the indica pedigree while maintaining the population under the japonica genetic
background. After inbreeding for 10 generations, we obtained 85 lines of the backcross recombinant
inbred line (BIL) population. Then, we crossed all of the 85 lines to Sasanishiki again to generate
the BILF1 population. The present study used genome sequencing and quantitative trait locus (QTL)
analysis of BILs and BILF1s to identify heterosis-related loci for yield increase.

2. Results

2.1. Population Sequencing and Linkage Map Construction

We used a strategy of sequencing-based map construction to conduct QTL mapping for the BIL
derived from the cross between Sasanishiki and Habataki (Figure 1A). We sequenced a segregating
population of Sasanishiki and Habataki BILs together with parental lines on an Illumina HiSeq2500
platform. A total of 224.02 GB of raw data were generated for all of the BILs, with approximately
6.29-fold depth for each BIL, 22.94 GB for Habataki (51.00-fold), and 23.24 GB for Sasanishiki (56.00-fold).
We aligned the sequence data to the reference genome (Os-Nipponbare-Reference-IRGSP-1.0) using
SOAP2 software [10,11]. A total of 1,947,668 single-nucleotide polymorphisms (SNPs) with homozygous
genotypes between both parents were identified using the SOAPsnp software [12]. These SNPs were
used as potential markers in the subsequent analysis. The SNP markers localized to highly repetitive
regions, and those with low genotyping scores were removed to avoid ambiguity in linkage map
construction. We used an effective imputation model, k-nearest neighbor algorithm to impute the
missing genotypes of each RIL caused by low-coverage sequencing [13]. Finally, we used 1,591,495
high-quality polymorphic SNP markers to construct a recombinant bin map (Figure 1B). Subsequently,
a recombinant bin map was constructed, and the map contained 3652 recombinant blocks, with the
average genetic length of 0.44 cM. Then, we determined the introgression rate of the Habataki pedigree
using the data of bin map. The introgression rate showed a normal distribution that indicated that
the population is ideal for the subsequent survey (Figure 1C). We analyzed the correlation between
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the introgression rate of Habataki and the important yield-related traits. The results showed that the
introgression rate was significantly negatively correlated to 1000-grain weight (TGW) (Figure 1D).
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Figure 1. Schematic overview of the parent backcross recombinant inbred line (BIL) system construction
and the map of genome-wide graphic genotypes. (A) The technology roadmap using genome sequence
and quantitative trait locus (QTL) analysis of BILs and BILF1s to uncover heterosis-related loci for yield
increase. (B) Graphic genotypes of 85 BILs were identified by a sliding window approach along each
chromosome. Various colors represent different genotypes. (C) The introgression rate of the Habataki
pedigree among the BILs. (D) The correlation between the introgression rate of the Habataki pedigree
and yield-related traits. The dotted lines indicate significance at the 5% level.

2.2. Grain Yield Heterosis is the Result of Hybrid Vigor in Grain Number Per Panicle

To obtain ideal agronomic characteristics of heterosis, the paternal line itself is usually an excellent
inbred variety with superior agronomic performance. In addition, the hybrid F1 plant should surpass
its paternal parent, particularly the traits related to yield components. Interestingly, the F1 plants did
not exhibit greater plant height compared with the parental lines in the present study (Figure 2A).
We surveyed the yield components of the parental lines and F1 plants (Figure 2). The panicle length of
the F1 plants was significantly longer than that of Sasanishiki and Habataki (Figure 2B). Sasanishiki
exhibited a short round grain shape, whereas the F1 and Habataki exhibited a slender grain shape.
However, the 1000-grain weight of Habataki was significantly lower than that of the F1 plants, whereas
the 1000-grain weight of Sasanishiki was similar to that of the F1 plants. The results showed that
the F1 plants exhibited an advantage in grain number per panicle and panicle number compared
with Sasanishiki and Habataki. A similar setting rate was observed in F1, Sasanishiki, and Habataki.
The slenderest grain shape of Habataki had the lowest 1000-grain weight in the parent line and F1 plants,
whereas Sasanishiki had similar 1000-grain weight as the F1 plants. Taken together, the advantage
in panicle number and grain number per panicle makes the F1 plants exhibit heterosis in grain yield
per plant.
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2.3. Yield Components and Other Important Agronomic Traits of BILs and BILF1s

To assess the distribution pattern of yield-related traits between BILs and BILF1s, we surveyed
the yield components of BILs and BILF1s in the paddy field of Shenyang Agricultural University in
2018. The normal distribution and transgressive segregation were observed in all of the traits surveyed
in both BIL and BILF1s. These results indicate that all of these agronomic traits were controlled by
multiple genes. The plant height of BILF1s mainly ranged from 105 to 120 cm, whereas that of BILs was
from 120 to 135 cm. These results indicate that the heterozygous genotype of the F1 plants reduces the
plant height, based on the fact that the F1 plants were shorter than Sasanishiki and Habataki (Figure 1A).
In addition, the grain number per panicle of BILs ranged from 80 to 180, whereas that of the BILF1s
ranged from 130 to 260. These results suggest that the heterozygous genotype of the F1 plants increases
the grain number per panicle, which also coincides with the result that the F1 plants have significantly
more grains per panicle than Sasanishiki and Habataki (Figure 2). Similar distributions of days to
heading, panicle number, and 1000-grain weight were observed in both BILs and BILF1s. However, the
variation range of setting rate in BILs was larger than in the BILF1s (Figure 3).
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2.4. QTL Detection and Analysis Using the BILs and BILF1 Population

To elucidate the genetic mechanism underlying heterosis of yield traits, we primarily focused
on the days to heading (DTH), plant height (PH), panicle number (PN), grain number per panicle
(GNPP), setting rate (SR), and 1000-grain weight (TGW). A molecular linkage map with 3652 bins was
constructed based on sequence variations in Sasanishiki and Habataki and those among the BILs using
Highmaps software. In the BIL population, 10 QTLs for all of the traits were mapped independently to
rice chromosomes 1, 4, 5, 7, 9, 10, and 12 (Figure 4). To detect QTLs for heterosis that was associated with
the effects of the heterozygous on the genetic background of Sasanishiki, we used the BILF1 to conduct
QTL analysis. Eight loci for the respective phenotypes were detected on chromosomes 1, 3, 6, 7, 9, and
10. Among the eight QTLs, four of these loci overlapped with QTLs detected in the BIL population,
and four QTLs were detected independently in the BILF1 population. These results presented a mode
of dominance or super-dominance in the heterozygote. Among the QTLs detected in both BILs and
BILF1S, the cluster at the short arm of chromosome 10 corresponded to the days to heading in BILF1s
and the grain number per panicle in both BILs and BILF1s. In addition, a cluster at chromosome 7 was
related to days to heading in both BILs and BILF1s. As heterosis was mainly observed in the grain
number per panicle, we subsequently summarized the grain number per panicle of each genotype
for the four QTLs detected in the BIL and BILF1s (Figure 5). The results showed that in the Gn1 and
Ghd7 loci, the heterozygous genotype and the homozygous Habataki genotype plants had significant
advantage in grain number per panicle compared with the homozygous Sasanishiki genotype plants.
In the GNNP3 locus, the homozygous Sasanishiki and homozygous Habataki genotype plants had
similar grain number per panicle but significantly fewer than the heterozygous genotype plants.
In the Gn3 locus, the heterozygous genotype plants showed a significant increase of grain number per
panicle compared with homozygous Habataki genotype plants, whereas the homozygous Habataki
genotype plants had a significantly higher grain number per panicle than the homozygous Sasanishiki
genotype plants.
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2.5. The Indica/Japonica Pedigree Analysis of Sasanishiki and Habataki

Breeding history indicates that Habataki is an admixture line between indica and japonica. Thus we
conducted an analysis of the indica/japonica pedigree of Sasanishiki and Habataki. The indica/japonica
pedigree was defined using the subspecies-specific SNPs. The subspecies-specific SNPs were those
of the same type in all japonica, but not in indica, which is based on the divergence of the 517 rice
landraces [14]. In total, 100,529 subspecies-specific SNPs were selected. We matched the 1,947,668 SNPs
between Sasanishiki and Habataki to 100,529 subspecies-specific SNPs, and 81,690 SNPs were merged.
The 81,690 SNPs were then used to analyze the indica/japonica pedigree of Sasanishiki and Habataki.
The results showed that there are 621 japonica-type SNPs in the genome of Habataki, which indicated that
0.76% of japonica genomic introgression involved Habataki. Meanwhile, there were only 81 indica-type
SNPs in Sasanishiki, indicating that only 0.01% indica pedigree introgression occurred in the Sasanishiki
genome. The distribution of subspecies-specific SNPs and indica/japonica genomic introgression is



Int. J. Mol. Sci. 2020, 21, 780 7 of 10

shown in Figure 6. Agronomic-traits-related QTLs were located out of the indica/japonica genomic
introgression, which confirmed that the heterosis QTL originated from the difference between indica
and japonica.
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3. Discussion

Since its generation in 1973, hybrid rice has predominated indica rice production in China. Numbers
of elite combinations have been developed and released as commercial varieties, with yields roughly
20% higher than their inbred counterparts [15]. Recent molecular research has investigated the number
of hybrid combinations to construct a model system for studying the molecular mechanism of heterosis
for three- and two-line hybrids. A study using the yield components data and an ultra-high-density
SNP bin map of an immortalized F2 population derived from the cross between Zhenshan97 and
Minghui63 demonstrated that the relative contributions of the genetic components vary with traits.
The results indicate that overdominance/pseudo-overdominance are most important to the heterosis
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of grain number per panicle, 1000-grain weight, and grain yield per plant. In heterosis of panicle
number and 1000-grain weight, the dominance × dominance interaction is important. Among these
yield-related traits, single-locus dominance has relatively small contributions [16]. An integrated
analysis using the RIL population and RILBCF1 population derived from the cross between PA64S
(which has a mix genetic background of indica and javanica) and 93-11 showed that heterosis was mainly
detected in grain number per panicle and panicle number [8]. Huang et al. sequenced 10,074 F2 lines
derived from 17 representative hybrid combinations, and they found that a small number of genomic
loci from female parents explain a large proportion of the yield advantage of hybrids over their male
parents [9]. Taken together, these studies improve our understanding of heterosis. However, research
on heterosis between japonica and japonica crosses is limited. The genetic diversity of japonica was not as
high as that of indica, making heterosis among japonica inconspicuous compared with that among indica.
Moreover, several factors have limited the utilization of heterosis between indica and japonica, which
includes sterility. Thus, we used a BIL population derived from an indica and japonica cross to improve
the genetic diversity but maintain the genetic background close to japonica. The results of the present
study showed that heterosis between Sasanishiki and Habataki mainly came from a complicated
quantitative and components-specific phenotype. Here, we clearly demonstrate yield heterosis, mainly
by the outperformance of grain number per panicle and panicle number. Yield components survey
also showed that the grain number per panicle of BILF1 population was significantly higher than that
of the BIL population. Our previous study demonstrated that the introgression of indica pedigree in
the japonica genome contributed to the increase of rice production in northern China [17], and thus
the present study confirmed that the indica pedigree could increase the grain number per panicle
in japonica.

Using high-throughput sequencing, we conducted QTL mapping of the BIL and BILF1 populations,
and the number of QTLs that are responsible for yield and yield-related heterosis was determined.
A total of 10 QTLs for all of the traits were mapped independently in BIL population (Figure 4), and
eight loci for the respective phenotypes were detected. Among the eight QTLs, four of these loci
overlapped with QTLs detected in the BIL population, and the remaining four QTLs were detected
exclusively in the BILF1 population, indicating a mode of dominance or super-dominance in the
heterozygote. At the gene level, Gao et al. demonstrated that a heading-time-regulated gene Day to
Heading 8 (DTH8) is a candidate locus for yield heterosis in Liang-you-pei 9 (LYP9) [18], and Li et al.
and Huang et al. confirmed that DTH8 corresponds to yield heterosis [8,9]. These results suggest
that the heading time gene strongly participates in yield heterosis in hybrid rice. The present study
detected that the heading-time gene Ghd7 is also a candidate locus for both yield heterosis and heading
time regulation. A study using the BILs derived from the cross between Habataki and Koshihikari
identified five QTLs (Gn1–Gn5) that were related to grain number per panicle on chromosome 1, 4, 10,
and 12 [19]. The present study confirmed that Gn1 and Gn3 correspond to grain number per panicle.
Moreover, Gn3, on the short arm of chromosome 10, also corresponded to grain number per panicle in
BILF1s. Thus, this QTL may be further assessed in terms of heterosis.

4. Materials and Methods

4.1. Plant Materials

The parental line Sasanishiki is typical japonica varieties, and the parental line Habataki is
an admixture variety with both indica and japonica pedigree. Sasanishiki was crossed to Habataki, and
the F1 plant was crossed to Sasanishiki, and then inbred over 10 generations by single-seed descent
to generate a population containing 85 BILs. The BILs were then backcrossed to the maternal parent
Sasanishiki to obtain 85 BILF1s. All materials are maintained at the Rice Research Institute of Shenyang
Agricultural University (Shenyang, China). All plants were planted in random block design under
standard agricultural management practice in the paddy field of Shenyang Agricultural University
(N41◦, E123◦). All lines were planted with three biological replicates A total of 300 plants in a 16 m2
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plot were characterized for each line. Plant height, panicle number, grain number per panicle, setting
rate, and 1000-grain weight were surveyed in the field in 2018. Both BILs and BILF1s were used in
QTL analysis.

4.2. DNA Extraction and QTL Analysis

Young leaves of each line were collected two weeks after transplant. The CTAB method was
used in extracting the high-quality genomic DNA. The sequencing libraries were constructed on an
Illumina HiSeq2500 platform (Illumina, Inc.; San Diego, CA, USA) according to the manufacturer’s
instructions. We aligned the sequence data to the reference genome (Nipponbare, http://rapdb.dna.
affrc.go.jp/download/irgsp1.html/) using SOAP2 software [11]. To construct the genetic linkage map
for QTL analysis, we combined the cosegregating SNP/InDel into bins via HighMap software [20].
A map containing 3652 bins and 1592.12 cM in length was constructed with an average of 304 bins on
each chromosome. Twelve linkage groups corresponded to the 12 rice chromosomes. We observed
the full collinearity between the genetic map and the rice genome, and the minimum value of the
Spearman coefficient for chromosomes was 0.962 (Chr. 7). The HighMap software was used to
construct a linkage map. The software constructs high-quality linkage map according to the maximum
likelihood estimation method. We used the R/qtl (version: 1.44-9) software to conduct QTL analysis
via a composite interval mapping (CIM) model. The significance thresholds were determined by
1000 permutations. The percentage of phenotypic variance calculation explained by each QTL was
obtained according to the population variance within the mapping population. The details of the QTL
analysis were described in our previous studies [21].
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