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Binding small molecules through non-covalent molecular forces affords supramolecules,

such as hydrogen bonds, with electrostatic, π-π interactions, van der Waals forces,

and hydrophobic effects. Due to their good biocompatibility, low immunogenicity, and

biodegradability, supramolecules have been intensely studied as multifunctional drug

delivery platforms in targeted cancer therapy. In consideration of the defective therapeutic

efficacy induced by simply transporting the therapeutic agents into tumor tissues

or cancer cells instead of subcellular organelles, research is progressing toward the

development of subcellular targeted cancer therapy (STCT) strategies. STCT is one

of the most recent developments in the field of cancer nanomedicine. It is defined as

the specific transportation of therapeutic agents to the target organelles for cancer

treatment, which makes therapeutic agents accumulate in the target organelles at higher

concentrations than other subcellular compartments. Compared with tumor-targeted

and cancer-cell-targeted therapies, STCT exhibits dramatically improved specificity and

precision, diminished adverse effects, and enhanced capacity to reverse multidrug

resistance (MDR). Over the past few decades, peptides have played increasingly essential

roles in multi-types of tumor-targeted drug delivery systems. Moreover, peptide-mediated

STCT is becoming an emerging approach for precision cancer therapy and has been

used in various cancer treatments, such as photothermal therapy (PTT), photodynamic

therapy (PDT), chemotherapy, gene therapy, and non-drug-loaded nanoassemblies.

In this review, we will focus on recent innovations in the variety of peptides used in

designing peptide-decorated supramolecules for cell-membrane-, mitochondria-, and

nucleus-localized STCT.

Keywords: supramolecules, functional peptides, subcellular targeted, cancer therapy, supramolecular cancer

nanomedicine

INTRODUCTION

In the past few decades, the rapid development of cancer nanomedicine has been focusing
on overcoming challenges encountered by conventional medicines, such as low therapeutic
efficacy, poor targetability, adverse side effects, and MDR (Sun et al., 2014). The employment
of supramolecules in cancer treatment gives the definition of supramolecular cancer
nanomedicine (Cui and Xu, 2017; Feng et al., 2017). Supramolecules are generated by the
well-ordered self-assembly of small molecules through non-covalent molecular forces, such
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as hydrogen bonds, enabling them to have electrostatic, π-
π interactions, van der Waals forces, and hydrophobic effects
(Webber et al., 2016). In terms of their good biocompatibility,
low immunogenicity, and biodegradability, supramolecules have
beenwidely developed asmultifunctional drug delivery platforms
in the field of supramolecular cancer nanomedicine (Yao et al.,
2018; Chen R. et al., 2019). Moreover, tremendous progress has
been made in developing various therapeutic strategies over the
past two decades, including chemotherapy, gene therapy, PDT,
PTT, and non-drug-loaded nanoassemblies (Dong et al., 2018;
Kim et al., 2018; Cheng H. et al., 2019c; He H. et al., 2019; Zou
et al., 2020). Hence, significant advancements in supramolecular
cancer nanomedicine and therapeutic strategies have facilitated
the development of novel therapeutic nanoplatforms to resolve
challenging issues of conventional medicines.

In cancer cells, all types of subcellular organelles are
indispensable, which play fundamental roles in critical cellular
functions. Recently, supramolecules have been applied for STCT
(Gao et al., 2019; Nurunnabi et al., 2019; Guo et al., 2020).
Studies indicate that the specific transportation of therapeutic
agents to the target subcellular compartments, for instance, cell
membrane, mitochondria, and nucleus, can be achieved through
using supramolecular nanoplatforms (Song et al., 2015; Zhong
et al., 2015; Deng et al., 2020). In contrast to conventional
cancer nanomedicines, supramolecule-mediated STCTs exhibit
some unique merits (Chen et al., 2018). Firstly, the organelle-
specific delivery of therapeutics to the sites of action in cancer
cells is capable of affording an optimal dose administration.
Consequently, the adverse side effects caused by off-target
drug delivery and high dose can be dramatically relieved. In
addition, it could provide a greatly promising approach to
circumvent MDR via the inhibition of drug efflux through
the physical barriers of certain organelles. Namely, it exhibits
dramatically improved specificity, enhanced therapeutic efficacy,
and better precision over conventional cancer nanomedicines.
Due to their small sizes, good biocompatibility, low cost,
and various functions, functional peptides are particularly
appropriate for supramolecules-mediated STCT. In this mini
review, we summarize the latest development of functional
peptide-decorated supramolecules for STCT in the last 5
years, with an emphasis on their outstanding performance for
modulating various therapeutic strategies.

FUNCTIONAL PEPTIDE-BASED
SUPRAMOLECULES FOR STCT

According to their functions in supramolecules-mediated STCT,
functional peptides can be classified into three categories:
tumor targeting peptides, tumor-environment-responsive
peptides, and other functional peptides (Rong et al., 2020).
In accordance with the specific localization sites, tumor
targeting peptides can be grouped into three main types,
including tumor-environment targeting peptides, cancer
cells targeting peptides, and subcellular targeting peptides.
Through the employment of tumor-environment-responsive
peptides, the supramolecular nanoplatforms could respond to

the characteristic stimuli of the tumor microenvironment for
improved cellular internalization or controlled drug release,
for instance, mild acidity, elevated temperature, high enzyme
concentration, hypoxia, and imbalanced redox status. To
enhance the therapeutic efficacy, other functional peptides can
be employed to construct the supramolecular nanoplatforms,
such as cell penetrating peptides (CPP) and therapeutic peptides.
In summary, the utilization of functional peptides is able to
greatly enhance their therapeutic efficacy to the subcellular
locations in the course of cell membrane-, mitochondria-, and
nucleus-targeted cancer therapy.

Cell Membrane-Targeted Cancer Therapy
The cell membrane defines the borders of cells, and plays an
essential role in maintaining cell integrity, cell internalization,
and protecting living cells (Tani et al., 1978). Undoubtedly,
damage of the cell membrane could dramatically increase the
permeability. Consequently, it can lead to enhanced cellular
uptake of therapeutic agents for improved therapeutic efficacy,
or even cell death (see Figure 1). Hence, cell membrane-localized
PTT (Chen P. et al., 2020), PDT (Ma et al., 2019), chemotherapy
(Zhang C. et al., 2018; Wang et al., 2019), and non-drug-loaded
supramolecular nanoassemblies (Hu et al., 2017) can be used
to address MDR, avoid cell barriers, and enhance therapeutic
efficacy in STCT.

As a type of noninvasive therapeutic approach, cell death
in cancer cells could be efficiently triggered by PTT at a
recommended target temperature range of 41–48◦C (Fernandes
et al., 2020), which can be generated by the activation of
photothermal agents via near infrared (NIR) laser irradiation.
Compared with other targeted PTTs, cell membrane-targeted
PTT can avoid the inducible heat resistance of cancer cells
caused by heat shock protein 70. In a recent study, Chen
et al. designed the chimeric peptide-based dual-usage NIR
fluorescence probe C16-CARK, which was used both for cell
membrane-targeted fluorescence imaging and PTT (Chen P.
et al., 2020). The Arg-Arg-Lys (RRK) segment endows the system
with a cell membrane-targeting property, while the alkyl chain
C16 facilitates C16-CARK to insert into the cell membrane with
a long retention time (>4 h). Subsequently, the Cy5.5 moiety
produced heat upon NIR laser irradiation to destroy the cell
membrane in situ, and lead to cell death without the occurrence
of heat resistance.

Nowadays, PDT has attracted a massive amount of research
attention due to its minimal invasiveness, tunability, targetability,
and few side effects (Dai et al., 2019; Chen J. et al., 2020). Upon
the laser irradiation of photosensitizers (PSs) in the presence
of the molecule oxygen, the produced reactive oxygen species
(ROS) result in the apoptosis of cancer cells. In reality, PDT
drugs were approved for bladder cancer, skin cancer, esophagus
cancer, and lung cancer (Chilakamarthi and Giribabu, 2017;
Kessel, 2019). However, it is still a challenging task to fulfill long-
term anchoring of PSs onto cell membranes for cell membrane-
targeted PDT, due to cellular uptake and endocytosis. Zhang’s
group pioneered in this field by using chimeric peptides as
a cell membrane anchoring strategy (Liu et al., 2017). Their
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FIGURE 1 | Schematic presentation of functional peptide-decorated supramolecules for cell membrane-, mitochondria-, and nucleus-targeted cancer therapy.

early research employed the chimeric peptide-modified C16-PRP-
DMA, which can undergo charge reversal in a mildly acidic
tumor environment. After the insertion onto the cell membrane
through the C16 chain and chimeric peptide, in situ PDT took
place upon the lase irradiation of PS protoporphyrinIX (PpIX).
In their following research, the chimeric peptide strategy was
further expanded to engineer cracked cancer cell membranes
(CCCM) and exosomes, respectively (Qiu et al., 2018; Cheng H.
et al., 2019b). Accordingly, the cell membranes were seriously
damaged by the in situ occurred ROS, which induced apoptosis
of cancer cells.

Despite of new therapeutic options, chemotherapy remains
a cornerstone in cancer treatment. To overcome drug efflux
inducedMDR through the perturbation of the tumor membrane,
cell membrane-targeted chemotherapy has recently drawn
intensive research attention (Zhang X. et al., 2018). Zhang’s group
further used the chimeric peptide concept mentioned above for
chemotherapy (Zhang C. et al., 2018). The therapeutic system
loaded with doxorubicin (DOX) was denoted as CTGP. Upon
arriving at tumor sites, the chimeric peptides anchored onto the
cell membrane and generated self-assembled networks in situ,
which strictly limited DOX efflux to obtain 49-fold greater anti-
MDR ability than free DOX. Similarly but different, Xu’s group
perturbed the cell membrane to cause permeability enhancement
of DOX through the recognition-reaction-aggregation (RRA)
strategy (Wang et al., 2019).

Non-drug-loaded peptide nanoassemblies for cancer targeted
therapy have been clearly proven by recent research (Hu
et al., 2014). Particularly, it is not the therapeutic agents,

the peptide supramolecular nanoassemblies, themselves that
eliminate the cancer cells through physical disturbance (Lu
et al., 2016). Non-drug-loaded peptide nanoassemblies for cell
membrane-targeted cancer therapy can be conducted by the
formation of an artificial extracellular matrix (AECM), which
severely restricted cancer invasion and metastasis. For example,
Wang’s group developed a laminin-mimic peptide BP-KLVFFK-
GGDGR-YIGSR, which specifically targeted cell membranes,
transformed them into a supramolecular network, and formed
AECM for the inhibition of cancer migration and metastasis (Hu
et al., 2017).

Mitochondria-Targeted Cancer Therapy
Mitochondria have become the hottest subcellular target
for precise cancer therapy (Wu et al., 2018; Lee and Cho,
2019). Mitochondrion take charge of ATP production and
mitochondrial apoptosis. In consideration of its remarkably
significant biological importance, mitochondria-targeted
transportation of therapeutics to efficiently modulate its
biological function can provide new strategies for STCT (see
Figure 1). However, the efficiently specific transportation of
therapeutic agents to mitochondria is still a challenging task,
due to the extremely high negative transmembrane potential
(∼-180mV, Milane et al., 2015). Thus, cancer therapy is
often mediated by the use of mitochondria-targeting moieties,
including mitochondria-targeting signal peptides (MTSs),
Szeto–Schiller (SS) peptides, mitochondria-penetrating peptides,
(MPPs), and cationic triphenylphosphonium (TPP, Jean et al.,
2016).
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In consideration of the fact that mitochondria are the
major organelles for ROS generation, the overexpression of
mitochondrial ROS by mitochondria-targeted PDT could result
in severe mitochondrial dysfunction. Therefore, mitochondria-
targeted transportation of PSs via supramolecules has drawn
considerable research efforts (Peng et al., 2020). Among the
mitochondria-targeting molecules mentioned above, the pro-
apoptosis peptide (KLAKLAK)2 is the most utilized ligand for
mitochondria-targeted PSs delivery (Han et al., 2016b; Cheng H.
et al., 2019a). Plenty of evidence indicates that (KLAKLAK)2 not
only localizes therapeutics to mitochondria but also functions
as a bio-drug itself, which could destroy the mitochondrial
membrane and initiate apoptosis (Agemy et al., 2011). Zhang’s
group designed an effective drug self-delivery system PpIX-PEG-
(KLAKLAK)2 to conduct mitochondria-targeted PDT (Han K.
et al., 2015). Here, (KLAKLAK)2 acts both as the targeting
segment and therapeutic agent to synergistically enhance
PDT. Consequently, chemo/photodynamic synergistic therapy is
realized in this system.

According to their mechanisms of action, almost all of
the chemical drugs need to localize to specific organelles to
elicit their pharmacological activities, including DOX, paclitaxel
(PTX), camptothecin (CPT), cisplatin, and peptides. For this
reason, mitochondria localization would achieve an optimal
therapeutic efficiency and diminished side effects (Laws et al.,
2018; Zhang et al., 2019; Zhu et al., 2019). As an ideal
mitochondria-targeting cytotoxic drug, (KLAKLAK)2 has been
widely used for mitochondria-targeted chemotherapy (Chen
S. et al., 2019; Cong et al., 2019). In 2019, Wang’s group
developed an ROS-responsive polymer-peptide conjugate (PPC)
with (KLAKLAK)2 for tumor therapy (Cheng D. et al., 2019). The
comparatively high ROS concentration in mitochondria resulted
in the transformation of PPCs from nanoparticles to fibrous
nanoarchitectures. Consequently, the exposure of (KLAKLAK)2
to mitochondria lead to high mitochondria-targeted therapeutic
efficiency without the occurrence of MDR. Interestingly, the
specific delivery of drugs into mitochondria also affords a novel
strategy to relief MDR.

As one of the most essential organelles, the implementation
of non-drug-loaded peptide nanoassemblies for mitochondria-
targeted therapy has attracted increasing attention (Jeena et al.,
2017; Du et al., 2018; Li et al., 2018; Liu et al., 2018; He P. et al.,
2019). Given that the elimination of cancer cells was conducted
by the nanoassemblies themselves without using drugs, it
undoubtedly avoids MDR. In 2016, Xu’s group exploited the
rationally designed peptide precursors with TPP, which targeted
cancer cells and generated nanostructures in situ because of
enzyme-instructed self-assembly (EISA, Wang et al., 2016). The
cell uptake and TPP-mediated specific transportation of resulting
nanostructures to mitochondria triggered the mitochondrial
pathway of apoptosis without the occurrence of MDR. In another
study, Ryu’s team designed tripeptides by utilizing the cationic
TPP as a mitochondria-targeting segment, which was denoted as
Mito-FF (Jeena et al., 2019). Under the direction of TPP, Mito-
FFs preferably accumulated inside mitochondria and allowed
for self-assembly to activate apoptosis without the generation
of MDR.

Nucleus-Targeted Cancer Therapy
As the most essential subcellular compartment, the nucleus
functions in the process of gene expression and proliferation.
Given that the malignant proliferation of cells induced by
gene mutation is believed to be the major cause of cancer,
nucleus-targeted therapeutic supramolecular systems to hinder
cellular proliferation have been intensively developed (Pan et al.,
2018, see Figure 1). Up to now, various types of nuclear
localization signal (NLS) peptides have been popularly employed
for the specific conveyance of therapeutics to the nucleus for
precise cancer treatment, containing SV40T antigen, HIV-1 TAT
peptide, and adenoviral (Pan et al., 2018).

Nucleus-targeted gene therapy by peptide-based
supramolecules has long been used as one of the major
approaches for cancer treatment via the nucleus-targeted
transportation of therapeutic genes (Thapa and Sullivan, 2018;
Cheng Y. et al., 2019; Muhammad et al., 2019). With reference
to nucleus-targeted gene therapy, the major challenge is to
exploit the optimal nanocarriers that are able to endure various
intracellular obstacles and convey enough therapeutic genes
into the nucleus. In 2018, Zhang’s group generated a targeting
peptide-based nanovehicle by coupling CPP cationic non-Arg
(R9) with the tumor-targeting peptide cyclic (Arg-Gly-Asp-Phe-
Lys) c(RGDfK) via click chemistry. The resulting bioconjugates
could form nanocomplexes with microRNA (miRNA) and
transport therapeutic genes with high specificity and efficiency
(Xiao et al., 2018).

A large amount of marketed drugs are DNA-replication-
related toxins, including 10-hydroxycamptothecine (HCPT),
DOX, and cisplatin. In order to elicit their pharmacological
activities, these drugs should be efficiently delivered into the
nucleus (Han S. et al., 2015; Li et al., 2015). Considering that it is
extremely hard to convey negatively charged drugs to the nucleus,
Yang’s group developed a nucleus-localized dual drug delivery
system by the utilization of co-assembly of the positively charged
cisplatin and negatively charged drug-peptide conjugate, HCPT-
FFERGD (Cai et al., 2017). Using a tumor-targeted RGD peptide
moiety, the negatively charged HCPT was efficiently transported
to the nucleus to exert its activity. In another piece of work
for HCPT delivery, Zhou’s group constructed a multifunctional
micellar nanoplatform, namely PECL/DA-TAT, for TAT peptide-
mediated nucleus-localization of HCPT (Jing et al., 2018). As
a consequence, the treatment obtained satisfying therapeutic
efficiency both in vitro and in vivo.

PTT and PDT are both effective therapeutic treatments
for nucleus-targeted cancer therapy due to their unique
merits, including minimal drug resistance and excellent
spatial selectivity. The exploitation of novel peptide-
mediated supramolecular nanovehicles for nucleus-targeted
PSs delivery has drawn increasing attention (Han et al.,
2016a). The TAT peptide is a commonly used CPP for
nucleus localization. Given that nucleus-targeted PTT can
“burn” cancer cell nuclei more efficiently and afford higher
therapeutic efficiency compared to other organelle-targeted
PTTs, Wang’s group designed a conjugate TAT-IR780
modified with the TAT peptide (Wan et al., 2020). IR780
is a NIR fluorescence for both PTT and PDT. Upon laser
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irradiation, TAT-IR780 efficiently destroyed genes in nucleus
and induced apoptosis through both PTT and PDT. Speaking
of nucleus-targeted PDT, ROS, generated by photoexcitation
of nucleus-localized PS, could destroy nuclear DNA and
proteins efficiently to induce cell death. In 2019, Li’s team
developed a self-delivery chimeric peptide, denoted as C16-
K(PpIX)PKKKRKV-PEG8, for cell membrane and nucleus
synergetic dual targeted PDT (Cheng H. et al., 2019d), which
exhibited an improved therapeutic efficiency. The chimeric
peptide consists of a hydrophobic alkyl chain (C16) for cell
membrane targeting and an NLS peptide (PKKKRKV) for
nucleus targeting.

CONCLUSIONS AND OUTLOOKS

In this mini-review, we summarized recent advances in
the field of functional peptide-decorated supramolecules for
STCT, containing cell membrane-, mitochondria-, and nucleus-
targeted cancer therapy. In each section, various therapeutic
techniques currently used for STCT were introduced, including
PTT, PDT, gene therapy, chemotherapy, and non-drug-loaded
nanoassemblies. Compared with conventional targeted cancer
therapy, STCT shows higher selectivity, improved sensitivity,
lower dosage, and minimal adverse effects.

Due to the fact that the targeting mechanisms remain
unclear, the development of lysosome-, Golgi apparatus-, and
endoplasmic-reticulum (ER)-targeted nanoformulations is still
challenging. Consequently, the related approaches have not
received as much interest as cell-membrane-, nucleus-, and
mitochondria-targeted therapies, especially for peptide-based
supramolecular nanoformulations. Therefore, more research
efforts should be paid in this field in the future. We believe that
the discovery of new targets for lysosome, Golgi apparatus, and

ER will open a new paradigm for lysosome-, Golgi apparatus-

and ER-targeted therapy. STCT is still in an early stage of the
development process. Despite the advantages mentioned above,
there are still challenges that must be addressed for future
development: (a) there is a lack of therapeutic nanoplatforms to
visualize the process of STCT; (b) single therapeutic technique or
single-organelle-targeted therapy often results in an insufficient
therapy effect; (c) compared with cell membrane, mitochondrion,
and nucleus, fewer research efforts were focused on other
organelles. In view of these challenges, we propose that
further research should concentrate on the following directions:
(a) exploiting imaging-guided theranostic nanoplatforms for
STCT; (b) developing combination/synergistic nanoplatforms for
STCT; (c) concentrating more attention on the development
of lysosome-, Golgi apparatus-, and endoplasmic reticulum-
targeted cancer therapy. To conclude, we believe this mini review
will afford helpful knowledge and new points of view in the field
of functional peptide-decorated supramolecules for STCT. Under
the united endeavor of researchers, clinical translation could be
realized in the future.
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