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Abstract

Sex-biased infections are a recurrent observation in vertebrates. In many species, males

are more parasitized than females. Two potentially complementary mechanisms are often

suggested to explain this pattern: sexual differences in susceptibility mainly caused by the

effect of sex hormones on immunity and differential exposure to parasites. Exposure is

mostly a consequence of host behavioural traits, but vector-borne parasitic infections

involve another degree of complexity due to the active role of vectors in transmission.

Blood-sucking insects may make choices based on cues produced by hosts. Regarding

malaria, several studies highlighted a male-biased infection by Plasmodium sp in great tits

(Parus major). We hypothesize that the mosquito vector, Culex pipiens, might at least par-

tially cause this bias by being more attracted to male birds. Intrinsic variation associated to

bird sex would explain a preference of mosquitoes for males. To test this hypothesis, we

provide uninfected mosquitoes with a choice between uninfected male and female nestlings.

Mosquito choice is assessed by sex typing of the ingested blood. We did not observe any

preference for a given sex. This result does not support our prediction of a preference of

mosquitoes for male great tits during the nestling period. In conclusion, mosquitoes do not

seem to have an intrinsic preference for male nestlings. However, sexually divergent traits

(e.g. behaviour, odour, metabolic rate) present in adults may play a role in the attraction of

mosquitoes and should be investigated.

Introduction

Prevalence and intensity of parasitism in vertebrates, is often higher in males than females ([1–

6] but see [7]). Sex differences in susceptibility, development and exposure (reviewed in [8])

can explain sex-biased infection. Firstly, male-biased parasitism may be due to how parasites

perform in each sex. Sex hormones have different influences on the immune system. Both

androgens and oestrogens suppress cell-mediated immunity, but oestrogens can stimulate

humoral immunity [9]. In particular, some studies on birds show evidence for the
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immunosuppressive role of testosterone ([10–12] but see [13, 14]). From this perspective, we

might expect parasites to perform better within a male host.

Secondly, sex differences in behaviours linked to reproduction [15, 16], foraging [17] or

social status [18, 19] may also induce a sex-biased exposition to parasite. For example, a reduc-

tion of grooming activities at the expense of time spent for territorial defences during the

breeding season may imply that males harbour higher ectoparasite load than females as

showed in impalas infected by ticks [20]. In contrast, females might be more exposed than

males if they aggregated in nursery colonies, as shown for example in different bat species [7].

In vector-borne parasite diseases, vectors add another level of complexity. For instance,

blood-feeding invertebrates such as mosquitoes actively seek for a blood meal and may differ-

entially encounter male or female vertebrate hosts. In that case, sex-biased parasitism will

result from specific host/vector interaction [21, 22]. In addition, mosquitoes mostly use olfac-

tion during host-seeking and volatile organic compounds (VOC) and CO2 are crucial cues for

them [23–25]. Because males are often bigger than females in both mammals and birds, they

produce more CO2 [26–28] and may therefore be more easily detected by vectors. In addition,

males’ odours are known to differ from females’ [29–32]. Both factors may result into a higher

attractiveness of males to mosquitoes. Wild caught mosquitoes were found to feed more on

male birds (64.0%) than females (36.0%, of 308 samples), consistently across mosquito species

[33].

Other factors may influence mosquitoes’ host-choice, as for example relative humidity, par-

asitic infection, defensive behaviours or body heat (reviewed in [34]). In particular, mosquitoes

are attracted to heat [35–38] or heated baits [39, 40]. However, this cue seems to act on mos-

quito behaviour at close proximity to the host mainly [41]. Former studies on different bird

species found that females have a slightly higher temperature than males in most cases [42, 43],

but it is not known whether it can influence mosquito choices.

Plasmodium is a mosquito-borne haemosporidian parasite that infects many different ver-

tebrate host species. A male biased infection was observed in many host / parasite pairs [16,

44–48]. Differential exposure to mosquito bites between sexes may thus explain the observed

sex-biased infection.

In this study, we investigated the role of Culex pipiens, the natural mosquito vector of Plas-
modium in great tits in sex-biased malaria infection. Indeed, male-biased infection in great tits

was observed in several studies [16, 49, 50]. A study of 13 years on two natural populations of

P. major also found a sex effect on Plasmodium infection prevalence, with males being more

infected than females (S1 Table). In the present study, we tested whether juvenile male birds

were more attractive to mosquitoes by placing 18 pairs composed of a male and a female chick

coming from a same nest in a 1-meter-long box together with 25 mosquitoes for one hour and

by identifying the sex of the host of each mosquito by PCR.

Materials and methods

Ethical statement

This experiment was approved by the Ethical Committee of the Vaud Canton veterinary

authorities, licence number 1730.4. Birds were caught and ringed under licence with the per-

mit number F044-0799 of the Swiss Federal Office for the Environment.

Experimental system

Great tit collection and rearing. A total of 38 Great tits (P. major) were used during this

study. Hatching date of new-born nestlings was determined by monitoring nest boxes in three

different study sites: Dorigny (46˚31’26”N; 6˚34’48”E; alt. 409 m), Monod (46˚34’27”N; 6˚
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23’32”E; alt. 686 m) and La Praz (46˚40’12”N; 6˚25’06”E, 1032m) from March to June. Three

to five days after hatching (day 0), the nests were microwaved to eliminate all ectoparasites.

Nestlings aged between six and nine days were blood sampled to determine their sex and infec-

tion status and ringed with an individual metallic ring. Five to 10μL of blood were sampled

from the medial metatarsal vein and stored in PBS at 4˚C until DNA extraction and molecular

sexing (see Molecular analyses). At day 14, nestlings were weighted (electronic scales ± 0.1 g),

tarsus and wing length were measured using an electronic metal calliper (± 0.01mm).

Mosquito rearing. We used a Culex pipiens lab colony, issued from egg rafts sampled in

September 2016 in the Dorigny forest. Mosquitoes were reared in an insectary at 25˚C ± 1˚C,

70 ± 5% RH and with 12L:12D photoperiod. On the hatching day, larvae were seeded into plas-

tic trays containing 500 mL of mineral water (Fonte Tavina Naturale, Italia) at a constant den-

sity (130 ± 5 individuals per tray). Larvae were fed ad libitum every two days until pupation

with a mixture composed by TetraMin Junior fish pellets, Schweizer Classic rabbit pellets and

JBL Novo Malawi fish flakes (1:1:1 ratio). Tray water was changed every 3 days. On pupation

day, plastic trays provided with 10% sugar solution were placed in emergence cages. Experi-

mentally naïve female were deprived of sugar solution 20 h prior to the experiment, in order to

maximize the biting rate. Water was provided from 20 h to 6 h before the experiment to pre-

vent dehydration.

Experimental procedure. Host choice behaviour experiments were performed by simul-

taneously presenting an average of 25 (range: 20–30) female mosquitoes to a 14 days old male

and female great tit. To reduce individual and family effects all couples of nestlings were

formed by a male and a female coming from the same nest and were of similar weight. We

chose to perform this experiment with 14-day-old nestlings (as in [51]) because their tarsus

length have reached their final size at this age. If they are disturbed when they are older (more

than 16 days old), this may provoke early fledging. We also estimated that at this age, they had

not fully acquired anti-ectoparasite behaviours, so we would not need to consider this parame-

ter. Moreover, when 14 days old, haemosporidian parasites were never detected in their blood.

Because infection status may influence mosquito biting choice [52, 53], performing the experi-

ment at this stage allows avoiding this confounding factor.

Birds’ cloacal body temperature were taken 30 minutes before the assay then each bird was

placed in the cup at one of the extremities of a rectangular, transparent Plexiglas box (100cm x

20cm x 20cm, 0.6 cm thickness, see S1 Fig). An ambient air flow was created by an axial flow

propeller pump, and ambient air was pumped inside the box from the two sides. Incoming air-

flow (20 ± 1 cm/s) was controlled on both sides using a hot-wire anemometer. Mosquitoes

were released in the middle of the box in a section closed by two mosquito-net screens and

were allowed to settle for 5min before the start of the experiment. Then the screens were

removed and the mosquitoes were given the opportunity to select and bite one of the birds.

The experiments lasted for one hour and fed mosquitoes were then collected and stored at

-80˚C. After each trial, all the material was cleaned using 96% ethanol and then air dried.

Molecular analyses

For the mosquito choice experiments, DNA was extracted from the blood meal of mosquitoes

using a Qiagen BioSprint 96 workstation following the tissue protocol for extraction (Qiagen,

Hilden, Germany). A PCR was used to assess sex of great tit nestlings at the beginning of the

study and to assess the host upon which mosquitoes fed during the choice experiment. We

used three primers targeting CHD1, a gene located on birds’ sex chromosome that contains an

intron with a constant size difference between W and Z chromosomes (2987 F, 3007 F, 3112 R,

[54]). Sex was determined by examination of the agarose gel (2%) after electrophoresis, where
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migrated samples of female DNA produced two bands, while males only one [54]. A nested

PCR [55] followed by an electrophoresis on agarose gel (2%) was performed to detect haemos-

poridian (Plasmodium, Haemoproteus and Leucocytozoon) infection status in birds, in order to

ensure that we were testing only uninfected nestlings.

Statistical analyses

All analyses were performed in R 3.3.2. The effect of sex on bird attractiveness was tested using

a repeated G-test of goodness of fit [53, 56]. The observed preference for male great tits (pro-

portion of mosquitoes fed on the male relative to the total number of blood-fed mosquitoes)

was tested against the predicted no-choice value of p = 0.5. We also performed the repeated G-

test of goodness of fit on subsets of the data, separating the trials according to the site of origin

of the birds, as well as on the total data, pooling the trials per site, in order to check whether

the proportion of mosquitoes biting the male bird would differ according to the origin of the

pair of birds. To assess whether other variables had an effect on bird attractiveness, the propor-

tion of mosquitoes fed on male birds was analysed using Generalized Linear Mixed Models

(GLMM) with a binomial error distribution [57]. Models were fitted by specifying the differ-

ences in body mass and temperature as fixed effects. The date of the experiment and the origin

(site) were included as random effects. Model selection was performed by stepwise elimination

of variables that were not significant (p> 0.05) by Likelihood Ratio Tests (LRT), using a χ2 test

to estimate the significance (“lme4” package, [57]). In previous studies with Cx pipiens, the

percentage of mosquitoes fed with a mix of blood (mosquitoes fed on more than one bird)

reached up to 10% of fed mosquitoes in trials lasting 12 hours [58] and 3–6.2% in trials lasted

two hours [53, 56]. In our experiment mixed blood meal would overlap in the agarose gel and

appear as a female blood meal. Therefore, although our trials lasting only 1 hour, we ran a con-

servative parallel analysis on data where 10% of mosquitoes fed on females were excluded, to

simulate the exclusion of potential mixed blood meals.

Results

None of the tested nestlings were infected with haemosporidian parasite. Eighteen trials were

performed and the blood meal origin of 387 mosquitoes was identified. The mean (± SE) num-

ber of mosquitoes that fed per trial was 21.5 ± 1.68 (81% ± 0.04 SE, range: 35%-100%). The

outcome of each trial is reported in (S2 Table).

A mean of 47.9% ± 0.03 SE of fed mosquitoes took blood from male nestlings (range:

31.8%-69%). Nestling sex did not affect the mosquito feeding preference, as the replicated G-

test of goodness of fit did not show statistically significant departure from the proportion in

the absence of choice (total-G = 27.64, 18df, p = 0.068; pooled-G = 1.14, 1df, p = 0.286, hetero-

geneity-G = 26.50, 17df, p = 0.066). Similar results were obtained in statistical analyses with

data where 10% of mosquitoes fed on females were excluded (total-G = 25.116, 18df, p = 0.092;

pooled-G = 0.001, 1df, p = 0.975, heterogeneity-G = 25.115, 17df, p = 0.0922). When separating

the data according to the site of origin of the birds, there was also no significant departure

from the no-choice proportion for any of the site, and there was no significant difference in

the proportion of mosquitoes biting the male bird when comparing the sites of origin of the

birds (S3 Table).

The difference in bird temperature significantly influenced mosquitoes’ choice (χ2 = 6.969,

p = 0.008). Individuals with lower temperature were preferentially chosen independently of

their sex (Fig 1). There was no effect of body weight (χ2 = 1.166, p = 0.280) on mosquitoes’

choice. Results were similar when 10% of mosquitoes fed on females were excluded to correct
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for potential bias due to mixed blood meals (body temperature: χ2 = 7.864, p = 0.005, body

weight χ2 = 1.110, p = 0.292).

Discussion

In this study, we tested whether mosquitoes bite preferentially juvenile male great tits. We

found no preference for one of the sexes in great tit nestlings. These results suggest that the

sex-biased infection observed in natural great tits populations [S1 Table] was not caused by an

intrinsic preference of mosquitoes for juvenile male birds.

There is evidence that vertebrate hosts vary in their attractiveness to mosquitoes [59] and

that host-vector contact is far from random [60]. Indeed, the composition of the host’s odour

profile and its CO2 emission intensity may influence mosquitoes’ choice for specific host pro-

file [61, 62]. Traits such as odour and metabolic rates are predicted to differ more between

sexes in sexually mature birds than in nestlings. In zebra finches, no difference in metabolic

rates between male and female nestlings was reported [63], but adult females had a higher met-

abolic rate than males [64, 65]. A difference was also observed in adult great tits [28]. Never-

theless, in this species the adult males have higher metabolic rate than females [28]. Regarding

odour, nestlings of both sexes live together in a closed environment and therefore their odours

probably mix. In addition, the uropygial gland, involved in volatile organic compounds emis-

sion [31, 66, 67], is not yet fully functional in nestlings [68, 69]. Conversely, in adult birds, sev-

eral studies reported a difference in odour profile between sexes [31, 70–73]. The absence of a

sex-based preference in mosquitoes in our experiment might therefore be due to the use of

nestlings which are not sexually mature and probably do not differ strongly in their odour

Fig 1. Proportion of mosquitoes biting the male in function of the difference in temperature. Each dot represents a

trial in which a pair composed two nestlings (brother and sister) was exposed to mosquito bites. The x-axis represents

the male nestling’s temperature minus the female nestling’s temperature. The y-axis represents the proportion of

mosquitoes that have bitten the male bird.

https://doi.org/10.1371/journal.pone.0216360.g001
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profile. Using adult great tits to test the effect of Plasmodium infection on attraction of Cx
pipiens, [52] found a marginally higher attractiveness of females.

A recent study showed that house sparrows with lower metabolic rate suffered more mos-

quito bites than individuals with higher metabolic rate [58]. This result is surprising because a

higher metabolic rate is expected to be associated with higher CO2 emission and therefore

should induce a higher attractiveness [58, 74]. However, a higher metabolic rate might also

result from a high activity level [58, 75]. At the time of biting, mosquitoes tend to avoid indi-

viduals that are more active [58, 76]. Indeed, the defensive behaviour displayed by birds may

reduce the ability of mosquitoes to take a blood meal. Interestingly we also observed that birds

with a lower body temperature were preferentially chosen regardless of their sex. Although

mosquitoes are attracted to heat when host seeking [35, 36, 38], to our knowledge, there was

previously no evidence that mosquitoes choose the warmer or colder host, when they have the

choice. The negative association between mosquito feeding preference and bird body tempera-

ture could be explained by the fact that mosquitoes avoid active individuals [58, 76], which

may have a higher body temperature due to their activity [77, 78].

Our study leaves the question of why a male-biased infection exists in P. major unanswered.

Several life-history traits of birds could be involved. Firstly, male great tits may be more

infected due to a higher exposure to mosquitoes. For instance, during incubation and brood-

ing period, female great tits sleep in the nest, built in cavities that may offer better protection

from mosquitoes [79]. Thus, males should be unavoidably more exposed to mosquitoes, which

reach a peak of abundance during late spring and early summer [80]. Secondly, susceptibility

to Plasmodium infection may differ between the two sexes. Males may be more susceptible to

parasite infection than females because sex hormones may reduce male’s immunocompetence

[5, 81, 82], but also because sex hormones affect disease resistance genes and behaviours [82,

83]. Finally, mosquitoes may prefer males only when being vectors of avian malaria parasite.

Some parasites induce remarkable and complex behavioural modifications in their hosts [84].

Lefèvre & Thomas (2008) [85] suggested that parasites may manipulate several phenotypic

traits of their vectors to attain a higher transmission probability. Amongst many altered traits,

such as biting rate [86], parasites may influence how infected vectors select their vertebrate

hosts [53, 87]. According to the ‘‘qualitative manipulation” hypothesis [88], which states that

in infected vectors host choice should match the preference of the parasite, it is suggested that

the manipulation could occur “at the inter- and/or intra- specific level”, with hosts suitable for

the parasite being preferentially chosen [85]. Assuming that males have a weaker immune sys-

tem than females, parasites should benefit when transmitted to males. Thus, a manipulation of

Cx pipiens by Plasmodium spp. may have evolved and be partly responsible for the sex differ-

ence in infection found for P. major. The most efficient way to test this prediction would be to

perform choice experiments with infected vectors.

Conclusion

We found no sex-biased biting preference of mosquitoes in great tit nestlings. We hypothesize

that this is due to the nestlings, as being sexually immature, having undifferentiated body

odours. Thus, our results are not in line with the hypothesis that the male-biased Plasmodium
infection observed in P. major is caused by an intrinsic preference of Cx pipiens mosquitoes

for male great tits at this stage of development. A more complex interaction between host, vec-

tor and parasite might be a more plausible explanation for the difference in infection found in

nature. In particular, we suggest the development of a study that tests adult host preference of

uninfected but also infected mosquitoes.
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Supporting information

S1 Fig. Schema of the experimental setup. The schema represents the setup in which the

host-choice trials were performed.

(TIF)

S1 Table. Male-biased Plasmodium infection in Swiss great tits. Results of likelihood ratio

test performed on generalized linear mixed model fitted using Plasmodium infection status as

a response variable (binomial error distribution; infected: 1, uninfected:0), sex, age, scaled

mass index (MI) and site as explanatory variables and year of sampling as fixed factor. The

dataset is the one presented in [51].

(XLSX)

S2 Table. Data on host-choice experiment. Each line of the table corresponds to a trial in

which a male and a female nestlings coming from the same nest were exposed to mosquito

bites during 1 hour.

(XLSX)

S3 Table. Results of G-tests of goodness of fit for each site separately, and for all trials per

site pooled. Dorigny, Monod and La Praz are the three sites.

(XLSX)
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