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Abstract

Anorexia nervosa (AN) is a devastating disorder with evidence of underexplored herita-

bility. Twin and family studies estimate heritability (h2) to be 57%–64%, and genome-

wide association studies (GWAS) reveal significant genetic correlations with psychiatric

and anthropometric traits and a total of nine genome-wide significant loci. Whether

significantly associated single nucleotide polymorphisms identified by GWAS are causal

or tag true causal variants, remains to be elucidated. We propose a novel method for

bridging this knowledge gap by fine-mapping short structural variants (SSVs) in and

around GWAS-identified loci. SSV fine-mapping of loci associated with complex disor-

ders such as schizophrenia, amyotrophic lateral sclerosis, and Alzheimer's disease has

uncovered genetic risk markers, phenotypic variability between patients, new patholog-

ical mechanisms, and potential therapeutic targets. We analyze previous investigations'

methods and propose utilizing an evaluation algorithm to prioritize 10 SSVs for each of

the top two AN GWAS-identified loci followed by Sanger sequencing and fragment

analysis via capillary electrophoresis to characterize these SSVs for case/control associ-

ation studies. Success of previous SSV analyses in complex disorders and effective utili-

zation of similar methodologies supports our proposed method. Furthermore, the

structural and spatial properties of the 10 SSVs identified for each of the top two AN

GWAS-associated loci, cell adhesion molecule 1 (CADM1) and NCK interacting protein

with SH3 domain (NCKIPSD), are similar to previous studies. We propose SSV fine-

mapping of AN-associated loci will identify causal genetic architecture. Deepening

understandings of AN may lead to novel therapeutic targets and subsequently increase

quality-of-life for individuals living with the illness.

Public Significance Statement: Anorexia nervosa is a severe and complex illness, aris-

ing from a combination of environmental and genetic factors. Recent studies esti-

mate the contribution of genetic variability; however, the specific DNA sequences

and how they contribute remain unknown. We present a novel approach, arguing

that the genetic variant class, short structural variants, could answer this knowledge
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gap and allow development of biologically targeted therapeutics, improving quality-

of-life and patient outcomes for affected individuals.
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1 | INTRODUCTION

Anorexia nervosa (AN) is a complex metabo-psychiatric disorder, and

novel approaches are required to further elucidate its etiology. AN

mortality is six times higher than the general population (Wonderlich

et al., 2020). Standard treatment for adult AN patients combines

renourishment, psychotherapy, and medications targeting related

comorbidities (Kaye & Bulik, 2021). No biologically targeted treat-

ments exist, and treatment efficacy is low (Kaye & Bulik, 2021). Risk

factors for AN have been identified; however, mechanisms underlying

heterogeneity in clinical presentation (e.g., restricting vs. binge eating/

purging) remain to be clarified. Modern genetics uses several methods

to estimate the contribution of genetics to a trait (i.e., heritability).

Heritability estimates are derived from family h2family

� �
and twin

h2twin

� �
studies, which provide an estimate of the total contribution of

genetics to the trait, and single nucleotide polymorphism (SNP) herita-

bility h2SNP

� �
estimates, which provide an estimation of the specific

contribution of common single nucleotide variations to the trait. Fam-

ily and twin studies have yielded h2family and h2twin estimates of �64%

and �57% for AN, respectively, indicating a notable genetic contribu-

tion to the disorder. Two separate genome-wide association studies

(GWAS) have identified a total of nine loci significantly associated

with AN. The largest GWAS reported a h2SNP of 11%–17% and identi-

fied eight loci associated with AN, with cellular adhesion molecule

1 (CADM1) and NCK interacting protein with SH3 domain (NCKIPSD)

as the nearest genes to the SNPs in the top two hits (Watson

et al., 2019). We address the considerable gap between h2family=h
2
twin

estimates and h2SNP(Manolio et al., 2009). The most likely explanation

is that the variants that account for the heritability gap may be more

informative than SNPs and are unable to be detected by GWAS

(Wainschtein et al., 2021). Short structural variants (SSVs) are

sequences of DNA 2–50 base pairs in length and are multiallelic,

meaning that more than two variations exist within the population

(Roses et al., 2016). SSVs have individual and synergistic effects on

molecular biological functioning, including altering transcription rates

of genes and affecting protein folding (Mis et al., 2017). Fine-mapping

SSVs in and around GWAS-identified loci is a potential method of

bridging this heritabilitfy gap. GWAS-identified loci are viable candi-

dates for identifying SSVs because informative SSVs are often located

in regions surrounding the lead SNPs identified in GWAS (Gymrek

et al., 2016). Accordingly, using GWAS data to select candidate SSVs

is a time- and cost-effective method, particularly for initial investiga-

tions; future investigations could utilize whole genome sequencing

data to identify an increased number of SSVs in order to uncover

greater heritability. The informative power of SSVs has been demon-

strated in complex disorders including amyotrophic lateral sclerosis

(ALS), late onset Alzheimer's disease and schizophrenia (Fotsing

et al., 2019; Pytte, Anderton, et al., 2020; Pytte, Flynn, et al., 2020;

Roses et al., 2016; Theunissen et al., 2021). Exploring SSVs is a viable

approach to further explicate genetic contributions to AN.

2 | GWAS AS A STARTING POINT

AN GWAS provide a starting point to initiate investigating SSVs in

AN. GWAS examine evidence for association between a trait and

common SNPs across the genome. Association with a given SNP indi-

cates an association exists within the surrounding genomic region and

does not suggest the SNP is a coding variant (Tam et al., 2019). GWAS

are powerful tools for interrogating heritability in complex traits and

are followed by downstream molecular interrogations. Two GWAS

have identified a total of nine genetic loci associated with AN

(Duncan et al., 2017; Watson et al., 2019). The first GWAS

(Ncases = 3495; Ncontrols = 10,982) revealed a single genome-wide sig-

nificant locus on chromosome 12, associated with lead SNP

rs4622308 (Duncan et al., 2017). The locus had been previously asso-

ciated with rheumatoid arthritis and type 1 diabetes, with

autoimmune-associated loci reported in surrounding regions (Barrett

et al., 2009; Okada et al., 2014). Increasing sample sizes yielded a sec-

ond GWAS (Ncases = 16,992; Ncontrols = 55,525) that revealed eight

additional significant loci (Table 1); however, the initial locus identified

by Duncan et al. (2017) was not replicated (Watson et al., 2019). The

lead SNPs for the first five genetic loci were intronic (located in non-

coding regions of a gene) and the lead SNPs for the last three genetic

loci were intergenic (located in regions of the genome between genes;

Table 1). No lead SNPs were located in exonic regions, the coding

regions of the gene. Linkage disequilibrium analyses, the analysis of

nonrandom co-occurrence, revealed significant positive genetic corre-

lations between AN and obsessive-compulsive disorder, anxiety disor-

ders, schizophrenia, and major depressive disorder (Watson

et al., 2019), reinforcing the psychiatric nature of AN (Duncan

et al., 2017; Hübel et al., 2021). The study also reaffirmed genetic pre-

disposition to an AN-prone metabolic profile (Duncan et al., 2017;

Watson et al., 2019). Consequently, AN is hypothesized to include

genetic predispositions to both psychiatric and metabolic traits (Hübel

et al., 2021). The GWAS findings have identified likely informative

regions within the genome containing causal genetic architecture

(Table 1). Characterizing SSVs is a potential method to extend GWAS
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findings to further interrogate genetic factors contributing to AN

(Chiba-Falek, 2017; Roses et al., 2016; van Rheenen et al., 2016).

3 | EXTENDING GWAS HITS BY
STUDYING SSVs

SSVs are multiallelic and include a variety of sizes and sequence

arrangements. We focus on short tandem repeats, which are

sequence motifs of 1–6 nucleotides repeated numerous times, for

example a dinucleotide repeat may contain a repeat of thymine

(T) and adenine (A), such as TATATA, while a penta-nucleotide repeat

might comprise of a repeat of a sequence of T, A, guanine (G) and

cytosine (C), such as TAGGCTAGGCTAGGC (Roses et al., 2016). Short

tandem repeats are highly mutable in nature and accumulating evi-

dence suggests that this class is the most variable of SSVs and conse-

quently the most likely to be functionally relevant (Gymrek

et al., 2016). SSVs can be located within a gene but are also frequently

found within noncoding or regulatory regions (Gharesouran

et al., 2021; Theunissen et al., 2020). SSVs can contribute to more bio-

logical variability than SNPs as their multiallelic nature engenders

them with a greater likelihood of producing diverse results (Chaisson

et al., 2019; Gymrek et al., 2016; Roses et al., 2016). Ribonucleic acid

(RNA) expression studies demonstrate that the functional impact of

SSVs is significantly greater than SNPs, even though SSVs are less fre-

quent (Jakubosky, D'Antonio, et al., 2020; Jakubosky, Smith,

et al., 2020). Growing evidence for informative power of SSVs moti-

vates exploration of their contribution to AN.

SSV functional mechanisms include influencing gene expression,

regulation of gene expression, and RNA splicing. Such influences may

modify disorder presentation, indicate risk, and influence therapeutic

response among patients (Gharesouran et al., 2021; Mahmoud

et al., 2019; Pytte, Anderton, et al., 2020; Pytte, Flynn, et al., 2020;

Roses et al., 2016; Theunissen et al., 2020). Technically, SSVs located

within promoter regions can regulate gene expression by modifying

histones, which alters accessibility of the region to transcriptional

machinery, and influences promoter binding specificity (Fotsing

et al., 2019; Gharesouran et al., 2021). SSVs can also alter transcrip-

tion and splicing outside of the promoter region (Gharesouran

et al., 2021). The variation of SSV length within intronic regions can

alter secondary RNA structure, affecting the availability and accessibil-

ity of the region to splicing factor binding, altering transcription effi-

ciency. Additionally, SSV polymorphisms can alter the binding sites of

intronic and exonic splicing enhancers or silencers to favor one or the

other, thus modifying splicing to alter the final messenger RNA

(mRNA) transcript (Gymrek et al., 2016). Downstream effects of this

have been observed by SSVs such as the G4C2 repeat expansion in

chromosome 9 open reading frame 72-Smith–Magenis chromosome

region 8 complex subunit (C9orf72-SMCR8 complex subunit;C9orf72)

and CAG trinucleotide repeat expansion in Ataxin 2 (ATXN2) for ALS

(Mis et al., 2017; Van Damme et al., 2011). Both SSVs alter the native

structure of the respective protein product leading to aberrant bind-

ing, producing truncated protein products, or toxic protein aggregates,

which has downstream effects on neurobiological functions that con-

tribute to disease pathogenesis (Mis et al., 2017; Van Damme

et al., 2011). A second example of the informative power of SSVs in

ALS is in the CA dinucleotide Stathmin-2 (STMN2) intronic repeat

(Theunissen et al., 2021). Here, the presence of two long alleles in a

cohort of sporadic ALS (Ncases = 321) was associated with increased

disease risk, earlier age of onset, and decreased survival duration for

TABLE 1 The eight newly identified genetic loci associated with anorexia nervosa

CHR Lead SNP Nearest gene Functions pValue

3 rs9821797 NCKIPSD Growth and cellular signaling in dendrites and sarcomeres; stress fiber formation (Cho

et al., 2013).

6.99 � 10�15

11 rs6589488 CADM1 Cellular adhesion; neural network formation; synaptic formation and number (Jin

et al., 2019).

6.31 � 10�11

2 rs2287348 ASB3and ERLEC1 ASB3: Phosphorylation and ubiquitination (Chung et al., 2005).

ERLEC1: N-glycan binding (Cruciat et al., 2006).

5.62 � 10�9

10 rs2008387 MGMT Alkylating agent removal (Yu et al., 2020). 1.73 � 10�8

3 rs9874207 FOXP1 Transcription factor (Siper et al., 2017). 2.05 � 10�8

1 rs10747478 PTBP2 RNA splicing in neuronal cell maturation (Romanelli et al., 2013). 3.13 � 10�8

5 rs370838138 CDH10 Sodium dependent intercellular adhesion (Kools et al., 1999). 3.17 � 10�8

3 rs13100344 NSUN3 Catlysation of 5-formylcytadine at position 34 of methionine transfer RNA (Nakano

et al., 2016)

4.12 � 10�8

Note: Eight genetic loci were identified in the 2019 ANGI GWA by gene proximity to each lead SNP. Lead SNP was determined as the most strongly

associated. p-Value was considered significant (after Bonferroni adjustment) at ≤.05. The major functions for each of the nearest genes to the lead SNP

have been described in column 4.

Abbreviations: ASB3, ankyrin repeat and SOCS box containing 3; CADM1, cell adhesion molecule 1; CDH10, cadherin 10; CHR, chromosome; ERLEC1,

endoplasmic reticulum lectin 1; FOXP1, forkhead box P1; MGMT, O-6-methylguanine-DNA methyltransferase; NCKIPSD, NCK interacting protein with SH3

domain; NSUN3, NOP2/Sun RNA methyltransferase 3; PTBP2, polypyrimidine tract binding protein 2; RNA, ribonucleic acid; rs, reference SNP accession

number; SNP, single nucleotide polymorphism.

Source: Adapted from “Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa” by Watson

et al., 2019, Nature Genetics, 5(8), pp. 1207–1214 (doi: 10.1038/s41588-019-0439-2).
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cases of bulbar onset, and disease severity compared with controls

(Ncontrols = 332; Theunissen et al., 2021). In another sporadic ALS

cohort (Ncases = 67), the presence of two long alleles was associated

with lower ALS functional rating scale scores and revealed variation in

expression levels of Stathmin-2 mRNA between sporadic ALS cases

and control laser-captured spinal motor neurons based on the CA

genotype (Theunissen et al., 2021). With such effects on gene expres-

sion and regulation, and the ability to act as genetic markers,

uncharacterized SSVs potentially possess considerable power in

reducing the heritability gap in AN and may further our understanding

of AN etiology, mechanisms, and heterogeneity.

4 | SSVs ELUCIDATING UNDERLYING
GENETIC MECHANISMS OF AN

Fine-mapping poorly characterized regions in and around AN GWAS-

associated loci are likely to elucidate AN heritability, risk factors, and

novel pathogenic mechanisms. We utilized an SSV bioinformatics

algorithm, “SSV evaluation system” (Saul et al., 2016) to prioritize can-

didate SSVs in AN-associated genetic loci NCKIPSD and CADM1 for

an initial genetic investigation (Table 2). These loci were prioritized

based on association strength reported in the latest AN GWAS

(Table 1) and were considered valid for investigation. Both genes have

functions that could be biologically relevant to the pathological mech-

anisms of AN. The NCKIPSD protein possesses several functions

across numerous tissues, centered on its signal transduction abilities.

Within the context of its role in the nervous system, its function

appears to be related to the formation of dendritic spines and modula-

tion of neuronal synaptic activity (Cho et al., 2013). CADM1 has many

functions within the human nervous system, with notable roles in

neuronal structure and activity, synaptic formation and number, and

neuro-immune cross talk (Jin et al., 2019; Magadmi et al., 2019).

The SSV evaluation algorithm enters results from GWAS into a

customizable workflow to rank SSVs that are likely to have significant

biological effect (Saul et al., 2016). The ranking reduces search time

TABLE 2 Initial short structural
variants prioritized by the short structural
variant evaluation algorithm for future
characterization and investigation in
anorexia nervosa case/control studies

Gene rs Number Symbol Gene feature

CADM1 rs11358670 28T Intronic variant

CADM1 rs58589028 29T Intronic variant

CADM1 rs61694033 25A Intronic variant

CADM1 rs72085573 20T 50 Intergenic region

CADM1 rs140815983 15A 30 Intergenic region

CADM1 rs147798460 32T 30 Intergenic region

CADM1 rs148209064 33A Intronic variant

CADM1 rs386374979 29T 30 UTR downstream contiguous variant

CADM1 rs747352768 11TGG Exonic variant (Coding exon 8)

CADM1 rs991408884 33T 30 UTR variant

NCKIPSD rs71074264 24T Intronic variant (NCKIPSD and LINC02585)

NCKIPSD rs71627345 21A Intronic variant (NCKIPSD and LINC02585)

NCKIPSD rs375474983 5ACAA Intronic variant

NCKIPSD rs377051084 9AGGG Intronic variant

NCKIPSD rs545029045 20AC Intronic variant

NCKIPSD rs757842104 31T Downstream variant IP6K2

NCKIPSD rs34837885 8AAAT Intronic variant IP6K2; upstream variant NCKIPSD

NCKIPSD rs35746542 24T Intronic variant IP6K2; upstream variant NCKIPSD

NCKIPSD rs67509214 28A Intronic variant IP6K2; upstream variant NCKIPSD

NCKIPSD rs71074266 22A Intronic variant

Note: The 20 SSVs prioritized by the SSV evaluation algorithm (designed by Saul et al., 2016) as

candidates for further investigation to elucidate potential roles in AN risk. Ten SSVs have been prioritized

for each genetic candidate loci, NCKIPSD, and CADM1. The column titled “Gene” refers to which

candidate loci the SSV was reported for. The column labeled “rs Number” refers to the unique identifier

supplied by the current human reference genome for that variant. The column titled “Symbol” refers to
the most frequently occurring variation of that SSV according to the Allele Frequency Aggregator Project.

The final column, titled “Gene Feature,” refers to the functional property of the region of the genome in

which SSV is situated. The symbol, rs number and gene feature listed here are as reported in the current

human reference genome GRCh38.p13.

Abbreviations: A, adenine; C, cytosine; CADM1, cell adhesion molecule 1; G, guanine; IP6K2, inositol

hexakisophosphate kinase 2; LINC02585, long intergenic non-protein coding RNA 02585; NCKIPSD,

NCK interacting protein with SH3 domain; rs, reference SNP accession number; T, thymine; UTR,

untranslated region.
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for causal SSVs, enabling efficient prioritization of potential trait modi-

fying SSVs in complex disorders (Saul et al., 2016). Implicated SSVs

are prioritized and further interrogated via molecular biology tech-

niques in case/control association studies (Saul et al., 2016). SSV poly-

morphisms are initially identified via Sanger sequencing and

quantified via fragment analysis with end-labeled fluorescent primers

in small control cohorts. Sanger sequencing allows sequence visualiza-

tion at a single base pair resolution—an effective method for initially

determining polymorphisms of an SSV. Several characteristics make

Sanger sequencing less suited to genotyping large cohorts as it is par-

ticularly prone to errors when sequencing repetitive stretches of iden-

tical nucleic acids, such as SSVs, and can be time consuming.

Fragment analysis provides an empirical measure of the total size of

the genomic region of interest in base pairs, thus catering for repeats

of any length with high accuracy and can be performed in a time effi-

cient and high-throughput manner, rendering it suitable for

genotyping large cohorts for confirmed SSV polymorphisms. This

approach has been employed effectively in multiple studies, such as

Theunissen et al., (2021), which identified and characterized polymor-

phisms for the CA dinucleotide repeat in the STMN2 gene prior to

performing the association studies between the SSV and ALS, pre-

senting it as an exciting future avenue in AN genetics research (Pytte,

Anderton, et al., 2020; Pytte, Flynn, et al., 2020; Theunissen

et al., 2021). The SSVs we select for the NCKIPSD and CADM1 genetic

loci are predominantly noncoding intronic or intergenic variants, as

functionally relevant SSVs occur more frequently in noncoding

regions of the genome (Table 2; Fotsing et al., 2019). The variant

rs747352768 is the only SSV, between both target loci, which falls in

a coding exon region (Table 2). The outlined potential of these SSVs

to have impact on the CADM1 and NCKIPSD genetic loci that are

potentially functionally relevant to AN pathology makes this a valid

direction of investigation.

5 | CONCLUSION AND FUTURE
DIRECTIONS

AN is severe and potentially fatal with an underexplored heteroge-

neous etiology. No medications exist that target the underlying biol-

ogy of AN (Kaye & Bulik, 2021). Outcomes could be improved with

increasing understanding of pathogenic mechanisms responsible for

the development of AN (Kaye & Bulik, 2021). GWAS have been

reported and larger studies are underway to expand upon the GWAS

findings and deepen understandings of the heritability of eating disor-

ders more broadly, including bulimia nervosa and binge-eating disor-

der (Bulik et al., 2021). Accumulating evidence indicates that SSVs

have diverse functional effects on genotypic variability (Fotsing

et al., 2019; Pytte, Anderton, et al., 2020; Pytte, Flynn, et al., 2020;

Theunissen et al., 2021). Successful SSV mapping has the potential to

extend genomic discovery in AN, unveil undetected heritability, eluci-

date novel pathogenic mechanisms, and identify targets for new ther-

apies, with the long-term objective of reducing mortality and

improving the quality of life for individuals with AN.
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