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Abstract
We describe the preparation and characterization of two new unsymmetrical squaramide-based organogelators. The synthesis of the

compounds was carried out by subsequent amine condensations starting from dimethyl squarate. The design of the gelators

involved a squaramide core connected on one side to a long aliphatic chain and on the other side to a glutamic acid residue. The

gelator bearing the free carboxylic groups showed a lower gelation capacity than its precursor diester derivative. Some selected gels

were further studied by infrared spectroscopy, rheology and electron microscopy. Critical gelation concentrations and gel-to-sol

transition temperatures were also determined for each case. In addition, the superior squaramide diester gelator was compared with

an analogue triazole-based gelator in terms of critical gelation concentration, gelation kinetics and thermal phase transition.
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Introduction
Since their discovery, squaramides have gained importance

across different fields from chemistry to biomedicine due to

their synthetic versatility and wide applicability [1]. These com-

pounds, formed by two amine units conjugated to an aromatic

cyclobutenedione ring, can be easily synthesized from different

derivatives of squaric acid and amines [1-4]. The possibility to

fabricate chiral squaramide derivatives and their efficient hydro-

gen bond donor/acceptor ability has driven the pivotal role of
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Figure 1: Chemical structures of isosteric gelators 1 and 2 previously studied [33], and squaramide-based analogues 3 and 4 investigated in this
work.

these compounds in asymmetric catalysis and molecular recog-

nition [5,6]. Besides, squaramides present a dual ability to

recognize anions and cations through hydrogen bonding interac-

tions, acting as ion sensors and transmembrane anion trans-

porters [7]. This property has been crucial for the development

of new drugs [8,9]. Moreover, these compounds have been

recognized as bioisosters of ureas [10] exhibiting promising

pharmacological properties [11] and being clinical candidates

for the treatment of different diseases [1]. In addition, these

compounds have shown relevance in other areas, including

organic synthesis [12] and crystal engineering [13-17].

Despite their isosteric relationship with ureas, which have

become key synthons in supramolecular chemistry [18,19],

there are only a few reports on the formation of self-assembled

supramolecular gels using squaramide derivatives [20-23].

Along this line, supramolecular or physical gels have received

great attention during the last decade [24,25] due to their unique

architectures and potential applications in many areas such as

biomedicine (mainly hydrogels), health care and catalysis,

among others [26-29]. In contrast to chemical gels [30], physi-

cal gels are typically made of low-molecular-weight (LMW)

compounds self-assembled in different solvents via non-cova-

lent interactions. In most cases, this feature enables reversible

stimuli-responsive gel-to-sol transitions [31]. Usually, the

entanglement of 1D nanofibers of gelator molecules generates a

3D network with the solvent molecules trapped in the inter-

stices by means of surface tension and capillary forces. This

provides the typical solid-like appearance and viscoelastic fea-

tures to physical gels [32].

Recently, we have demonstrated the potential of isosteric sub-

stitution for tuning the properties of supramolecular gels [33].

Specifically, we exchanged the amide group of N-stearoyl-L-

glutamic acid (1, Figure 1), a known LMW gelator [34], by its

non-classical isostere [35,36] 1,4-disubstituted 1,2,3-triazole 2

(Figure 1). This approach enabled us to fine-tuning the gelation

capacity and the properties of the gels obtained with these com-

pounds. In general, compound 2 formed gels in more solvents,

at lower concentration and faster than compound 1.

In this work, and based on our previous experience with

organogels based on squaramides [21], we decided to prepare

and study an analogue of N-stearoyl-L-glutamic acid bearing

the squaramide moiety instead of the amide group (4, Figure 1).

Interestingly, the gelation properties of the diester precursor 3

(Figure 1) was found to be superior than 4, allowing to obtain a

variety of gels at lower concentration than those obtained with

2, as well as to form gels in some solvents where both gelators 1

and 2 failed.

Results and Discussion
Synthesis of squaramide-based gelators
Squaramides are typically synthesized under mild conditions

via aliphatic amine condensation of dialkoxysquarate deriva-

tives [3]. In general, the use of an excess of aliphatic amines

affords the corresponding symmetrical squaramides. However,

we employed a two-step synthetic protocol in order to obtain

the target unsymmetrical squaramide 3 (Scheme 1). The first

step involved the reaction between L-glutamic acid diethyl ester

hydrochloride (6) and dimethyl squarate (5) in the presence of

Et3N in MeOH at room temperature (rt). The use of Et3N

(1 equiv) and a low excess of 5 (1.1 equiv) gave the intermedi-

ate squarate monoamine 7 in 95% isolated yield. In the second

step, compound 7 was subjected to a second reaction with

n-octadecylamine (8) in MeOH at rt, affording the desired un-

symmetrical squaramide 3 in a moderate yield of 29% after

isolation. Then, the diester groups in 3 were hydrolyzed using

an excess of KOH in a MeOH/H2O mixture, which allows us to

obtain the desired diacid-containing squaramide 4 in 68% iso-

lated yield upon acidification (pH 2).

Gelation properties
The gelation capacities of squaramides 3 and 4 were screened

for 22 different solvents of different nature (apolar, polar

aprotic, polar protic) using the standard heating–cooling cycle

(Table 1, Table 2 and Supporting Information File 1, Figure

S1). Diester 3 was found to be soluble in methylene chloride,

chloroform, tetrahydrofuran, xylene, toluene, benzene, and

chlorobenzene, whereas it was insoluble in water even after

heating. In contrast, gel materials that did not flow upon inver-
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Scheme 1: Synthesis of squaramide-based gelators 3 and 4.

Table 1: Gelation ability, CGC, gelation time, Tgel and appearance of gels made of squaramide diester derivative 3.a

solvent CGC (g/L) gelation time (min) Tgel (°C) appearanceb

acetone 45 ± 5 19 ± 1 26 ± 2 opaque gel
acetonitrile 62 ± 5 0.4 ± 0.1 52 ± 2 opaque gel
benzonitrile 180 ± 20 4.3 ± 0.1 34 ± 2 opaque gel
butan-1-ol 56 ± 5 25 ± 5 34 ± 2 opaque gel
dimethyl sulfoxide 25 ± 1 28.5 ± 0.2 30 ± 2 opaque gel
ethanol 27 ± 2 7.9 ± 1.1 33 ± 2 opaque gel
ethoxyethane 47 ± 3 12.1 ± 0.9 42 ± 2 opaque gel
ethyl acetate 36 ± 4 2.8 ± 0.9 36 ± 2 opaque gel
hexan-1-ol 33 ± 1 77 ± 10 31 ± 2 opaque gel
methanol 47 ± 3 1.6 ± 0.1 41 ± 2 opaque gel
nitromethane 16 ± 1 3.5 ± 0.4 41 ± 2 opaque gel
propan-2-ol 33 ± 1 15.8 ± 1.4 29 ± 2 opaque gel

aGels were obtained upon a heating–cooling cycle. Error values reported as standard deviation were estimated from at least two randomized
experiments. bGels were white in color except the gel in nitromethane that was yellowish.

Table 2: Gelation ability, CGC, gelation time, Tgel and appearance of gels made of squaramide diacid derivative 4.a

solvent CGC (g/L) gelation time (min) Tgel (ºC) appearanceb

chloroform 38 ± 2 0.6 ± 0.1 42 ± 1 opaque gel
methanol 117 ± 17 2.4 ± 0.4 29 ± 1 opaque gel
propan-2-ol 200 ± 5 4.6 ± 0.1 34 ± 6 opaque gel
toluene 50 ± 1 0.8 ± 0.1 28 ± 2 translucent gel

aGels were obtained upon a heating–cooling cycle. Error values reported as standard deviation were estimated from at least two randomized
experiments. bThe gel in chloroform was white in color. The rest of the gels were yellowish.

sion of the vial upside-down were obtained in 12 solvents with

critical gelation concentration (CGC) values ranging from

16 ± 1 to 180 ± 20 g/L (Table 1). CGC was defined as the

minimum concentration of gelator where gelation was observed.

Most gels were formed within 30 min and all of them showed a

white opaque appearance, suggesting the formation of supramo-

lecular aggregates larger than the range of visible light

(380–780 nm), which was later supported by electron microsco-
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py (see below). Moreover, the gels displayed full thermore-

versibility and remained stable for at least two months when

stored in sealed vials. Only the gel made in DMF showed a

gradual gel-to-crystal transition [37,38], which is not surprising

due to the delicate equilibrium between metastable gel and ther-

modynamically stable crystalline phases [39,40].

Squaramide 3 formed stable gels in the same number of sol-

vents than the analogue triazole-based gelator 2, which was pre-

viously found to be superior to the amide 1 [33]. Similarly to 3,

CGC values were established for 2 in a range of 10–200 g L−1.

Gelator 3 formed stable gels in some solvents such as ethyl

acetate and acetone, which were not gelled by 2. In addition, 3

also formed gels in 1-hexanol and benzonitrile, solvents in

which 2 only formed partial gels at c > 200 g/L. On the other

hand, solvents such as methylene chloride, chloroform, xylene,

benzene and toluene were gelled by 2 but not by 3. Thus, com-

pound 3 can be an alternative to compound 2, and vice versa,

depending on the solvent to be gelled (see below). Similarly to

other amphiphilic gelators [21,29,31], the formation of a self-

assembled network in organic solvents is likely driven by the

formation of hydrogen bonds between different gelator mole-

cules (polar head) as well as hydrophobic interactions between

the long aliphatic chains.

Considering our previous results obtained with diacids 1 and 2

[33], we initially expected a good gelation ability of the diacid

squaramide 4. To our surprise, 4 showed a very limited gela-

tion capacity (Table 2) in comparison with its diester precursor

3 (Table 1). Four gels made of 4 were formed in chloroform,

methanol, propan-2-ol and toluene. However, it should be noted

that two of these solvents (chloroform and toluene) were not

gelled by 3. Moreover, it is worth mentioning that these results

do not discard the possibility of obtaining additional gels using

higher concentrations of 4 and/or resting time than those estab-

lished for this study (see Experimental section).

Although in this work all gels were prepared via heating–cool-

ing, we observed that the application of ultrasound [41] facili-

tated the formation of some gels by decreasing significantly the

gelation time, especially after the gels were thermally de-

stroyed for the first time (data not shown). This is in good

agreement with our previous observations made with a differ-

ent squaramide, where we hypothesized that ultrasound could

help to preserve only the thermodynamically more stable aggre-

gates through a self-sorting mechanism, thus providing a more

robust starting platform for rebuilding the gel network [21].

At this point, we decided to perform some additional studies

focusing on the gels made of diester 3 due to its apparent higher

versatility with regard to gelation scope. For instance, the com-

parison of Fourier transform infrared (FTIR) spectra of a gel

made of 3 and its solution did not show frequency shifts for

characteristic bands such as C=O stretching (≈1735 cm−1), and

N–H stretching ≈2867–3000 cm−1 (Supporting Information

File 1, Figure S2). This suggests that the gelator may also be

aggregated in solution, at least to some extend, via similar

hydrogen-bonding interactions than in the gel state. In contrast,

the spectrum of the xerogel, prepared by freeze-drying the cor-

responding organogel, revealed a red shift (lower frequency) of

the above-mentioned stretching bands compared to solid 3

(C=O Δν ≈5 cm−1; N–H Δν ≈70 cm−1), which is an indication

of increased hydrogen-bonding.

Characterization of organogels
In general, all gels displayed relatively low gel-to-sol transition

temperatures (Tgel) ranging from 26 to 52 °C (±2, Table 1). A

comparative study made with a population of six gels showed

that the Tgel of the gels made of 3 were in general ca. 10 °C

lower than those obtained using gelator 2 (Figure 2). On the

positive side, lower CGC values and gelation times were gener-

ally achieved when using squaramide 3 as gelator.

In order to confirm the viscoelastic nature of gels, we per-

formed oscillatory rheological measurements on two representa-

tive gels made of 3 in methanol and ethyl acetate. The linear

regime was established by dynamic frequency sweep (DFS) and

dynamic strain sweep (DSS) experiments (see Experimental

section). The results showed that the storage modulus G' of both

gels was one order of magnitude higher than the respective loss

modulus G'' ,  maintaining a relatively low frequency

dependency (i.e., gel in methanol: G' ≈ 17 ± 0.1 kPa,

G'' ≈ 4.6 ± 0.1 kPa, G ≈ ν0.11–0.03; gel in ethyl acetate:

G' ≈ 5.1 ± 0.1 kPa, G'' ≈ 0.92 ± 0.1 kPa, G ≈ ν0.13–0.07,

Figure 3) .  The damping coeff ic ient  or  loss  factor

(tan δ = G’’/G’) of the gel in methanol was about 1.5 times

higher than that of the gel in ethyl acetate, indicating higher

energy dissipation potential for the former. Moreover, both gels

were brittle in nature as confirmed by destruction at low fre-

quency and ≈4 ± 0.3% of strain (Supporting Information File 1,

Figure S3).

Morphological studies of some selected organogels were con-

ducted by field emission scanning electron microscopy

(FESEM) of the corresponding xerogels obtained by the freeze-

drying method (Figure 4). The remarkable influence of the sol-

vents on the morphologies was evident among different sam-

ples. For instance, the specimens prepared in ethyl acetate

showed an entangled brain coral-like structure (Figure 4A),

whereas the xerogel made in methanol displayed a less regular

wrinkled lamellar-like structure (Figure 4B). Interestingly, the

use of 1-butanol instead of methanol afforded a xerogel charac-
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Figure 2: Comparison of CGC, gelation time and Tgel values corresponding to six gels made using 3 and 2 [33] as gelators.

terized by a poritidae-like porous structure formed by numer-

ous fibrillar and globular structures of ca. 2–4 μm in diameter

(Figure 4C, D). Although the recorded images correspond to the

bulk material, it should be stressed that the formation of arti-

facts during the drying process can not be completely ruled out

[42]. Hence, the interpretation of these images should always be

done cautiously. Further detailed investigations with the aid of

additional techniques are still necessary in order to clarify the

exact molecular mechanism associated with each morphology.

Conclusion
In conclusion, unsymmetrical glutamic acid-based squaramides

3 and 4 can be synthesized for subsequent amine condensations

starting from dimethyl squarate. These compounds were found

to self-assemble in different organic solvents leading to the for-

mation of stable supramolecular gels upon a classical

heating–cooling cycle. Thus, these two compounds expand the

short list of squaramide-based LMW gelators reported so far in

the literature. As LMW gelator, squaramide diester 3 was found

to be superior than the corresponding diacid 4 (i.e., 3 formed

stable gels in 12 solvents, whereas 4 only gelled four solvents).

CGC values ranged from 16 ± 1 to 180 ± 20 g/L for 3 and from

38 ± 2 to 200 ± 5 g/L for 4. In terms of Tgel the values ranged

from 26 ± 2 to 52 ± 2 °C for 3 and from 29 ± 1 to 42 ± 1 °C for

4. Further rheological and electron microscopy studies of

selected gels demonstrated their viscoelastic nature as well as

the remarkable influence of the solvents on their flow proper-

ties and microstructures. Finally, a comparison between 3 and a

previously studied analogue triazole-based gelator 2 showed

that both gelators can gel 6 solvents in common. However,

some other solvents are only gelled by either 3 (i.e., ethyl

acetate, acetone) or 2 (i.e., methylene chloride, chloroform,
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Figure 3: DFS measurements for model gels made of 3 in methanol (c = 47 g/L) and ethyl acetate (c = 36 g/L). Photographs on the right correspond
to upside-down vials having the selected gels.

Figure 4: Representative FESEM images of selected xerogels prepared by freeze-drying the corresponding organogels made of 3 in (A) ethyl acetate
(c = 36 g/L), (B) methanol (c = 47 g/L), (C and D) butan-1-ol (c = 56 g/L).
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xylene, benzene and toluene). Moreover, 3 also formed gels in

1-hexanol and benzonitrile, solvents in which 2 only formed

partial gels at c > 200 g/L. Although the Tgel of the gels made of

3 were ca. 10 ºC lower than those obtained using gelator 2,

lower CGC values and gelation times were generally achieved

when using squaramide 3 as gelator.

Experimental
Synthesis of compounds
General remarks
Unless otherwise specified, all reagents, starting materials and

solvents (p.a. grade) were purchased from commercial suppliers

and used as received without further purification.

Characterization methods
Thin-layer chromatography (TLC) analyses were performed

using fluorescent-indicating plates (aluminum sheets coated

with silica gel 60 F254, thickness 0.2 mm, Merck). Visualiza-

tion was achieved by UV light (λmax = 254 nm). Melting point

calculations were made using a GallenKamp MPD 350 BM 2.5

instrument. Specific rotation calculations were made in chloro-

form or acetone employing a Jasco P-1020 polarimeter. ESI

ionization method and mass analyzer type MicroTof-Q were

used for HRMS measurements. 1H NMR spectra and 13C APT-

NMR spectra were recorded at 300 MHz and 75 MHz, respec-

tively, using a Bruker ARX 300 MHz spectrometer. CDCl3 and

DMSO-d6 were used as deuterated solvents. Chemical shifts

were reported in the δ scale relative to residual CHCl3

(7.26 ppm) and DMSO (2.50 ppm) for 1H NMR and to the

central line of CDCl3 (77.16 ppm) and DMSO-d6 (39.52 ppm)

for 13C-APT-NMR.

Synthetic procedures and characterization data
(S)-Diethyl 2-((2-methoxy-3,4-dioxocyclobut-1-en-1-yl)ami-

no)pentanedioate (7): L-Glutamic acid diethyl ester hydro-

chloride (6, 3.6 g, 15 mmol) was dissolved in MeOH (30 mL)

and Et3N (2.1 mL, 15 mmol) was added dropwise. The result-

ing solution was added dropwise to a mixture of 3,4-dimethoxy-

3-cyclobutene-1,2-dione (5, 2.4 g, 16.5 mmol) in MeOH

(30 mL) at room temperature. After 24 h, the solvent was re-

moved under vacuum and the product was purified by column

chromatography (SiO2, hexane/EtOAc 7:3 to hexane/EtOAc

1:1). Product 7 was obtained as a brown oil in 95% yield (4.5 g,

14.25 mmol); [α]D
22 +11.6 (c 0.56, CHCl3); 1H NMR

(300 MHz, DMSO-d6) δ 9.10 (d, J = 7.6 Hz, 0.5H, NH), 8.88

(d, J = 7.9 Hz, 0.5H, NH), 4.70–4.58 (m, 0.5H, NH-CH),

4.40–3.98 (m, 7.5H, O-CH3, NH-CH and O=C-O-CH2),

2.48–2.33 (m, 2H, NH-CH-CH2-CH2), 2.25–2.05 (m, 1H,

NH-CH-CH2), 2.02–1.85 (m, 1H, NH-CH-CH2), 1.18 (t,

J = 7.1 Hz, 6H, O=C-O-CH2-CH3); 13C APT-NMR (75 MHz,

DMSO-d6) δ 189.1 and 188.7 (2 s, 1C, O=C-C=C-C=O or

O=C-C=C-C=O), 183.1 and 182.8 (2 s, 1C, O=C-C=C-C=O or

O=C-C=C-C=O), 177.9 and 177.8 (2 s, 1C, O=C-C=C-C=O or

O=C-C=C-C=O), 172.8 and 172.3 (2 s, 1C, O=C-C=C-C=O),

171.9 (s, 1C, O=C-O), 170.6 and 170.3 (2 s, 1C, O=C-O), 61.3

(s, 1C, O=C-O-CH2), 60.3 and 60.1 (2 s, 1C, O-CH3), 60.0 (s,

1C, O=C-O-CH2), 55.8 and 55.2 (2 s, 1C, NH-CH), 29.7 (s, 1C,

NH-CH-CH2-CH2), 26.8 and 26.5 (s, 1C, NH-CH-CH2), 14.0

(s, 1C, O=C-O-CH2-CH3), 14.0 (s, 1C, O=C-O-CH2-CH3);

FTIR (oil, cm−1) ν: 3269, 2983, 1806, 1736, 1653, 1618, 1610,

1500, 1464, 1378, 1345, 1299, 1263, 1201, 1102, 1024; HRMS

(ESI+) m/z: [M + Na]+ calcd for C14H19NNaO7, 336.1054;

found, 336.1094.

(S)-Diethyl 2-((2-(octadecylamino)-3,4-dioxocyclobut-1-en-1-

yl)amino)pentanedioate (3): A solution of n-octadecylamine

(8, 3.9 g, 14.5 mmol) in MeOH (60 mL) was added to a mix-

ture of squarate monoamine 7 (4.5 g, 14.5 mmol) in MeOH

(160 mL) at room temperature. After 6 h, the solvent was re-

moved under vacuum and the product was purified by column

chromatography (SiO2, hexane/EtOAc 8:2 to hexane/EtOAc

6:4). Then, the solvent from the column was evaporated and the

yellowish solid obtained was washed with 15 mL EtOAc (× 3).

After this, squaramide 3 was obtained as a white solid in

29% yield (2.3 g, 4.2 mmol); mp 79–81 °C; [α]D
27 +11.0

(c 0.50, CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.86 (br s, 1H,

NH), 4.91 (br s, 0.5H, NH-CH), 4.21 (br s, 1H, NH-CH2),

3.87–3.46 (m, 4.5H, NH-CH and O=C-O-CH2), 3.08 (br s, 1H,

NH-CH2), 2.68–1.95 (m, 4H, NH-CH-CH2 and NH-CH-CH2-

CH2), 1.67 (br s, 2H, NH-CH2-CH2), 1.51–0.96 (m, 36H,

-CH2), 0.92–0.81 (m, 3H, -CH3); 13C APT-NMR (75 MHz,

CDCl3) δ 181.7 (s, 1C, O=C-C=C-C=O or O=C-C=C-C=O),

173.3 (s, 1C, O=C-C=C-C=O or O=C-C=C-C=O), 171.7 (s, 1C,

O=C-O), 171.2 (s, 1C, O=C-O), 168.7 (s, 1C, O=C-C=C-C=O

or O=C-C=C-C=O), 166.2 (s, 1C, O=C-C=C-C=O or O=C-

C=C-C=O), 62.2 (s, 1C, O=C-O-CH2), 60.6 (s, 1C, O=C-O-

CH2), 56.0 and 52.1 (2 s, 1C, NH-CH), 45.2 (s, 1C, NH-CH2),

32.1 (s, 1C, -CH2), 31.3 (s, 1C, -CH2), 30.1 (s, 1C, -CH2), 29.9

(s, 10C, -CH2), 29.8 (s, 1C, -CH2), 29.5 (s, 1C, -CH2), 29.5 (s,

1C, -CH2), 26.7 (s, 1C, -CH2), 22.8 (s, 1C, -CH2), 14.4 (s, 1C,

O=C-O-CH2-CH3), 14.3 (s, 1C, O=C-O-CH2-CH3), 14.3 (s, 1C,

-CH3); FTIR (solid, cm−1) ν: 2916, 2849, 1799, 1728, 1613,

1557, 1464, 1375, 1203, 1021, 720; HRMS (ESI+) m/z:

[M + Na]+ calcd for C31H54N2O6Na, 573.3874; found,

573.3840.

(S)-2-((2-(Octadecylamino)-3,4-dioxocyclobut-1-en-1-

yl)amino)pentanedioic acid (4): Squaramide 3 (1.2 g,

2.15 mmol) was dissolved in a 1:1 v/v MeOH/H2O mixture

(40 mL) containing KOH (0.36 g, 6.45 mmol) at room tempera-

ture. After 30 h, the solution was acidified with HCl (1 M) until

pH 2 was reached. Then, the solid was filtrated and washed
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with 5 mL of water (× 3) and 5 mL of CHCl3. Finally, the solid

was dried in the oven at 80 °C for 1 h, affording the squaramide

4 as a brown solid in 68% yield (0.72 g, 1.46 mmol);

mp 115–120 °C; [α]D
20 +10.3 (c 0.27, EtOH); 1H NMR

(300 MHz, DMSO-d6) δ 12.65 (br s, 2H, CO2H), 7.64 (d,

J = 7.2 Hz, 1H, C=C-NH-CH), 7.51 (br s, 1H, C=C-NH-CH2),

4.78–4.47 (m, 1H, NH-CH), 3.68–3.38 (m, 2H, NH-CH2),

2.38–2.19 (m, 2H, NH-CH-CH2-CH2), 2.17–2.02 (m, 1H,

NH-CH-CH2), 1.99–1.83 (m, 1H, NH-CH-CH2), 1.60–0.94 (m,

32H, -CH2), 0.92–0.75 (m, 3H, -CH3); 13C APT-NMR

(75 MHz, DMSO-d6) δ 183.0 (s, 1C, O=C-C=C-C=O or O=C-

C=C-C=O), 182.0 (s, 1C, O=C-C=C-C=O or O=C-C=C-C=O),

173.4 (s, 1C, O=C-OH), 172.7 (s, 1C, O=C-OH), 168.0 (s, 1C,

O=C-C=C-C=O or O=C-C=C-C=O), 167.0 (s, 1C, O=C-C=C-

C=O or O=C-C=C-C=O), 55.0 (s, 1C, NH-CH), 43.3 (s, 1C,

NH-CH2), 31.3 (s, 1C, -CH2), 30.6 (s, 1C, -CH2), 29.7 (s, 1C,

-CH2), 29.0 (s, 11C, -CH2), 28.7 (s, 1C, -CH2), 28.6 (s, 1C,

-CH2), 25.8 (s, 1C, -CH2), 22.1 (s, 1C, -CH2), 13.9 (s, 1C,

-CH3); FTIR (solid, cm−1) ν: 2923, 2852, 1743, 1653, 1579,

1466, 1377, 1147, 839, 720. HRMS (ESI+) m/z: [M + Na]+

calcd for C27H46N2O6Na, 517.3248; found, 517.3217.

Preparation and characterization of gel materials
Gels were prepared in screw-capped glass vials (4.5 cm

length × 1 cm diameter) having a specific amount of the desired

gelator and solvent (p.a. grade). The mixture was gently heated

with a heat gun until the solid material was completely dis-

solved (i.e., a transparent solution without visible suspended

particles was obtained). The resulting isotropic solution was

allowed to cool down to rt affording the corresponding gels. No

control over temperature rate during the heating–cooling

process was applied. Double-distilled water was purified addi-

tionally using a Millipore water-purifying system (Merck) prior

usage. Xylene as mixture of isomers was used after double-dis-

tillation.

CGC values were estimated by continuously adding aliquots of

solvent (0.05−0.1 mL) into vials containing 20 mg of the gelator

and performing a typical heating–cooling protocol for gel for-

mation until no gelation was observed. The starting point for

CGC determinations was 200 g/L. The waiting time used to

define the state of the material was 24 h.

Tgel values were determined using a calibrated thermoblock at a

heating rate of ca. 5 °C/min [20]. The temperature at which the

gel started to break was defined as Tgel. Each measurement was

made at least by duplicate and the average value reported.

FTIR spectra were recorded at rt using an Excalibur FTS 3000

FTIR spectrometer (Biorad) equipped with an attenuated total

reflection (ATR) accessory (Golden Gate, Diamond).

Oscillatory rheological measurements were performed with an

AR 2000 Advanced rheometer (TA Instruments) equipped with

a Julabo C cooling system. A 500 μm gap setting and a torque

setting of 5 × 10−4 N/m at 25 °C were used for the measure-

ments in a plain-plate geometry (40 mm, stainless steel). 2 mL

of the desired gel was taken carefully with a spatula and spread

over the entire area of the plate without losing liquid. The

following experiments were carried out for each sample:

a) Dynamic strain sweep (DSS): variation of G' and G'' with

strain (from 0.01 to 100%); b) dynamic frequency sweep (DFS):

variation of G' and G'' with frequency (from 0.1 to 10 Hz at

0.1% strain).

FESEM of xerogels was carried out with a Carl Zeiss Merlin,

Field Emission Scanning Electron Microscope (accelerating

voltage = 10 kV). Xerogels, prepared by freeze-drying the cor-

responding gels, were placed on top of a tin plate and shielded

with Pt (40 mA, 30–60 s; film thickness = 5–10 nm). Images

were obtained by Servicio General de Apoyo a la Investigación-

SAI (Universidad de Zaragoza).

Supporting Information
Supporting Information File 1
NMR spectra, FTIR spectra, DSS plots, and additional

photographs of gels in different solvents.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-14-180-S1.pdf]
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