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Topoisomerase I is required for the proper expression of long genes (N100 kb) inmouse and human cortical neu-
rons, including many candidate genes for autism spectrum disorder (ASD) [1]. Given the important role of astro-
cytes in brain development [2], we investigated whether long genes, including autism susceptibility genes, also
require topoisomerase I expression in human primary astrocytes. We carried genome-wide expression profiling
of cultured human primary astrocytes following treatment with the topoisomerase I inhibitor Topotecan, using
Illuminamicroarrays.We identified several thousands of differentially expressed genes and confirmed that topo-
isomerase I inhibition affects gene expression in human primary astrocytes in a length-dependent manner. We
also identifiedover 20ASD-associated genes that show topoisomerase-dependent gene expression inhumanpri-
mary astrocytes but have not been previously reported as topoisomerase-I-dependent in neurons. The microar-
ray data have been deposited in NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE90052.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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rganism/cell
line/tissue
Homo sapiens/primary astrocytes isolated from
14–18-week-old postmortem fetal brain
x
 NA

quencer or
array type
Illumina HumanHT-12 v4
ata format
 Raw and normalized

xperimental
factors
Topoisomerase I inhibition
xperimental
features
Triplicate cultures of human primary astrocytes were treated
with 300 nM Topotecan or 0.1% DMSO (as control), for either 24
or 48 h.
onsent
 NA

mple source
location
Sydney, Australia
Direct link to deposited data

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90052
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1. Introduction

Topoisomerases are important for gene expression as they are re-
quired for removing DNA supercoiling generated during transcription.
Topoisomerases I and II are expressed throughout the developing and
adult brain [3,4]. Interestingly, de novo variants in topoisomerase
genes have been identified in patients with autism spectrum disorder
(ASD), raising the possibility of a specific role of topoisomerases in
brain development [5,6]. It has recently been demonstrated that the in-
hibition of topoisomerase I and II in human andmouse cortical neurons
leads to reduced expression levels of very long genes, over 100 kb, of
which many have been implicated in ASD [1]. The effect of
topoisomerases on the expression of long genes appears to be occurring
at the stage of transcription elongation [1]. In addition, topoisomerase I
is required for ligand-dependent enhancer activation [7] and has been
shown to generate double-stranded breaks in promoter regions,
which in turn are required for the expression of neuronal early-re-
sponse genes [8]. The role of topoisomerases in regulating gene expres-
sion in the brain has been primarily investigated in neurons. However,
accumulating evidence supports an important role for glial cells during
brain development [2,9–12]. Therefore, we investigated the effect of
topoisomerase I inhibition on gene expression in human primary astro-
cytes, in order to identify genes thatmay respond to topoisomerase I in-
hibition in a cell-type-specific manner.
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2. Experimental design, materials, and methods

2.1. Cell culture

Human primary astrocytes were isolated from a 14–18-week-old
postmortem fetal brain following therapeutic termination with in-
formed consent, following theUNSWethics protocol HREC 08284. Isola-
tion was carried out as previously described [13]. Cells were cultured in
RPMI 1640 medium (Life Technologies, no. 61870-036) supplemented
with 10% fetal bovine serum, 1% streptomycin (10,000 μg/ml), 1% peni-
cillin (10,000 units/ml), and 1% Fungizone (2.5 μg/ml).

2.2. Topotecan treatment

Human primary astrocytes were seeded in 6-well cell culture plates
at a density of 500,000 cells per well and incubated overnight at 37 °C,
with 5% CO2. After 24 h in culture, cell were treated with either
topotecan (Sigma Aldrich, no. T2705) at a final concentration of
300 nM or 0.1% DMSO as a vehicle control. Treatment was carried out
in triplicate wells of a 6-well plate for 24 or 48 h.

2.3. RNA extraction

Total RNA was isolated after 24 or 48 h of treatment, using a Qiagen
RNeasy kit, with on-column DNA digestion.

2.4. Microarray analysis

100 ng of total RNA from each RNA sample were analyzed on
Illumina HumanHT-12 v4 Expression BeadChip. cDNA labeling and
array hybridization were carried out at the UNSW Ramaciotti Centre
Fig. 1. Length-dependent gene expression changes upon topotecan treatment. a) Scatterplot of log2
gene. Red dots represent ASD genes. Red vertical linemarks 100 kb. b) Boxplot of log2 fold chan
than 100 kb; red: genes longer than 100 kb.
for Genomics using standard Illumina protocols. Raw data were proc-
essed in R (http://www.r-project.org). Briefly, raw expression data
were log2 transformed and normalized by quantile normalization
using the lumi package [14]. Probes with intensity above the back-
ground (i.e. detection p value b 0.05) in at least 3 samples were consid-
ered expressed and retained for further analysis. A total of 23,000
probes passed these criteria. Differential expression analysiswas carried
out using a linear model implemented in the Bioconductor package
limma, contrasting control cells with cells treatedwith Topotecan for ei-
ther 24 or 48 h. p values were adjusted for multiple testing using a
Benjamini–Hochberg correction. Probes were considered differentially
expressed if the corrected p value was b0.05 and the absolute fold
change was N1.5. All analyses were carried out at probe level. Gene
length for the RefSeq transcript corresponding to each probe was ob-
tained from the UCSC table browser, refGene track for the human ge-
nome build hg38, downloaded 11.2016. The list of ASD-associated
geneswas obtained from the SFARI database's [15] gene scoringmodule
and included only the “syndromic,” “high confidence,” and “strong can-
didate” genes (https://gene.sfari.org/autdb/GS_Home.do).

3. Results and discussion

We identified 3303 differentially expressed probes for cells treated
with Topotecan for 24 h (1633down-regulated and 1670up-regulated),
and 3112 differentially expressed probes at 48 h (1565 down-regulated
and 1547 up-regulated). We observed a significant inverse correlation
between gene length and expression change at both time points
(Fig. 1; Spearman rho=−0.57, p value=4.73 E-252 at 24 h; Spearman
rho=−0.38, p value=2.85 E-97 at 48 h). These results support the no-
tion that topoisomerase I inhibition affects gene expression in a length-
dependentmanner, leading to down-regulation of long genes in human
fold changes at 24 h versus gene length. Each circle represents one differentially expressed
ges for genes differentially expressed at 24 h, binned by gene length. Green: genes shorter
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Table 1
ASD genes differentially expressed upon topotecan treatment. ProbeID: Illumina Array Ad-
dress ID. P value: Differential expression p-value at the corresponding time point, after
multiple testing correction.

Gene
symbol ProbeID

log2 fold
change p value

Gene length
(bp)

Time
point

ADSL 5870228 −0.67 1.13E-04 20249 48 h
ADSL 5870228 −0.64 2.67E-03 20249 24 h
AHI1 5860253 0.65 2.10E-03 213794 24 h
AHI1 5860253 0.96 6.40E-06 213794 48 h
ANKRD11 3370274 −0.77 1.81E-02 222941 24 h
BCKDK 5220347 −0.59 3.65E-04 4498 48 h
CTNND2 4610075 −1.36 5.94E-03 932203 24 h
CTNND2 4610075 −0.93 9.41E-06 932203 48 h
DHCR7 5360678 −0.80 4.85E-05 14021 48 h
DHCR7 6550048 −0.69 1.21E-04 14021 48 h
DMPK 3930164 0.90 4.77E-05 12849 48 h
EP300 7570068 0.66 8.78E-05 87468 48 h
HDAC4 5900468 −1.13 4.70E-04 352782 24 h
HDAC4 5900468 −0.79 6.98E-05 352782 48 h
HERC2 6130674 −0.87 7.44E-03 211116 24 h
KAT2B 7200703 −0.92 2.31E-03 114373 24 h
NFIX 5720129 −0.60 4.00E-03 103027 24 h
NTNG1 6940053 −1.45 5.23E-07 344982 48 h
NTNG1 4390333 −1.19 6.10E-07 344982 48 h
OCRL 60324 0.66 7.83E-05 52279 48 h
PRKD1 1070184 −0.78 3.66E-03 351213 24 h
RAI1 520561 −0.73 2.26E-03 129979 24 h
RPS6KA3 3370110 −0.62 9.64E-05 116722 48 h
SGSH 1340538 0.87 1.18E-02 11121 24 h
SGSH 1340538 0.94 2.89E-05 11121 48 h
SNX14 4260504 −0.74 1.37E-03 88660 24 h
SNX14 1990561 −0.63 4.83E-03 88660 24 h
STXBP1 6100112 0.62 1.76E-04 80510 48 h
STXBP1 1260564 0.84 2.45E-05 80510 48 h
TCF4 2510672 −1.26 1.23E-06 366299 48 h
TCF4 2510672 −1.14 9.25E-04 366299 24 h
TSC2 450376 −0.60 6.78E-03 40826 24 h
UBE3A 2360379 −0.94 1.65E-03 101780 24 h
UBE3A 1990307 −0.93 1.38E-03 101780 24 h
UPF3B 780743 1.19 1.87E-06 19003 48 h
UPF3B 4640239 1.21 1.63E-06 19003 48 h
UPF3B 780743 1.38 2.40E-04 19003 24 h
UPF3B 4640239 1.43 1.24E-04 19003 24 h
USP7 4640670 −0.70 1.79E-03 71391 24 h
USP7 4640670 −0.60 1.42E-04 71391 48 h
ZBTB20 3440189 −0.73 2.26E-03 832781 24 h
ZBTB20 3440189 −0.64 1.57E-04 832781 48 h
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primary astrocytes. Of the 120 genes listed in the SFARI database as
“syndromic,” “high confidence,” or “strong candidate,” 26 genes were
significantly dysregulated following Topotecan treatment at either
time point (Table 1). Seventy-three percent of these genes, i.e. 19
genes, were down-regulated, and only 7 genes were up-regulated. No-
tably, only one of the ASD genes differentially expressed in astrocytes,
CTNND2, has been previously reported to change in expression in re-
sponse to Topotecan treatment in neurons. Therefore, the present
dataset identifies novel effects of topoisomerase I on ASD genes in
brain cells.
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