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Background: To identify a radiomics signature to predict local recurrence in patients with non-metastatic T4
nasopharyngeal carcinoma (NPC).
Methods: A total of 737 patients from Sun Yat-sen University Cancer Center (training cohort: n = 360; internal
validation cohort: n = 120) and Wuzhou Red Cross Hospital (external validation cohort: n = 257) underwent
feature extraction from the largest axial area of the tumor on pretreatment magnetic resonance imaging scans.
Feature selectionwas based on the prognostic performance and feature stability in the training cohort. Radscores
were generated using the Cox proportional hazards regression model with the selected features in the training
cohort and then validated in the internal and external validation cohorts. We also constructed a nomogram for
predicting local recurrence-free survival (LRFS).
Findings: Eleven features were selected to construct the Radscore, which was significantly associated with LRFS.
For the training, internal validation, and external validation cohorts, the Radscore (C-index: 0.741 vs. 0.753 vs.
0.730) outperformed clinical prognostic variables (C-index for primary gross tumor volume: 0.665 vs. 0.672 vs.
0.577; C-index for age: 0.571 vs. 0.629 vs. 0.605) in predicting LRFS. The generated radiomics nomogram,
which integrated the Radscore and clinical variables, exhibited a satisfactory prediction performance (C-index:
0.810 vs. 0.807 vs. 0.753). The nomogram-defined high-risk group had a shorter LRFS than did the low-risk
group (5-year LRFS: 73.6% vs. 95.3%, P b .001; 79.6% vs 95.8%, P = .006; 85.7% vs 96.7%, P = .005).
Interpretation: The Radscore can reliably predict LRFS in patients with non-metastatic T4NPC, whichmight guide
individual treatment decisions.
Fund: This study was funded by the Health &Medical Collaborative Innovation Project of Guangzhou City, China.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nasopharyngeal carcinoma (NPC) is the most common head and
neck malignancy in Southeast Asia and Southern China [1]. Radiother-
apy is the mainstay treatment modality for non-disseminated NPC.
With the application of precise imaging based on magnetic resonance
imaging (MRI) technology and the advent of intensity-modulated
radiotherapy (IMRT), the local control rate for NPC has improved signif-
icantly [2,3]. Patients with locally early-stage NPC can now achieve sat-
isfactory 10-year local relapse-free survival (LRFS) rates (91.4%–94.2%
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Approximately 20% of patients with non-metastatic stage T4 na-
sopharyngeal carcinoma (NPC) show local recurrence 10 years
after intensity-modulated radiotherapy (IMRT) with or without
chemotherapy. The accuracy of the current staging system and
prognostic biomarkers is insufficient to identify patients at a high
risk for recurrence. By extracting high throughput of quantitative
imaging features from medical imaging, radiomics has shown po-
tential for noninvasive characterization of intra-tumor heterogene-
ity and has been applied for prognostic evaluations in various
types of cancer. However, no previous study has focused on
predicting local recurrence in non-metastatic stage T4 NPC.

Added value of this study

In thismulticenter large-scale study,we developed and validated a
radiomics signature (named Radscore) built with 11 features pro-
filed from pretreatment MRI as a noninvasive method to reliably
predict local recurrence in patients with non-metastatic T4 NPC.
The Radscore showed significantly better prognostic performance
than that shown by other clinical variables in predicting local
recurrence-free survival (LRFS). A radiomics nomogram that inte-
grated Radscore and clinical variables showed a satisfactory pre-
diction performance. The Radiomics nomogram-defined high-risk
group had a shorter LRFS than did the low-risk group.

Implications of all the available evidence

The findings outline how radiomics-based approaches can be used
to accurately determine the risk of local recurrence before treat-
ment in non-metastatic T4 NPC. Our results may facilitate patient
counselling and guide the treatment decision-making process in
individual cases.
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for T1-T3 disease). However, the LRFS rate for locally advanced NPC re-
mains poor (79.3% for T4 disease) [3]. Salvage treatments for recurrent
NPC are challenging due to poor disease control and fatal late complica-
tions such as mucosa necrosis and massive hemorrhage [4–6]. There-
fore, pretreatment prediction of a high risk of local recurrence is
crucial for the development of individualized treatment strategies and
reduction of the risk of local recurrence in T4 NPC.

Currently, risk assessment in local recurrence of NPC is primarily
based on the clinical tumor-node-metastasis (TNM) staging. However,
Chen et al. demonstrated that the TNM staging system had only 61% ac-
curacy in predicting local recurrence [7]. This was mainly because the
TNM staging system only describes the severity of the disease by evalu-
ating the anatomical range of the existing tumors, but it is impossible to
evaluate the intrinsic biological heterogeneity of tumors. In recent years,
the promising field of “radiomics,” which aims to convert digitally
encryptedmedical images intomineable high-dimensional imaging fea-
tures via automatic high-throughput quantitative image analyses [8,9],
has emerged as a powerful new prognostic marker [10–18]. The central
hypothesis of radiomics is that medical imaging features can capture
crucial information regarding the intrinsic biological and physiological
characteristics of tumors, making it possible to characterize intra-
tumor heterogeneity [8,19,20]. Radiomics has been demonstrated to
show profound significance in clinical practice such as cancer detection,
staging, and prediction of prognosis in various types of cancer
[10–16,21–24]. For NPCs, radiomics signatures can significantly predict
responses to induction chemotherapy [22] and treatment failures in ad-
vanced NPC [14–16]. However, whether radiomics signatures could as-
sist in identifying patients with a high risk of local NPC recurrence has
not been reported.

Pretreatment MRI is routinely used to obtain morphological infor-
mation with visual interpretation and tumor staging for NPCs, since
MRI can provide superior soft-tissue resolution compared to that
achieved with computed tomography (CT) [25]. The medical applica-
tion potential of MRI has been recently explored using radiomics. How-
ever, it remains unclear whether the features selected from MRI of
patients at one institution are still powerful prognostic markers for pa-
tients at other institutions because of the variability in MRI acquisition
across MRI scanners from different institutions. The use of the ComBat
method has been shown to be effective in correcting difference between
scanners andmay facilitate multicenter radiomic studies [26–28]. Thus,
the current study sought to determine the association between pre-
treatment MRI-based radiomics signatures and local recurrence in
non-metastatic T4 NPC, and then validate its effectiveness in patients
from the same institution and an external institution. In addition, a no-
mogram was built by incorporating the radiomics signature and other
clinical variables to accurately screen out patients at a high risk for
local recurrence in non-metastatic T4 NPC.

2. Materials and methods

2.1. Patient selection

The current research was approved by the Research Ethics Commit-
tee of Sun Yat-sen University Cancer Center (SYSUCC) andWuzhou Red
Cross Hospital (WZRCH). Since this study was based on an analysis of
routineMRI examination and clinical data, the requirement for individ-
ual informed consent was waived by the research ethics committees of
SYSUCC (Approve number: YB2018-51) andWZRCH (Approve number:
2018-9). By using a prospective NPC-specific database from the well-
established big-data intelligence platform at SYSUCC, a total of 2117
consecutive newly diagnosed patients with histologically proven
T4N0-3M0 NPC (staged according to 8th American Joint Committee
on Cancer /Union for International Cancer Control TNM staging system)
treated with radical IMRT with/without chemotherapy between April
2009 and December 2015 were reviewed. In addition, a total of 1250
consecutive newly diagnosed patients with histologically proven
T4N0-3M0 NPC treated with radical IMRT with/without chemotherapy
between February 2012 and November 2014were reviewed atWZRCH.

Patients treated at SYSUCC andWZRCHwere included in this study if
theymet the following criteria: (1) availability of pretreatment 1.5 telsa
(1.5-T) MRI examination data within 3 weeks before treatment;
(2) availability of clinical and treatment data; and (3) no history of ma-
lignant tumors or severe heart, lung, liver, and kidney diseases. Based on
these criteria, a total of 480 patients at SYSUCC and 257 patients from
WZRCH were included in the study. Patients from SYSUCC were ran-
domly assigned to training (n = 360) and internal validation (n =
120) cohorts at a 3:1 ratio via computer software-generated random
numbers. The generated random numbers were fixed for each run.
Patients from WZRCH were defined as the external validation cohort
(n = 257).

During the study period, the guidelines of SYSUCC and WZRCH rec-
ommended concurrent chemoradiotherapy (CCRT) with or without in-
duction chemotherapy (IC) /adjuvant chemotherapy (AC) for stage IVA-
B disease. All patients underwent radical IMRT, whichwas administered
5 days/week. The prescribed doses were 66–72 Gy/28–33 fractions to
the planning target volume (PTV) of the primary gross tumor volume
(GTVp), 64–70 Gy/28–33 fractions to the involved nodal gross tumor
volume PTV (GTVnd), 60–63 Gy/28–33 fractions to the PTV of high-
risk clinical target volume, and 54–56 Gy/28–33 fractions to the PTV
of low-risk clinical target volumes. Overall, 95.5% of patients received
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platinum-based chemotherapy. Concurrent chemotherapy consisted of
cisplatin administered weekly or on weeks 1, 4, and 7 of radiotherapy,
beginning the first day of IMRT. Induction chemotherapy or adjuvant
chemotherapy consisted of cisplatin with docetaxel, cisplatin with 5-
fluorouracil, or cisplatin with 5-fluorouracil and docetaxel every
3 weeks for two to four cycles. Reasons for not receiving chemotherapy
included age, organ dysfunction suggestive of intolerance to treatment,
and an individual patient's refusal.

The duration of patient follow-up was measured from therapy initi-
ation to the day of last examination or death. After treatment, the pa-
tients returned for follow-up examinations every 3–6 months during
the first 3 years and every 6–12 months thereafter until death. Patients
were followed-up by telephone when their recent attendance was not
recorded in their medical records. Local recurrence for NPCwas defined
as complete response followed by recurrence at the primary site more
than three months after treatment completion. Local recurrence was
confirmed by biopsy and/or MRI of the nasopharynx; in addition, posi-
tron emission tomography/computed tomography imaging was used
when necessary. The end-point in the current study was LRFS, which
was calculated from the first day of therapy to the date of local recur-
rence or death.
2.2. MRI scan acquisition and tumor segmentation

Each subject was scanned with 1.5-T MRI (Signa EXCITE, General
Electric Healthcare, Chalfont St. Giles, United Kingdom; SignaHDx, Gen-
eral Electric Healthcare, Chalfont St. Giles, United Kingdom; SIEMENS
Espree, Siemens Healthcare, Erlangen, Germany) in SYSUCC and 1.5-T
MRI in WZRCH (SIEMENS Novus15, Siemens Healthcare, Erlangen,
Germany) to examine the area from the suprasellar cistern to the infe-
rior margin of the sternal end of the clavicle by using a head-and-neck
combined coil within 3 weeks before treatment. Before administration
of the contrast material, T1-weighted (T1-w) images and T2-weighted
(T2-w) images were obtained. Following injection of contrast material,
contrast-enhanced T1-weighted (CET1-w) images.

MR imaging parameters at SYSUCC are as follows: section thickness,
5–6.0 mm; intersection gap, 0.5–1.6 mm; repetition time (TR) for axial
T1-w images, 500.0, ranging from: 400.0 to 800.0 msec; echo time (TE)
for T1-w images, 9.2, ranging from7.1 to 15.2msec; TR for T2-w images,
3140.0, ranging from 2259.0 to 8002.0 msec; TE for T2-w images, 84.5,
ranging from 80.0 to 121.1 msec; TR for CET1-w images, 520.0, ranging
from 300.0 to 700.0 msec; TE for CET1-w images, 9.8, ranging from 7.4
to 16.00 msec; matrix, 256 × 256 to 624 × 640; field of views (FOV),
200 × 200 to 280 × 280 mm; and in-plane resolution: 0.35 × 0.35 to
0.78 × 0.78mm. MR imaging parameters at WZRCH are as follows: sec-
tion thickness, 5–5.5 mm mm; intersection gap, 1.5–1.65 mm; TR for
axial T1-w images, 500.0, ranging from: 400.0 to 500.0 msec; TE for
T1-w images, 8.0, ranging from 8.2 to 11.0 msec; TR for T2-w images,
4000, ranging from 4000.0 to 5860.0 msec; TE for T2-w images: 99.0,
ranging from 98.0 to 103.0 msec; TR for CET1-w images, 668.0, ranging
from 500.0 to 1060.0 msec; TE for CET1-w images, 8.0, rangingfrom 8.0
to 11.00 msec; matrix, 256 × 192 to 512 × 512; FOV, 200 × 200 to 280
× 280 mm; and in-plane resolution, 0.37 × 0.37 to 0.97 × 0.97 mm.

For tumor segmentation, T1-w, CET1-w, and T2-w images in theDig-
ital Imaging and Communications inMedicine (DICOM) format for each
patient were retrieved from the picture archiving and communication
system (PACS; GE healthcare centricity RIS CE Carestream, Ontario,
Canada). A region of interest (ROI) was manually delineated around
the tumor outline for the largest axial area on two-dimensional (2D)
T1-w, CET1-w, and T2-w images. The process of segmentationwas com-
pleted by an experienced radiologist with N15 years of work experience
using the RadiAnt software (open-source software; available at http://
www.radiantviewer.com). The accuracy of segmentation was then
checked by a radiologist with 20 years of work experience.
2.3. Features extraction methodology

After tumor segmentation, the T1-w image, T2-w image, CET1-
w and T1-w subtraction image, and the segmented tumor area
were transferred to the imaging biomarker explorer software for
feature extraction (http://bit.ly/IBEX_MDAnderson). Most feature
extraction methods conform to the Imaging Biomarker Standardi-
zation Initiative (IBSI) standard [29]. A total of 1176 features
were extracted from ROI. Among those, 392 features from T2-w
images, 392 features from T1-w images and remaining 392 features
from subtraction images (generated by CE-T1w image minus T1-w
image and reflecting the level of tumor enhancement). All features
were calculated using Matlab R2016a (MathWorks, Natick, MA,
USA), detailed definition of features are described in Supplementary
Methods. These 1176 features were divided into three groups
as follows:

2.3.1. Shape features
Shape features describe the shapes of segmented ROI areas, includ-

ing 11 features extracted from T2-w images, T1-w images and subtrac-
tion images, respectively (totaling 33 features) as follow: number of
pixel, shape perimeter, surface density, sphericity, spherical dispropor-
tion, roundness, orientation, number of ROI, convex hull, shape convex
and shape compactness.

2.3.2. Intensity features
Intensity features reflect directly to the distribution of gray-

levels. We calculated the following typical features from seg-
mented ROI areas: energy, entropy, maximum, mean, median, min-
imum, standard error, uniformity, quartile range and kurtosis, and
we also exacted some features from intensity histogram and neigh-
bor intensity difference matrix. Finally, 121 features were extracted
from each MRI series (totaling 363 features). Intensity features
were divided into four groups as follows:

(1) Intensity Direct features: The first-order statistic of gray
levels, including Energy, Global Entropy, Global Max, Global
Mean, Global Median, Global Min, Global Standard Deviation,
Global Uniformity, Inter Quartile Range, Kurtosis, Local En-
tropy Max, Local Entropy Mean, Local Entropy Median, Local
Entropy Min, Local Entropy Standard Deviation, Local Range
Max, Local Range Mean, Local Range Median, Local Range
Min, Local Range Standard Deviation, Local Standard Devia-
tion Max, Local Standard Deviation Mean, Local Standard De-
viation Median, Local Standard Deviation Min, Local
Standard Deviation Standard Deviation, Mean Absolute Devi-
ation, Median Absolute Deviation, Percentile, Quantile, Range,
Root Mean Aquare, Skewness and Variance. ‘Global’ means
the whole interesting area, and ‘Local’ means the calculation
is on each pixels' certain neighborhood, and then compute
the statistic among all neighborhoods.

(2) Intensity Histogram features: These features are calculated
based on the gray level histogram from image inside the ROI,
including Interquartile Range, Kurtosis, Mean Absolute Devia-
tion, Median Absolute Deviation, Percentile, Percentile Area,
Quantile, Range and Skewness of the histogram.

(3) Intensity Histogram Gauss Fit features: These features are
calculated based on the method that fitting the gray level
histogram with Gaussian curves, including Amplitude, Area,
Mean, Standard Deviation and the number of Gaussian
curves to approximate the histogram.

(4) Neighbor Intensity Difference features: These features com-
pute the intensity difference matrix of each pixel in the inter-
esting area.

http://www.radiantviewer.com
http://www.radiantviewer.com
http://bit.ly/IBEX_MDAnderson
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2.3.3. Textural features
Textural features are used to quantify the spatial distribution of pixel

intensities. There are mainly two types of textural features: gray level
co-occurrence matrices (GLCM) and gray level run-length matrices
(GLRLM).

(1) GLCM: GLCMis defined over a grayscale image to calculate the
co-occurrence between two gray levels from certain angle and
length. In our study, we chose directions from (0°, 45°, 90°,
135°) and distance from (2 pixel, 4pixel, 8 pixel) to get different
matrices, then eachmatrix's autocorrelation, cluster prominence,
cluster shade, cluster tendency, contrast, correlation, difference
entropy, dissimilarity, energy, entropy, homogeneity, informa-
tionmeasures of correlation, inverse differencemoment normal-
ized, inverse variance, maximum probability, sum average, sum
entropy, sum variance and variance were calculated. Finally we
obtained 216 GLCM features for each MRI series (totaling 648
features).

(2) GLRLM: As for GLRLM, it represents the number of runs with
pixels of certain gray level and run length. Choosing directions
from (0°, 45°, 90°, 135°) and calculating properties including
gray level nonuniformity, high gray-level run emphasis, long
run emphasis, long run high gray-level emphasis, long run low
gray-level emphasis, low gray-level run emphasis, run length
nonuniformity, run percentage, short run emphasis, short run
high gray-level emphasis, short run low gray-level emphasis,
we got 44 features of GLRLM (totaling 132 features).

2.4. MRI normalization

Considering that our MRI images were obtained using four differ-
ent scanners, which might have caused inconsistency in acquisition
and reconstruction parameters, a harmonization method named Com-
Bat [26–28,30,31] was used to correct the scanner effect based on the
observed feature values. The harmonization method of ComBat was
used to correct the scanner effect based on the observed feature
values. We divided our data into four batches according to the differ-
ent types of MRI scanners, one batch obtained using Signa EXCITE at
SYSUCC (Signa CV/i; General Electric Healthcare, Chalfont St. Giles,
United Kingdom), one batch obtained using Signa HDx at SYSUCC
(Signa CV/i; General Electric Healthcare, Chalfont St. Giles, United
Kingdom), one batch obtained using SIEMENS Espree at SYSUCC (Sie-
mens Healthcare, Erlangen, Germany), and one batch obtained using
SIEMENS Novus15 at WZRCH (Siemens Healthcare, Erlangen,
Germany). The harmonization methods have been described in detail
in Supplementary Methods.

2.5. Methodology of feature selection

Feature selection was conducted based on prognostic performance
and stability of features in the training cohort (n=360). Theworkflow
for feature selection is detailed in Supplementary Fig. 1 a. The ratio of pa-
tientswhodidnotexperience local recurrence(n=324)tothosewhoex-
periencedlocalrecurrence(n=36)was9:1.Consideringtheimbalanceof
data, random undersampling was used to balance class distribution by
randomly eliminatingmajority class examples [32]. Undersampling is a
popular technique forunbalanceddatasets to reduce theskewinclassdis-
tributions. After randomundersampling, 135patientswere randomly se-
lected from324 non-recurrent cases. These non-recurrent 135 cases and
36 recurrent cases constituted a new training set (n=171).

The recursive feature elimination (RFE) [33] algorithm was
employed to select the most powerful features to predict local recur-
rence using Python software (version 3.6.0; https://www.python.org).
The RFE method is also a kind of wrapper. It uses a base model to per-
form multiple rounds of training. After each round of training, the
features with the smallest weight coefficients are eliminated, and the
next round of training is based on the new feature set. In our paper,
the classifier used in RFE was the regularized logistic regression impos-
ing L2-norm as the penalty term [34]. The use of the penalty term
reduces overfitting and makes the solution much more stable and fast.

Among the 1176 extracted features, the remaining number of se-
lected features was initially set to 17 [35], which is one-tenth the num-
ber of the new training set (n = 171). The specific steps implemented
were as follows. First, the estimator of the logistic regression model
was trained on 1176 features, and the importance of each feature was
determined using the “coef_” attribute. Second, the feature with the
smallest absolute value coefficient was pruned from the current set of
features. Third, the newmodel was trained with the new 1175 features.
The procedure was recursively repeated using the pruned set until the
desired number of 17 features for selection was eventually reached.
The detailed information of the 17 selected features is shown in our
Supplementary Fig. 1 b.

After preliminary feature selection, interobserver variation in man-
ual segmentation was quantitatively evaluated using the multiple seg-
mentation test to measure the stability of the 17 selected features.
Four radiation oncologists from our institute manually contoured the
ROIs at the largest axial T1-w, CET1-w, and T2-w scans from30patients.
For results about ROI delineation, the four radiation oncologists were
blinded to each other. The Friedman test was applied in the multiple
segmentation test to verify the stability of the 17 features by using R
software (version 3.4.4; http://www.Rproject.org). The Friedman test
(non-parametric repeated measurement test) is a non-parametric test
for testing the difference between several related samples. The null hy-
pothesis for the Friedman test is that there are no differences between
the samples. If the calculated probability is low (P value less than the se-
lected significance level, 0.05), the null-hypothesis is rejected and it can
be concluded that at least 2 of the samples are significantly different
from each other, namely the feature is unstable, otherwise the feature
is stable. According to the results of Friedman test for four different seg-
mentations,we selected the top 15 featureswith a P value N.5, whichwe
believed were stable and not affected by variability in segmentation,
and removed two unstable feature. The detail information of the re-
maining 15 features and their respective P values is shown in Supple-
mentary Fig. S1b.

Finally, to ensure robustness and prevent overfitting, we used a 10-
fold cross-validation for features (R 3.4.4). According to the P value of
each variable after the univariate Cox proportional hazards regression
analysis, 15 variables were sorted. Then,the multivariate Cox model
consisted of the top 11 features with the highest performance. As
shown in Supplementary Fig. 1 c, when thenumber of variables increased
to 11, the average value of the C index was the highest. Therefore, we
choose the top 11 variables after sorting as the final model variables.

2.6. Building and validation of radiomics signature and radiomics
nomogram

The radiomics score (Radscore, which was defined as the radiomics
signature in the current research) was computed in the training cohort
by determining a linear combination of the above finally selected fea-
tures with their respective coefficients weighted by the Cox propor-
tional hazards regression model. The correlations between the
Radscore and LRFSwere first assessedwith the Cox proportional hazard
regression model in the training cohort and then validated in the inter-
nal and external validation cohorts.

We further built a radiomics nomogram that integrated both the
Radscore and other significant clinical risk factors for predicting local re-
currence in the training cohort. By applying X-tile software (version
3.6.1; Yale University School of Medicine, New Haven, CT, USA), we
identified the cut-off value in the training cohorts for the radiomics
nomogram-defined score, after which this cutoff score was applied in
the two validation cohorts. Based on the cutoff values, patients in the

https://www.python.org
http://www.Rproject.org


Table 1
Clinical characteristics and treatment parameters of patients with T4 disease nasopharyn-
geal carcinoma in the training and validation cohorts.

Characteristic Training
cohort
from
SYSUCC
(n = 360)
No. (%)

Internal validation
cohort from
SYSUCC
(n = 120)
No. (%)

External validation
cohort
from WZRCH
(n = 257)
No. (%)

P value

Age (years) 0.307
≥62 41 (11.4) 13 (10.8) 39 (15.2)
b62 319 (88.6) 107 (89.2) 218 (84.8)

Gender 0.999
Male 270 (75.0) 90 (75.0) 193 (75.1)
Female 90 (25.0) 30 (25.0) 64 (24.9)

WHO pathology b0.001
Type I 3 (0.8) 2 (1.7) 16 (6.2)
Type II-III 357 (99.2) 118 (98.3) 241 (93.8)

Family history
of NPC

b0.001

No 265 (73.6) 81 (67.5) 249 (96.9)
Yes 95 (26.4) 39 (32.5) 8 (3.1)

Smoking b0.001
No 212 (58.9) 72 (60.0) 208 (80.9)
Yes 148 (41.1) 48 (40.0) 49 (19.1)

Drinking 0.524
No 299 (83.1) 102 (85.0) 222 (86.4)
Yes 61 (16.9) 18 (15.0) 35 (13.6)

Pretreatment
HGB (g/L)

b0.001

≥120 333 (92.5) 107 (89.2) 200 (77.8)
b120 27 (7.5) 13 (10.8) 57 (22.2)

Pretreatment
CRP (mg/L)

0.012

≥8.2 67 (18.6) 10 (8.3) /
b8.2 293 (81.4) 110 (91.7) /

EBV-DNA
(copies/mL)

b0.001

≥4000 218 (60.6) 74 (61.7) 45 (17.5)
b4000 142 (39.4) 46 (38.3) 212 (82.5)

LDH, U/L
≥245 34 (9.4) 9 (7.5) /
b245 326 (90.6) 111 (92.5) /

ALB, g/L 0.164
≥35 352 (97.8) 118 (98.3) 245 (95.3)
b35 8 (2.2) 2 (1.7) 12 (4.7)

Cumulative
dose to GTVp,
Gy

0.838

≥68 333 (92.5) 109 (90.8) 236 (91.8)
b68 27 (7.5) 11 (9.2) 21 (8.2)

GTVp, cm3 b0.001
≥93.7 138 (38.3) 37 (30.8) 136 (52.9)
b93.7 222 (61.7) 83 (69.2) 121 (47.1)

Chemotherapy 0.035
No 13 (3.6) 2 (1.7) 18 (7.0)
Yes 347 (96.4) 118 (98.3) 239 (93.0)

Statistical comparisons between the training and two validation cohorts were computed
using the Chi-square test. A P-value of 0.05 indicates a significant difference. Abbrevia-
tions: SYSUCC, Sun Yat-sen University Cancer Center; WZRCH, Wuzhou Red Cross Hospi-
tal; WHO, World Health Organization; LDH, lactate dehydrogenase; HGB, hemoglobin;
ALB, albumin; CRP, C-reaction protein; EBV-DNA, Epstein-Barr Virus DNA; GTVp, primary
gross tumor volume; /: missing data.

274 L.-L. Zhang et al. / EBioMedicine 42 (2019) 270–280
three cohorts were divided into high-risk and low-risk groups. The po-
tential association of the radiomics nomogram-defined score and LRFS
was first assessed in three training cohorts and then validated in the in-
ternal validation and external validation cohorts by using Kaplan-Meier
survival analysis in the high-risk and low-risk groups.

2.7. Statistical analysis

Statistical analyses were conducted using R software (version 3.4.4)
and SPSS version 23.0 (IBMCorp, Armonk, NYUSA). LRFSwas calculated
using the Kaplan-Meier method and survival curves were compared
using log-rank tests. Univariate and multivariate Cox proportional haz-
ard regression was performed using SPSS to identify independent prog-
nostic factors for LRFS. Radscore and 14 other candidate predictors as
shown in Table 1 were included in univariate Cox proportional hazard
regression analysis for constructing a nomogram. Age and GTVp were
classified into two groups according to the cutoff value determined by
X-tile. The other continuous clinical variables were translated into cate-
gorical variables on the basis of routine cutoff points in clinical applica-
tion [36]. Clinical and characteristics and treatment methods between
the groups were compared using the Chi-square test. Variables achiev-
ing significance at a level of P b .05 in univariate Cox proportional hazard
regression were included in multivariate Cox proportional hazard re-
gression for selection of independent prognostic factors. The relative
hazard ratio (HR) and its 95% confidence interval (CI) were calculated
from Cox regression analysis.

Webuilt a radiomicsnomogramwith the coefficientsweightedby the
multivariateCoxproportionalhazard regressionmodel in the training co-
hort using R software. Calibration curves, which indicated the calibration
ability of the nomogram,were assessed graphically by plotting the actual
observed survival rates and the nomogram-predicted survival rates. The
discrimination performance of nomogramswasmeasured quantitatively
by Harrell's concordance indices (C-index), whichwasmeasured using R
software (version 3.4.3.) and the Hmisc package. We also developed a
clinical nomogram using significant clinical factors without Radscore.
We further assessed the prognostic performance of Radscore, clinical fea-
tures, andnomogramsbycalculating theareaunder the receiveroperator
characteristic (ROC) curve (AUC). A two-sided P value was always com-
puted, with statistical significance set at 0.05.

3. Results

3.1. Clinical characteristics

The workflow of the current study is shown in Fig. 1. The detailed
clinical characteristics and treatment parameters of patients with T4
NPC in the training cohort and the two validation cohorts are shown
in Table 1 and Supplementary Table S1. The median follow-up duration
was 46.2 months (6.9–96.4) for the training cohort, 45.6 months
(10.8–95.6) for the internal validation cohort, and 45.3 months
(7.2–69.3) for the external validation cohort. In the last follow-up, 36
(10.0%) patients in the training cohort, 12 (10.0%) in the internal valida-
tion cohort, and 17 (6.6%) in the external validation cohort experienced
local recurrence.

3.2. Radscore building and validation

A total of 1176 features were extracted from the defined tumor,
which was contoured on the MR tumor image in the training cohort:
392 features from T2-w images, 392 features from T1-w images, and
the remaining 392 features from the CET1-w and T1-w subtraction im-
ages. We identified 17 features (3, 6, and 8 features selected from the
T2-w, T1-w, and subtraction images, respectively) associated with
LRFS using recursive feature elimination analysis. Among these 17 fea-
tures, 15 features (3, 6, and 6 features selected from the T2-w, T1-w,
and subtraction images, respectively) were shown to be robust in
multiple segmentation tests. To ensure robustness and prevent
overfitting, these 15 features were subjected to 10-fold cross-
validation individually. Finally, 11 features (1, 5, and 5 features selected
from T2-w, T1-w, and subtraction images, respectively) were selected
(Supplementary Fig. S1). The detailed descriptions of these 11 features
and the corresponding coefficients for the selected features in the for-
mula for Radscore are shown in Supplementary Table S2. The calculation
formulas for Radscore are listed in Supplementary Methods. The
Radscores for each patient in the training cohort are presented
in Fig. 2a–c. The Radscore yielded a C-index of 0.741 (95% CI:
0.635–0.848) for the training cohort. The good prognostic performance



Fig. 1. Study workflow. NPC = nasopharyngeal carcinoma; SYSUCC = Sun Yat-sen University Cancer Center; MRI = magnetic resonance imaging; T1-w = T1-weighted; CET1-w =
contrast-enhanced T1-weighted; T2-w = T2-weighted; WZRCH= Wuzhou Red Cross Hospital.
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of the Radscorewas further validated in the two independent validation
cohorts: the Radscore yielded a C-index of 0.753 (95% CI: 0.618–0.887)
for the internal validation cohort and 0.730 (95% CI: 0.587–0.873) for
the external validation cohort (Table 2).

3.3. Univariate and multivariate analyses of the risk factors for LRFS

Univariate analysis results for LRFS in the three cohorts are shown in
Supplementary Fig. S2, which showed a significant association between
the Radscore and LRFS in all cohorts. The results ofmultivariate analysis
indicated that for the training cohort, Radscore (HR = 2.050, 95% CI:
1.542–2.726, P b .001), GTVp (HR = 2.641, 95% CI: 1.330–5.244, P =
.006), and age (HR =3.066, 95% CI: 1.385–5.244, P = .006) were inde-
pendent risk factors; for the internal validation cohorts, Radscore
(HR = 1.684, 95% CI: 1.068–2.653, P = .025) and GTVp (HR = 3.567,
95% CI: 1.062–11.976, P = .040) were independent risk factors; and
for the external validation cohort, Radscore (HR = 1.736, 95%
CI: 1.150–2.620, P = .009), and age (HR = 3.032, 95% CI: 1.104–8.321,
P = .031) were independent risk factors (Supplementary Table S3).

3.4. Radiomics nomogram building and validation

We further visualized the results of multivariate analysis of LRFS as a
radiomics nomogram to predict the LRFS in the training cohort, as
shown in Fig. 3a. The variables in the radiomics nomogram included
Radscore, GTVp, and age. For the training, internal, and external valida-
tion cohorts, the C-index of the radiomics nomogram for LRFS predic-
tion was 0.810 (95% CI, 0.692–0.928), 0.807 (95% CI, 0.700–0.914), and
0.753 (95% CI, 0.654–0.851), respectively (Table 2). Among single vari-
ables, the Radscore (C-index: 0.741, 95% CI: 0.635–0.848; 0.753, 95%
CI: 0.618–0.887; 0.730, 95% CI: 0.587–0.873) outperformed GTVp (C-
index: 0.665, 95% CI: 0.518–0.813; 0.672, 95% CI: 0.488–0.857; 0.577,
95% CI: 0.423–0.713) and age (C-index: 0.571, 95% CI: 0.427–0.714;
0.629, 95% CI: 0.488–0.857; 0.605, 95% CI: 0.455–0.755) in predicting



Fig. 2. Radscore and radiomics nomogram-defined scores for each patient with non-metastatic T4 NPC. Radscore in the training cohort, N = 360 (a); Radscore in the internal validation
cohort, N = 120 (b); Radscore in the external validation cohort, N = 257(c); radiomics nomogram-defined score in the training cohort (d); radiomics nomogram-defined score in the
internal validation cohort, N = 120 (e); radiomics nomogram-defined score in the external validation cohorts (f). Green bars represent the scores for patients who did not show local
recurrence, while red bars represent the scores for those who showed local recurrence. NPC = nasopharyngeal carcinoma.

276 L.-L. Zhang et al. / EBioMedicine 42 (2019) 270–280
LRFS (Supplementary Table S4). The calibration plot for the probability of
LRFS presented excellent agreement between nomogram prediction
and the actual observed LRFS in the training and two independent
cohorts (Fig. 3b–d). The radiomics nomogram-defined scores for each
patient in the three cohorts are presented in Fig. 2d–f.

To determine the complementarity of the prognostic performance of
Radscore to other clinical risk factors, we developed another clinical no-
mogram based on age and GTVp but without Radscore in the training
cohort (Supplementary Fig. S3). The C-index of the clinical nomogram
for LRFS prediction was 0.696 (95% CI, 0.533–0.860) in the training co-
hort, 0.726 (95% CI, 0.528–0.923) for the internal validation cohort,
and 0.666 (95% CI, 0.429–0.904) for the external validation cohort
(Table 2). The radiomics nomogram showed obviously better predictive
performance in comparison with the clinical nomogram. The clinical
nomogram-defined scores for each patient in the three cohorts are pre-
sented in Supplementary Fig. S4.

To substantiate the prognostic value of the radiomics nomogram,
ROC analysis was conducted to evaluate the sensitivity and specificity
of Radscore (areas under the curve [AUCs]: 0.756, 0.772, and 0.731; sen-
sitivity: 0.778, 0.666, and 0.824; specificity: 0.676, 0.676, and 0.625),
GTVp (AUCs: 0.642, 0.699, and 0.595; sensitivity: 0.639, 0.667, and
0.706; specificity: 0.945, 0.731, and 0.484), age (AUCs: 0.560, 0.625,
and 0.608; sensitivity: 0.222, 0.333, and 0.353; specificity: 0.898,
0.917, and 0.863), clinical nomogram (AUC: 0.668, 0.740, and 0.673;
sensitivity: 0.645, 0.750, and 0.824; specificity: 0.639, 0.667, and
0.433), and radiomics nomogram (AUC: 0.794, 0.832, and 0.759; sensi-
tivity: 0.806, 0.648, and 0.765; specificity: 0.710, 0.917, and 0.671) in
Table 2
Performance of models.

Models C-index (95% CI)

Training cohort from SYSUCC
(n = 360)

Internal
(n = 12

Radscore 0.741 (0.635, 0.848) 0.753 (0
Clinical nomogram 0.696 (0.533 0.860) 0.726 (0
Radiomics nomogram (Radiomics +
clinical)

0.810 (0.692,0.928) 0.807 (0

Abbreviations: SYSUCC, Sun Yat-sen University Cancer Center; WZRCH, Wuzhou Red Cross Ho
the training, internal validation, and external validation cohorts.
Among these, the radiomics nomogram showed the highest accuracy
(Fig. 4). Additionally, the balanced accuracy, sensitivity, specificity,
and AUC for the training cohort after random undersampling
(Supplementary methods) were 0.749, 0.778, 0.741, and 0.807,
respectively.
3.5. Subgroup survival analysis stratified by the radiomics nomogram

Using X-tile software, the optimal radiomics nomogram-defined
score value of 3.0 (Supplementary Fig. S5) for LRFS prediction was de-
termined as the cutoff value in the training cohort and the patients
were assigned to high-risk and low-risk groups. Accordingly, 123
(34.2%), 46 (38.3%), and 112 (43.6%) patients were categorized into
the high-risk group for the training, internal validation, and external
validation cohorts, and 237 (65.8%), 74 (61.7%), and 145 (56.4%) pa-
tients were assigned to the low-risk group, respectively. The number
of events is further listed in Supplementary Table S5. A subgroup survival
analysis showed that patients in the radiomics nomogram-defined
high-risk group showed a poor LRFS in the training cohort (3-year
LRFS: 76.5% vs. 98.6%; 5-year LRFS: 73.6% vs. 95.3%; HR 8.921,
3.905–20.382, P b .001), and this result was verified in the internal val-
idation (3-year LRFS: 82.2% vs. 95.8%; 5-year LRFS: 79.6% vs. 95.8%; HR
5.169, 1.399–19.100, P = .006) and external validation cohorts
(3-year LRFS: 90.2% vs. 97.6%; 5-year LRFS: 85.7% vs. 96.7%; HR 4.385,
1.430–13.451, P = .005, Fig. 5, Supplementary Table S5).
validation cohort from SYSUCC
0)

External validation cohort from WZRCH
(n = 257)

.618, 0.887) 0.730 (0.587, 0.873)

.528, 0.923) 0.666 (0.429, 0.904)

.700, 0.914) 0.753 (0.654, 0.851)

spital; C-index, Harrell's concordance indices; CI, confidence interval.



Fig. 3. Radiomics nomogram to predict the risk of local recurrence in patients with non-metastatic T4 NPC. Radiomics nomogram to predict local recurrence-free survival (a); calibration
curves of the radiomics nomogram to predict local recurrence-free survival probability at 3 and 5 years in the training cohort, N=360 (b); the internal validation cohort, N=120 (c); and
the external validation cohort, N = 257 (d). Nomogram-predicted probability of local recurrence is plotted on the x-axis; actual observed probability is plotted on the y-axis. NPC = na-
sopharyngeal carcinoma.
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For the whole cohort, survival outcomes were comparable between
the IC+CCRT (n=529), CCRT+AC (n=47), and CCRT-alone groups (n
= 128; 3-year LRFS: 91.9% vs 93.6% vs. 93.0%; 5-year LRFS: 89.1% vs.
93.6% vs. 90.6%; IC + CCRT vs. CCRT+AC: P = .598; IC + CCRT vs.
CCRT: P = .684; CCRT vs. CCRT+AC: P = .828). We applied our
radiomics nomogram to predict if patients could benefit from a specific
Fig. 4.Receiver operating characteristic (ROC) curves comparing the predictive power of the rad
predicting local recurrence in non-metastatic T4 NPC. (a) Training cohort, N=360; (b) internal
tumor volume; NPC = nasopharyngeal carcinoma.
therapy regimen. Within the high-risk group, patients receiving a cu-
mulative GTVp dose of ≥68 Gy achieved significantly better LRFS than
that achieved by those who received a cumulative GTVp dose of
b68 Gy (3-year LRFS: 84.1% vs. 69.8%; 5-year LRFS: 81.5% vs. 58.2%,
P = .036; Supplementary Fig. S6a). There was no difference in the
LRFS between patients who received a cumulative GTVp dose of
iomics nomogram, clinical nomogram, and individual factors of Radscore, GTVp, and age in
validation cohort, N=120; (c) external validation cohort, N=257; GTVp=primary gross



Fig. 5.Kaplan-Meier curves of local recurrence-free survival betweenhigh-risk and low-risk groups stratified by the radiomics nomogram in patientswith non-metastatic T4NPC. Training
cohort, N=360 (a); internal validation cohort, N=120 (b); external validation cohort, N=257 (c). P valueswere calculated using the log-rank test, HRswere calculated using univariate
Cox regression analysis. NPC, nasopharyngeal. The log-rank test was used to calculate P-values.
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≥68Gy and thosewho received a cumulative GTVpdose of b68Gy in the
low-risk group (3-year LRFS: 98.1% vs. 94.2%; 5-year LRFS: 95.8% vs.
94.2%, P = .481; Supplementary Fig. S6b). Furthermore, both within
the high-risk (3-year LRFS: 83.5% vs 75.0% vs. 84.4%; 5-year LRFS:
79.5% vs. 75.0% vs. 84.4%; IC + CCRT vs. CCRT+AC: P = .359; IC
+ CCRT vs. CCRT: P= .689; CCRT vs. CCRT+AC: P= .291; Supplemen-
tary Fig. S6c) and low-risk groups (3-year LRFS: 97.6% vs 100.0% vs.
97.2%; 5-year LRFS: 95.8% vs. 100.0% vs. 93.7%; IC + CCRT vs. CCRT
+AC: P = .302; IC + CCRT vs. CCRT: P = .500; CCRT vs. CCRT+AC: P
= .231; Supplementary Fig. S6d), there was no difference in the LRFS
between patients who received IC + CCRT, CCRT+AC, and CCRT alone.

4. Discussion

In this multicenter study, we developed and validated the feasibility
of applying an MR imaging-based radiomics signature named Radscore
for non-invasive prediction of local recurrence in T4 disease NPC before
making treatment-related decisions. The Radscore developed in our
study showed good prediction performance, and its prognostic perfor-
mance was significantly better than those of the other clinical variables
in predicting LRFS. We further presented and validated a radiomics no-
mogram that integrated Radscore and clinical variables for prediction of
local recurrence; the nomogram achieved a satisfactory discrimination
performance (C-index in the training, internal, and external validation
cohorts: 0.810 vs. 0.807 vs. 0.753.

The emerging use of IMRT for the treatment of NPC has narrowed
the prognostic differences between T1, T2, and T3 NPC (10-year LRFS:
94.2%, 92.5%, and 91.4% for T1, T2, and T3 disease, respectively) [3].
However, achievement of a favorable prognosis remains a challenge
for T4 NPC (10-year LRFS: 79.3% for T4 disease). Although previous
studies have indicated that a variety of clinical covariates such as T
stage, age, WHO histologic type, primary gross tumor GTVp, lactate de-
hydrogenase (LDH) levels, andmolecular biomarkers such asmicroRNA
and leukemia inhibitory factor (LIF) are associatedwith local recurrence
in NPC [36–42], none of them is sufficiently accurate in routine practice
to identify patients at a high risk of local recurrence. In the current
study, we determined the Radscore, which was powerful in predicting
the risk of local recurrence in T4NPC (C-index values for the training, in-
ternal validation, and external validation cohorts: 0.741, 0.753, 0.730),
and was significantly better than the other clinical risk factors. The
strong predictive performance of Radscore may be attributable to the
fact that unlike previously reported clinical covariates and molecular
biomarkers, radiomics may be an effective approach to visualize and
quantify intra-tumor heterogeneity [8,19,20]. Considering the presence
of intra-tumor heterogeneity, which was acknowledged as a feature of
malignancy, the surviving tumor cell sub-lines that are resistant to
treatment may cause local recurrence or distant metastasis [43–45].
Radiomics has emerged as a non-invasive and cost-effective method
to interpret such intra-tumor heterogeneity by high-throughput and
objective mining of quantitative image features from medical images,
thereby providing valuable information for prognostication in clinical
settings.

Several previous studies have reported the association between
radiomics and clinical outcomes in a range of cancer types [10–18].
Although radiomics signatures have been identified to evaluate
progression-free survival in patients with stage III-IV NPC as well as to
predict early responses to induction chemotherapy in patients with
stage II-IV NPC [14–16,24], the association between radiomics and
local recurrence for NPC has not yet been investigated. In addition, in
comparison with previous studies on radiomics and PFS in NPC, which
used small sample sizes for training (70 to 88 cases) and validation
(30 to 33 cases), our study used large-scale training (360 cases) and
two independent validation cohorts (120 and 257 cases, respectively).

One issue associated with the use of radiomics in MR imaging is the
variability between imaging scanners and imaging acquisition parame-
ters across hospitals.We applied a ComBat harmonizationmethod, pre-
viously described for radiomic studies, to correct the so-called batch
effect [26–28]. The ComBat method was first and has since been widely
used to adjust for batch effects in genomics, where a batch refer to the
differences of a technical nature between datasets but does not reflect
biological variation [30,31]. This is similar to the scanner effect in
radiomics. Several previous studies reported that Combat methods
makes it possible to remove the multicenter effect for radiomics fea-
tures selected from CT/ positron emission tomography (PET) /PET
and MR images [26–28]. Consistent with previous studies, the MR
imaging-based radiomics signature developed in our studywas success-
fully validated in an independent external cohort aftermulticentric har-
monization of the features.

To establish the radiomics signature, data dimensionality reduction
was performed on 1176 extracted features by recursive feature elimina-
tion, multiple segmentation test, and 10-fold cross-validation. Tumor
segmentation is critical for radiomics since features are extracted from
segmented areas. ROIs are segmented manually, and the resultant vari-
ability in segmentation may introduce a bias in the extraction of fea-
tures. However, most previous radiomics studies did not take this
issue into account. In the current study, multiple segmentation tests
were performed by four radiation oncologists who were blinded to
each other's assessments to select robust features that are not affected
by variability in segmentation. Through this process, we identified the
Radscore consisting of 11 features that achieved good performance in
predicting local recurrence in the training cohort and validated the re-
sults in the internal and external validation cohorts. To provide a clini-
cally applicable method for individual prediction of local recurrence,
we further generated a radiomics nomogram that integrated both the
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Radscore and other significant clinical risk factors in the training cohort.
The C-index of the radiomics nomogram was higher than that of the
clinical nomogram (which only consisted of clinical risk factors) and
the Radscore, indicating that the prognostic performance of the
radiomics nomogram was the highest. The performance of the nomo-
gram was further verified in two validation cohorts. This conclusion
was also supported by the results of the ROC analysis. In the current
study, the radiomics nomogram-defined high-risk patients benefited
from a cumulative GTVp dose of ≥68 Gy while the low-risk patients
did not. These findings provided a new insight into the future delivery
of IMRT; high-risk patients should receive more intense treatment. Fu-
ture studies are needed to validate our findings.

There were two limitations of the current research that still need
to be addressed. First, a prospective study is still warranted to con-
firm the conclusions of the current study. Second, in this research,
features were extracted from the largest axial area of tumor on a
2D single slice, whereas previous radiomics studies were mainly
based on three-dimensional (3D) image analysis. Theoretically, a
3D whole-tumor analysis can better represent tumor heterogeneity.
However, a study conducted by Lubner et al. [46] revealed that a 2D
single slice texture analysis affords fairly comparable results to those
afforded by 3D whole-tumor analyses. Moreover, another study by
Huang et al. [21] demonstrated that satisfactory results were
achieved based on a 2D single slice analysis for predicting lymph
node metastasis in patients with colorectal cancer. In addition, a
whole-tumor analysis is more time-consuming. Although a 3D
(semi)automatic segmentation tool could be considered to address
this issue, the truth is that, semi-automatic segmentation is only ap-
plicable to tumors with large differences in signal intensity between
lesions and surrounding tissues [47]. This is observed in lung tumors
[48,49]. However, semi-automatic augmentation may not be appli-
cable to NPC due to the unclear borders between lesions and sur-
rounding tissues, especially for the scope of skull base invasion.
Therefore, we selected a 2D radiomics analysis in the current study.
Similar to prior 2D radiomics analyses in various type of cancers,
our results confirm the good predictive performance of 2D studies
in T4 NPC. Considering the potential limitation of 2D radiomics anal-
yses, a future radiomics analysis in full 3D for comparison is
required.

In conclusion, we have identified and validated a 11-feature
Radscore as a powerful prognostic tool for predicting local recur-
rence in patients with non-metastatic T4 NPC. This study also pre-
sented and validated a radiomics nomogram that integrated
Radscore and clinical risk factors and can be conveniently used for
accurate pretreatment individualized prediction of local recurrence.
Our results may facilitate the treatment decision-making process in
individual cases.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.03.050.
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