
Evidence from GC-TRFLP that Bacterial Communities in
Soil Are Lognormally Distributed
James R. Doroghazi1, Daniel H. Buckley2*

1 Department of Microbiology, Cornell University, Ithaca, New York, United States of America, 2 Department of Crop and Soil Sciences, Cornell University, Ithaca, New

York, United States of America

Abstract

The Species Abundance Distribution (SAD) is a fundamental property of ecological communities and the form and
formation of SADs have been examined for a wide range of communities including those of microorganisms. Progress in
understanding microbial SADs, however, has been limited by the remarkable diversity and vast size of microbial
communities. As a result, few microbial systems have been sampled with sufficient depth to generate reliable estimates of
the community SAD. We have used a novel approach to characterize the SAD of bacterial communities by coupling
genomic DNA fractionation with analysis of terminal restriction fragment length polymorphisms (GC-TRFLP). Examination of
a soil microbial community through GC-TRFLP revealed 731 bacterial operational taxonomic units (OTUs) that followed a
lognormal distribution. To recover the same 731 OTUs through analysis of DNA sequence data is estimated to require
analysis of 86,264 16S rRNA sequences. The approach is examined and validated through construction and analysis of
simulated microbial communities in silico. Additional simulations performed to assess the potential effects of PCR bias show
that biased amplification can cause a community whose distribution follows a power-law function to appear lognormally
distributed. We also show that TRFLP analysis, in contrast to GC-TRFLP, is not able to effectively distinguish between
competing SAD models. Our analysis supports use of the lognormal as the null distribution for studying the SAD of bacterial
communities as for plant and animal communities.
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Introduction

The hollow curve of a species abundance distribution which

results when most species are rare and a few are abundant is one of

the few ecological patterns exhibited by almost all communities. A

range of factors such as birth, death, migration, niche adaptation,

lifestyle, chance, resource partitioning, and history can all

contribute to the formation of this characteristic hollow curve

(see [1] for review). The universality of this phenomenon is worthy

of study in its own right, but SADs can also be useful in making

predictions about community properties such as diversity and

migration [2].

While McGill et al [1] count at least 40 different models that

have been used to describe species abundance distributions, the

most commonly invoked models are those based on lognormal,

geometric, power-law, and Fisher’s log-series distributions. The

lognormal distribution in particular has been observed to

approximate species distributions in a wide range of communities

(e.g. [3,4]). One possible reason for the success of the lognormal, as

put forth by both May [5] and MacArthur [6] is that the

multiplicative combination of normally distributed factors would

result in lognormally distributed species’ abundances. The

lognormal SAD could also arise from other processes, including

niche-partitioning or as the limit of population dynamics [1,7,8,9].

The ecological processes that create these patterns, however,

remain nebulous and require further investigation.

Vast microbial communities can exist within a fairly small space

and as such microbial communities provide a potential opportu-

nity for experimental approaches to exploring the ecological

factors that influence SADs. Obtaining accurate SAD data from a

microbial community can be a daunting task, however, due to the

remarkable complexity of these communities [10]. Previous

estimates of the number of bacterial species present in soil vary

widely, from 46103 to 8.36106 taxa in 10–30 g of soil

representing around 108–1010 individuals [11,12]. Because we

are currently unable to culture the vast majority of bacteria, clone

libraries of 16S rRNA genes are generally used to characterize the

structure and composition of microbial communities. Samples of

several hundred 16S rRNA genes are common but fail to provide

sufficient data to effectively distinguish between competing models

of species abundance distributions [13,14,15,16]. One estimate of

the sampling required to encounter just half of the operational

taxonomic units (OTUs) present in one g of soil ranges from

16,284 to 44,000 [13]. Dunbar et al [13] have examined the SAD

of four different bacterial soil communities from Arizona by

sequencing 16S rRNA genes from each community. They found

that in 200 member surveys 93% of the species-level groups were

present only once, which is suggestive of inadequate sampling, as

pointed out by the authors [13]. Despite the sampling level, the

authors found that the available data best followed a lognormal

distribution. Likewise, Schloss and Handelsman [15] also found

evidence that a truncated lognormal distribution provided the
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most consistent approximation of the microbial community in an

Alaskan soil.

To assess the SAD of soil bacteria we have combined two common

techniques, terminal restriction fragment length polymorphism

(TRFLP) and density gradient centrifugation of community DNA.

TRFLP is a community fingerprinting method in which diverse gene

sequences are amplified by PCR using a fluorescently labeled primer.

The DNA is then cut with a restriction enzyme and the sizes of the

resulting mixture of labeled terminal restriction fragments (TRF) are

determined through fragment analysis. Closely related individuals

will typically generate a TRF of the same size, but in many cases

unrelated individuals will share a TRF and this result causes a loss of

information. Some of this information can be preserved by

fractionating the DNA prior to TRFLP analysis. Genomic DNA

can vary in mol% G+C content from 30% to 80% and can be

separated on this basis due to differences in DNA buoyant density in a

CsCl density gradient [17]. Holben et al. [17] have previously shown

GC-DGGE to be useful for examining rare bacterial community

members. Likewise, by using density-dependent fractionation of

genomic DNA prior to TRFLP profiling (GC-TRFLP) it is possible to

greatly increase the information available from the community by

decreasing the number of overlapping TRFs from unrelated bacteria.

One advantage of GC-TRFLP is that fragment separation is

completely independent of DNA G+C content. In contrast, fragment

separation in denaturing gradient gel electrophoresis is partly

dependent on DNA fragment G+C content and this may reduce

the potential resolution of GC-DGGE relative to GC-TRFLP. The

advantage of either GC-DGGE or GC-TRFLP in relation to clone

libraries is the ability to rapidly screen many taxa simultaneously and

at greatly reduced cost. While the OTUs defined from TRF data are

in no way comparable to bacterial species it should be noted that a

similar limitation exists in the analysis of 16S rRNA gene sequences.

It has been well documented that 16S rRNA sequence similarity

cutoffs used to define operational taxonomic units are arbitrarily

assigned and do not correspond to an ecologically meaningful species

concept [18]. Regardless, the examination of discrete units of genetic

diversity can help to provide insights on the factors that govern the

structure of microbial communities.

Clearly any approach for assessing microbial community

structure must be evaluated with respect to whether the sampling

depth achieved is sufficient to provide useful information about the

community distribution [10]. To evaluate the ability of the GC-

TRFLP approach to accurately estimate community distributions

we have created artificial communities with known species

abundance distributions and subjected them to GC-TRFLP in

silico. Distributions were estimated for GC-TRFLP data from real

and simulated communities using an iterative algorithm that

estimates distribution parameters by minimizing x2 between

observed and modeled data. This approach was also used to

contrast the abilities of TRFLP and GC-TRFLP to recapitulate

community SAD and to examine the potential impact of PCR bias

on the accuracy of microbial community SAD estimation.

Results

GC-TRFLP of a soil community
A single soil sample was subjected to both TRFLP and GC-

TRFLP analysis of bacterial 16S rRNA genes. GC-TRFLP

identified 731 OTUs, defined by genome G+C content and TRF

size (Figures 1 and 2). In contrast, TRFLP analysis of the same DNA

sample resulted in 173 discrete TRFs (Figures 2 and 3). To facilitate

comparison with TRFLP, the TRFs from GC-TRFLP were

composited without respect to genome G+C content and their

cumulative peak heights summed (Figure 3). GC-TRFLP generated

a total of 359 distinct TRFs demonstrating that GC-TRFLP

enhanced recovery of TRFs not accessible through conventional

TRFLP; as has been previously suggested for a similar method [17].

A total of 85.5% of the TRFs detected in TRFLP were also detected

in GC-TRFLP (Figure 3). Variation between TRFLP and composite

GC-TRFLP increased as a function of rank abundance suggesting a

relationship between peak height and variance in peak height which

might be expected for these data (Figure 4).

Testing the ability of GC-TRFLP to estimate community
SAD

To test the validity of estimating community SAD from GC-

TRFLP data we have created a range of artificial communities by

Figure 1. Plot of GC-TRFLP data for a soil sample indicating
TRFLP results for CsCl gradient fractions containing DNA of
different G+C content. Peaks are colored based on height to increase
contrast between peaks.
doi:10.1371/journal.pone.0002910.g001

Figure 2. Rank abundance of both GC-TRF and TRF peak height
values for GC-TRFLP and TRFLP performed on the same soil
sample. The GC-TRFLP data represents 731 OTUs, while the TRFLP data
represents 173 peaks.
doi:10.1371/journal.pone.0002910.g002

Soil Bacterial Community SAD
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drawing sequences at random from a public database and assigning

different abundance values to these sequences by using one of several

known distributions. GC-TRFLP was performed in silico on these

communities and the resulting GC-TRFLP data was used to

estimate the SAD of the artificial communities. The results show that

in every case the K-S test rejects all distributions except the one

which matched the underlying distribution (Table 1). Due to the

flexibility of the lognormal distribution, fitting with the lognormal

was able to minimize the x2 value for non-lognormally distributed

communities almost as well as the distributions that were used to

generate those communities (Table 1). For instance, the x2 value for

a lognormal distribution fit to a community created with a power-law

distribution is 65.7, whereas the best fitting power-law estimate for

that community gives a x2 value of 60.1. Despite this flexibility, the

D-statistic is clearly able to reject the lognormal in cases where it does

not represent the true distribution of the community (Table 1). This

result suggests that while the lognormal is flexible the K-S test has

sufficient power to reject distributions derived from GC-TRFLP

data when they do not accurately represent the underlying

community.

Estimating the SAD of the soil community from GC-
TRFLP

The lognormal distribution was found to provide the best fitting

estimate to the GC-TRFLP data from soil (Table 2, Figure 5). The

K-S test could not reject the null hypothesis that the lognormal

estimate and the GC-TRFLP data were from the same

distribution (p-value 0.657). In contrast, the K-S test rejected all

other distributions tested (Table 2). As expected, data derived from

TRFLP analysis had less ability to exclude potential distributions

than GC-TRFLP (Figure 6). From the TRFLP data we could

reject the geometric distribution and narrowly rejected Fisher’s

distribution, but could not distinguish between the power and

lognormal distributions (Table 3).

Evaluating the effect of PCR bias on SAD estimates
With exceptions [11,19] nearly all methods used to asses

bacterial SAD depend on the analysis of genes amplified by PCR.

The potential for the relative abundance of gene sequences to

change during PCR is well known but the systematic effect of PCR

Figure 3. GC-TRFLP and TRFLP electropherograms plotted on
offset baselines. The composite GC-TRFLP was created by collapsing
the fraction axis, adding the peak height of identical TRFs across
fractions. Peaks are represented as a proportion of total peak height.
doi:10.1371/journal.pone.0002910.g003

Figure 4. Comparison of differences in relative peak height
between composite TRFs from GC-TRFLP and matching TRFs
from TRFLP which shows that variation in peak height between
TRFLP and GC-TRFLP increases with increasing peak height.
Comparison is ordered based on peak rank in composite GC-TRFLP.
doi:10.1371/journal.pone.0002910.g004

Table 1. Evaluation of distributions that were fit to simulated
GC-TRFLP of artificial communities when the original
distributions of those communities were known.

Original Estimate x2 D-statistic p-value

Lognormal Lognormal 63.1 0.031 0.826*

Power Power 60.1 0.033 0.797*

Geometric Geometric 62.8 0.033 0.776*

Fisher’s Fisher’s 51.7 0.032 0.820*

Power Lognormal 65.7 0.087 0.026

Geometric Lognormal 113.8 0.124 0

Fisher’s Lognormal 132.8 0.216 0

*Indicates a failure to reject the null hypothesis that the two distributions are
the same as determined by the KS test.

doi:10.1371/journal.pone.0002910.t001

Table 2. Evaluation of the fit of different distributions to GC-
TRFLP data from the soil community.

Estimate x2 D-statistic p-value Parameters

Lognormal 155.5 0.045 0.474* a:11850.7 m:4.27 s:2.01

Power 1807.5 0.323 0 a:544.6 b:20.785

Geometric 2126.581 0.369 0 a:67.40 b:0.0077

Fisher’s 2661.275 0.394 0 a:0.119 b:0.00003

*Indicates a failure to reject the null hypothesis that the two distributions are
the same as determined by the KS test.

doi:10.1371/journal.pone.0002910.t002
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bias on efforts to evaluate community SAD have not previously

been considered. To assess the possibility that PCR bias influences

distribution fitting, we generated artificial communities of known

distribution and applied a simple random bias of up to 38% to

each sequence, a value chosen from the TRFLP PCR bias study

performed by Frey et al [20]. GC-TRFLP was then performed on

these samples in silico and the resulting data used to estimate

community SAD (Table 4). The Fisher’s log-series and power-law

distributions were both erroneously rejected for communities

assembled with each of these functions following application of

PCR bias (Table 4). In contrast, the lognormal distribution could

be rejected for communities assembled with either a Fisher’s log-

series or geometric distribution despite the PCR bias applied

(Table 4). Most interestingly, the lognormal could not be rejected

by the K-S test when a PCR bias was applied to a community

having a power-law distribution (Table 4).

Discussion

We have used GC-TRFLP to analyze the distribution of 731

bacterial OTUs from one gram of soil and found that the

lognormal distribution provides the best fit to the data, and was the

only distribution tested that could not be rejected as significantly

different from the GC-TRFLP data. It is important to note that a

traditional TRFLP approach was insufficient for this purpose due

to the inability to effectively distinguish between the different

distributions tested (Table 3). Applying the equations from Dunbar

et al. [13] to a hypothetical community having the same structure

of that observed in the GC-TRFLP data it can be estimated that

86,264 16S rRNA gene clones would need to be sequenced to

recover the same 731 OTUs from this community with 95%

confidence. Thus, the potential advantage of the GC-TRFLP

approach is the ability to sample more taxa with less effort than

would be required with other methods.

The well known hyper-diversity of soil microbial communities

makes it important to consider the impact that under-sampling can

have on the estimation of community SAD. The effect of under-

sampling on estimates of community SAD was first explained by

Preston who invoked the concept of the veil line [21]. When samples

are acquired at random from the community the veil line can be

understood as a veil curve and can impact the shape of the SAD [22].

Both GC-TRFLP and TRFLP sample a subset of the community

Figure 5. GC-TRFLP data for soil and the distributions that
provided the best fit to this data. Goodness-of-fit measurements
are given in Table 2.
doi:10.1371/journal.pone.0002910.g005

Figure 6. TRFLP data for soil and the distributions that
provided the best fit to this data. Goodness-of-fit measurements
are given in Table 3.
doi:10.1371/journal.pone.0002910.g006

Table 3. Evaluation of the fit of different distributions to
TRFLP data from the soil community.

Estimate x2 D-statistic p-value

Lognormal 288.85 0.076 0.686*

Power 280.25 0.111 0.289*

Geometric 2634.48 0.264 0

Fisher’s 406.67 0.161 0.047

*Indicates a failure to reject the null hypothesis that the two distributions are
the same as determined by the KS test.

doi:10.1371/journal.pone.0002910.t003

Table 4. Impact of potential PCR bias on estimates (See
table 2).

Original Estimate x2 D-statistic p-value

Biased Lognormal Lognormal 65.42 0.041 0.591*

Biased Power Power 68.98 0.083 0.020

Biased Geometric Geometric 87.43 0.041 0.587*

Biased Fisher’s Fisher’s 63.56 0.092 0.005

Biased Power Lognormal 60.13 0.065 0.125*

Biased Geometric Lognormal 149.31 0.127 0

Biased Fisher’s Lognormal 113.50 0.151 0

*Indicates a failure to reject the null hypothesis that the two distributions are
the same as determined by the KS test.

doi:10.1371/journal.pone.0002910.t004
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but this subset is not drawn at random. Non-detection of rare taxa in

these analyses results from failure of DNA templates to amplify in

PCR when present below a threshold concentration. Thus, one

would expect the result to be one of truncation of the SAD rather

than a change in shape resulting from the effect of a veil curve. Since

the fitting approach used in our study is concerned only with the

‘visible’ portion of the SAD it is not expected that this truncation

should impact our ability to recapitulate community SAD.

To ensure that the flexibility of the lognormal is not the reason

that it provides the best fit, we have used a method which is able to

differentiate between a correct fit of the lognormal distribution to a

community created with a lognormal distribution and an incorrect

fit to various communities created with different distributions

(Table 1). The ability to exclude potential distributions as that of

the underlying community has great benefit even if the actual

distribution cannot be conclusively identified. A re-sampling

approach was used in place of maximum likelihood methods for

fitting of distributions as the latter approach was deemed

inappropriate for GC-TRFLP data. While GC-TRFLP decreases

TRF overlap relative to TRFLP the possibility of different species

with overlapping peaks still exists, thereby making it impossible to

estimate OTU richness or mean abundance of OTUs in the true

community and making traditional methods of maximum

likelihood estimation less attractive as these values are required

for most methods, and MLE would not account for any possibility

of sequences from different sources overlapping within the same

peak. The approach that was taken while unable to provide an

estimate of richness for 16S rRNA based OTUs as conventionally

defined (ie: at a 3% dissimilarity cutoff), nonetheless provides

insight to the underlying form of the community distribution.

Differences were observed between electropherograms of T-

RFLP and composite GC-TRFLP analyses of the same soil sample.

This phenomenon likely results because DNA fractionation prior to

PCR changes the outcome of DNA amplification. It is not accurate

to describe this difference as a bias since the two methods would be

expected a-priori to yield different results (and in fact this is why GC-

TRFLP proves more useful than TRFLP in assessing community

SAD). DNA composition and concentration has been shown to

affect TRFLP profiles [23], and because DNA template composition

and concentration necessarily varies between a bulk TRFLP analysis

and twenty TRFLP analyses performed on the same DNA sample

following fractionation, we would expect quantitative and qualitative

differences in TRF detection.

Our simulations show that PCR bias, which results in changes in

the relative abundance of OTUs, can alter the form of the

community SAD. In the case of GC-TRFLP data, both Fisher’s

log-series and power-law communities were no longer recognized as

such following simulated PCR bias (Table 4). The lognormal and

geometric distributions fared somewhat better as the correct

distributions were not rejected (Table 4). In addition, despite the

PCR bias applied, the lognormal distribution was still correctly

rejected for communities that had geometric or Fisher’s log-series

distributions (Table 4). It is interesting to note, however, that when

PCR bias was applied to a community with a power-law distribution

the lognormal distribution could no longer be rejected for that

community (Table 4). As a result, though the GC-TRFLP data

obtained for soil follows a lognormal distribution (Table 2) the

potential for PCR bias means that we cannot completely reject the

possibility that the true distribution of the soil community is a power-

law function.

Other studies provide evidence that the SAD of soil bacteria

could follow a power-law function. The Zipf distribution, a specific

power-law function, was found to best describe the species

abundance distribution of soil bacteria as calculated from DNA-

DNA reassociation kinetics [11], although the mathematics used in

these calculations has been contested by multiple groups

[24,25,26,27]. The Pareto distribution has also been considered

for soil bacterial communities [28]. A generalized power-law

function was chosen for the current analysis because both Zipf and

Pareto distributions are specific instances of power-law functions

which each contain only one parameter. The power-law function

used in the present study has two parameters, is thus more flexible,

and will encompass and fit well communities which possess either

a Zipf or Pareto distribution.

Many different factors are involved in community formation

and the abundance of species within those communities. One

widely discussed and contested model is the neutral community

model (NCM). The GC-TRFLP would potentially represent a

useful way to assess the NCM, as the power of this model lies in its

predictive power and a proper analysis of its validity would require

comparing the SADs of multiple communities. A test of the NCM

is beyond the scope of the current manuscript as such a test would

require analysis of many samples to assess the distribution of the

local community relative to that of the metacommunity. An

assessment of this model for bacterial communities was recently

performed using DGGE by Woodcock et al [29]. Another possible

method for assessing the NCM is through pyrosequencing, though

50,000–100,000 reads would probably be necessary to sample

community SAD with the same depth that is obtained through

GC-TRFLP. While this approach would likely be fruitful, and

would provide sequence information that would be far more useful

than knowledge of TRF peaks, the advantage of the GC-TRFLP

over sequencing approaches remains the issue of cost. GC-TRFLP

provides far greater resolution of the community SAD than is

possible with DGGE and allows for the processing of more

environmental samples than could be currently achieved through

sequencing approaches. Deciphering the effects of niche space,

migration, resource availability, and the many other possible

factors affecting SADs will require comparison of samples from

many communities. We have found through probing a community

of soil bacteria at unprecedented depth that, as with communities

of larger organisms, the lognormal appears to be the appropriate

null model for further investigations of bacterial SADs. Microbial

communities could be ideal for the general study of SADs as well,

as the degree of manipulation possible, speed and cost associated

with a census of bacteria are far more amenable to testing a large

number of hypotheses than with communities of plants or animals.

Methods

GC-TRFLP and single TRFLP
The GC-TRFLP dataset was generated to examine the microbial

community of grass rhizosphere soil [30]. Soil was sampled from 0–

5 cm depth in a fallow field in Ithaca NY that had not been cultivated

for more than 30 years and is currently home to a diverse mix of

perennial grasses and forbs. Five 2.5 cm diameter cores were

randomly taken from a 1 m2 area, sieved to 4 mm and homogenized.

DNA was extracted from four 0.25 g sub-samples of soil using the

UltraClean Soil extraction kit (MoBio, Inc.) as per the manufacturer’s

instructions, and these DNA extracts were subsequently pooled.

DNA was further purified by electrophoresis through a 1% agarose

gel to remove fragments smaller than 4 kbp, DNA of greater than

4 kbp excised from the gel, agarose removed by digestion with

agarase (New England Biolabs) as per the manufacturer’s instructions,

and DNA obtained by ethanol precipitation as described previously

[31]. A total of 1.8 mg g21 DNA was obtained, as determined by

analysis of subsamples with the Quant-iT PICO Green dsDNA assay

(Invitrogen) per the manufacturer’s instructions.

Soil Bacterial Community SAD

PLoS ONE | www.plosone.org 5 August 2008 | Volume 3 | Issue 8 | e2910



CsCl gradient fractionation was carried out as described

previously [32]. Briefly, primary CsCl gradients were formed by

filling 4.7 ml polyallomer Optiseal tubes (Beckman) with 4.3 ml of

gradient buffer (15 mM Tris-HCl, 15 mM KCl, 15 mM EDTA,

pH 8.0) and 0.45 ml of DNA (1.8 mg) in TE buffer (50 mM Tris-

HCl, 15 mM, pH 8.0) to obtain a homogeneous CsCl density of

1.69 g ml21. Centrifugation was carried out for 66 h at

55,000 rpm (164,0006g maximum) at 20uC in an Optima Max-

E tabletop centrifuge (Beckman-Coulter) equipped with a TLA110

rotor. A fraction recovery system (Beckman) was used to collect 45

fractions of 100 ml from the CsCl gradient, and the density of each

fraction was determined by measurement of refractive index using

an AR200 digital refractometer (Reichert).

CsCl was removed from DNA by ethanol precipitation, and

DNA was resuspended in 25 ml of 50 mM Tris-HCl, pH 8.0, and

stored at 220uC. DNA from gradient fractions was characterized

by terminal restriction fragment length polymorphism (TRFLP)

analysis of 16S rRNA genes. For both the GC-TRFLP and the

single TRFLP, bacterial 16S rRNA genes were amplified by PCR

using the primer Bact8F (59-AGA GTT TGA TCM TGG CTC

AG-39), labeled at the 59 end with the dye 6-carboxy-fluorescein,

and the primer Univ1390R (59-GAC GGG CGG TGT GTA

CAA-39). Reactions were carried out as described previously [32],

PCR products were purified and resuspended in 50 mM Tris-HCl

(pH 8.0), 250 to 400 ng of this DNA was digested with MspI (New

England Biolabs) in 30-ml reaction volumes as per the manufac-

turer’s instructions, and the enzyme was subsequently inactivated

by incubation at 65uC for 20 min. The digested PCR products

were desalted and concentrated again and then resolved on an

Applied Biosystems Automated 3730 DNA analyzer.

Creating artificial communities and in silico GC-TRFLP
data

Artificial communities consisting of 16S rRNA sequences from the

Ribosomal Database Project Release 9 [33] were generated by

sampling individual sequences without replacement. RDP Release 9

was downloaded in June 2007, when there were 138,815 sequences

over 1200 bp in length. The rank abundance of each sequence in the

community was based on the order in which they were sampled. The

abundance applied to each sequence was a function of either the

lognormal, power-law, geometric, or Fisher’s log-series distributions

created with the parameters estimated from fitting the empirical data.

GC-TRFLP data for these artificial communities was simulated in

silico as follows. The mol% G+C content of the 16S rRNA sequence

was used as a proxy for genome mol% G+C content to provide 20

bins simulating gradient fractionation of genomes by G+C content

into 20 fractions. While 16S rRNA does not necessarily correlate

strongly with 16S rRNA gene G+C content it does provide a

convenient proxy which can be used to simulate the general effect of

fractionating DNA by its G+C content. Restriction enzyme digestion

of in silico community fractions was performed, simulating digestion

with the restriction enzyme MspI. Sequences with TRF sizes greater

than 550 bp were discarded because these fragments are generally

not resolved in TRFLP. When two or more sequences with the same

TRF size occurred in the same GC bin, the abundances of these

sequences were summed. The community size varied based on the

number of sequences required to reach 731 unique peaks, with 1041

sequences required on average for 100 artificial communities.

Parameter estimation for actual and artificial
communities

To find the distribution parameters that provide the best fit to

GC-TRFLP data from actual and artificial communities, a SAD was

simulated for a given distribution as described above and the

parameters of the distribution were optimized by recursive iteration.

The optimization process started by minimizing the x2 value across

all parameter combinations at a low resolution, to avoid falling in a

valley of low x2 values that did not contain the lowest value. The next

step was to change each parameter individually, using the best value

for each parameter over a range of values for the other parameters

used in the distribution. This process was iterated until the x2 value

was minimized and the parameter estimates ceased to change. For

example, if a distribution has two parameters, a and b, the

distribution would be calculated and compared to the actual data for

a range of a, holding b constant. Then the same would be done for b
while holding a constant at the value which provided the best

goodness-of-fit in the previous step. Once neither a and b changed in

direct succession, they were assumed to be the best fitting

parameters. To check this approach, the best fit was found by

comparing all combinations of parameter values, and verifying that

this matched the value found by the iterative approach. This

comparison of all values was too computationally intensive to be used

for all of the tests performed. As previously suggested [34], rank

abundance data was not binned by abundance class to retain all

possible information, allowing for more powerful hypothesis testing.

For each set of parameters the x2 value was calculated as an average

from five different simulations.

Estimating fit
Following the parameter estimation described above the

estimate of fit for each distribution was evaluated by performing

one hundred simulations with the best-fitting parameters and the

distribution estimates were then compared to the actual or

artificial distribution using the Kolmogorov-Smirnov (KS) test in

the R software environment [35]. The KS test finds the maximum

vertical distance between the empirical cumulative distribution

functions of the two distributions in question. The values presented

are an average of these one hundred measurements, referred to as

the D-statistic, from which p-values are derived.

Equations
The equations used for creating the distributions are as follows,

each equation contained independent parameters that were

estimated as previously described, in addition AR is OTU

abundance, and SR is OTU rank:

Lognormal (independent parameters: a, m, s):

AR~
a

sSR

ffiffiffi
2
p

p
e{1

2

ln SRð Þ{m

s

� �2

Power-law (independent parameters: a, b):

AR~aS
b
R

Geometric (independent parameters: a, b):

AR~a 1{bð ÞSR{1

Fisher’s Log-Series (independent parameters: a, b):

AR~1
.

alog SR=bð Þ½ �10
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PCR bias
As a guide for estimating PCR bias, we have used the study

performed by Frey et al [20], in which changes in abundance due

to PCR bias where measured when examining multitemplate

communities with TRFLPs. We simulated PCR bias by creating

biased original distributions through multiplying each value of the

original distribution by 1.38r, where r is a random number

between 21 and 1.
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