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Abstract: In this work, Gallium Nitride (GaN)-based p-i-n diodes were designed using a computer
aided design (TCAD) simulator for realizing a betavoltaic (BV) cell with a high output power
density (Pout). The short-circuit current density (JSC) and open-circuit voltage (VOC) of the 17 keV
electron-beam (e-beam)-irradiated diode were evaluated with the variations of design parameters,
such as the height and doping concentration of the intrinsic GaN region (Hi-GaN and Di-GaN),
which influenced the depletion width in the i-GaN region. A high Hi-GaN and a low Di-GaN improved
the Pout because of the enhancement of absorption and conversion efficiency. The device with the
Hi-GaN of 700 nm and Di-GaN of 1 × 1016 cm−3 exhibited the highest Pout. In addition, the effects
of native defects in the GaN material on the performances were investigated. While the reverse
current characteristics were mainly unaffected by donor-like trap states like N vacancies, the Ga
vacancies-induced acceptor-like traps significantly decreased the JSC and VOC due to an increase
in recombination rate. As a result, the device with a high acceptor-like trap density dramatically
degenerated the Pout. Therefore, growth of the high quality i-GaN with low acceptor-like traps is
important for an enhanced Pout in BV cell.
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1. Introduction

Betavoltaic (BV) cells using a radioisotope have been developed for micro-battery applications,
such as a power source of bio-medical implants and extreme environmental sensors [1–3], because of
their long lifetime and micro-size. 63Ni radioisotope–based BV cells can be used for a long period
due to a half-life of about 100 years. The BV cells based on various semiconductors such as Si [4,5],
GaAs [6], SiC [7–9], GaN [10–14], and GaP [15] have been studied for high power conversion efficiency.
Among the semiconductors, it is known that GaN-based BV cells can theoretically obtain superior
conversion efficiency because of a wider energy bandgap. Moreover, GaN-based BV cells are more
suitable for BV applications with long-term stability because GaN material has exhibited a strong
radiation hardness [16,17], which can reduce the effects of radiation damage on device performances [18].
The p-i-n junction [10–12] and Schottky barrier diode [13,14] have been used to realize GaN-based
BV cells. The p-i-n junction diode can obtain a wider depletion width, which improves the collection
efficiency. However, the efficiency of the fabricated device exhibited a lower power conversion
efficiency than the theoretical efficiency. Recent studies on BV cells aimed at enhancing the conversion
efficiency. Many researchers have made progress in the optimization design of diode structures using
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a theoretical calculation model [19,20]. However, the design considerations of the GaN-based BV cells
still have to be addressed due to the inherent properties of GaN material, including the various native
trap states that occur during growth. The short-circuit current density (JSC) and open-circuit voltage
(VOC) associated with the output power density of the diode are significantly affected by the native
defects that influence recombination.

In this work, we optimized the GaN-based p-i-n diode to achieve a BV cell with high output power
density using the following design parameters: heights of p-type GaN and intrinsic GaN (Hp-GaN and
Hi-GaN) and a doping concentration of i-GaN (Di-GaN). The physical phenomenon and performance
were analyzed using a three-dimensional (3-D) technology computer-aided design (TCAD) simulator
with physical models including e-beam irradiation and trap-assisted recombination models. The effects
of native defects on JSC, VOC, and Pout of the e-beam-irradiated devices were also investigated.

2. Device Structure and Simulation Method

Figure 1 shows the 3-D schematic of the GaN-based p-i-n diode for BV cells. The p-i-n diode
structure is the conventional diode structure, which consisted of an intrinsic GaN (i-GaN) region
between p-type GaN (p-GaN) and n-type GaN (n-GaN) regions to obtain a wide width in the depletion
region. The Di-GaN determines the depletion width, which affects the conversion efficiency for BV
cells. Here, i-GaN denotes undoped GaN, which is almost an n-type due to the residual donor [21].
The background impurity concentration in undoped GaN grown by metal-organic chemical-vapor
deposition (MOCVD) is typically in the range of 1015 to 1017 cm−3, depending on the condition of
the reactor [22]. Furthermore, it is difficult to grow undoped GaN with simultaneous low doping
concentration and high quality [23]. Thus, the Di-GaN was varied in the range of 5 × 1015 cm−3

to 5 × 1016 cm−3 for optimizing the Di-GaN. In order to reduce the resistance of the n-GaN and
p-GaN layers, doping concentrations of the n-GaN and p-GaN (Dn-GaN and Dp-GaN) were designed as
5 × 1018 cm−3 and 5 × 1017 cm−3, respectively. We also changed the Hp-GaN and Hi-GaN to achieve high
performance. The variation ranges of Hp-GaN and Hi-GaN were 60–200 nm and 500–900 nm, respectively.
The ranges of Hp-GaN and Hi-GaN values were determined by considering the penetration depth of
17 keV electrons at about 1 µm [24]. The energy of the e-beam is the average energy of 63Ni [25,26].
The contact resistance for p-GaN and n-GaN in the devices was 1 × 10−4 Ω·cm2 [27,28].
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The effects of e-beam irradiation on current characteristics were analyzed using a TCAD
simulator [29]. Physical models were applied in the simulation, including Schockley–Read–Hall
(SRH) and trap-assisted tunneling (TAT), and a low-field mobility model. The SRH and TAT models
were used to reflect the carrier recombination phenomenon [30], which significantly affects the JSC and
VOC of the diode. For the effects of native defects in the GaN material [31,32], acceptor and donor-like
trap states were added to the simulation. The acceptor-like trap state is formed by Ga vacancies.
The donor-like trap states are mainly associated with the N vacancies and nitrogen antisite point defect.
When we optimized the structure, we analyzed the performances of the diodes applied by native traps.
In addition, the individual impact of trap states on Pout were studied to investigate the dominant traps
that degrade the performances.

3. Results and Discussion

Figure 2a shows the effects of e-beam irradiation on the reverse current characteristics of the
GaN p-i-n diode. When the diode was irradiated by a 17 keV e-beam, the reverse current density
significantly increased. This was because electron-hole pairs (EHPs) were generated by the injected
high-energy electrons. The electrons and holes in the depletion region were respectively moved by
internal electric field through n-GaN and p-GaN regions and the carriers converted to the electric
current. The JSC and a VOC of the irradiated diode were 14.92 µA/cm2 and 2.391 V, respectively. The JSC

and VOC were defined as the current density at a voltage of 0 V and the voltage when the current
density was 0 A/cm2, respectively.

As shown in Figure 2b, the 17 keV electrons penetrated up to a depth of about 1 µm and the peak
absorption rate was exhibited at a depth of about 300 nm. Because many EHPs generated in the i-GaN
region contributed to the conversion efficiency, the Hi-GaN and Di-GaN are important design parameters.
A high conversion efficiency increases JSC and VOC, which influences the output power density (Pout).
The diode exhibited the maximum Pout (Pout_max) at a voltage of 2.18 V, as shown in Figure 2c.

Figure 3a shows the variations of the reverse current characteristics of the irradiation diodes
as a function of Hi-GaN. As the Hi-GaN increased, the reverse current density became higher due to
extension of the absorption region. Many EHPs were generated in the extended absorption region,
which converted the electric current. However, the current density of the diodes with a Hi-GaN above
900 nm was lower than that of the device with a Hi-GaN of 700 nm at a forward voltage above 0 V.
This result indicated that excess carriers generated by the e-beam were reduced by the recombination
mechanism as they moved through the n-GaN or p-GaN regions. This result affected the VOC and
JSC of the diodes. As shown in Figure 3b, the device with a Hi-GaN of 700 nm had the highest VOC.
In terms of Pout_max, the device with a Hi-GaN of 700 nm exhibited the highest Pout_max because the
device was less affected by the recombination phenomenon, as shown in Figure 3c.
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(b) Variations of JSC, VOC and (c) Pout_max as a function of Hi-GaN. The Hp-GaN was fixed as 100 nm.
The Dp-GaN, Di-GaN, and Dn-GaN were 5 × 1017 cm−3, 1 × 1016 cm−3

, and 5 × 1018 cm−3, respectively.

The variations of JSC, VOC, and Pout_max depending on the Hi-GaN and Hp-GaN are shown in
Figure 4. The JSC of the devices increased with a rise in the Hi-GaN regardless of the Hp-GaN because a
high Hi-GaN extended the absorption region. When the Hi-GaN above 800 nm increased, the JSC slightly
decreased due to the recombination phenomenon. As the Hp-GaN became shorter, the variation of JSC

according to the Hi-GaN increased. This result indicated that the absorption rate vs. depth was more
affected in the irradiated device with a short Hp-GaN. The device with a Hp-GaN of 60 nm and Hi-GaN of
800 nm was the highest JSC because the JSC was enhanced by an additional absorption near the p-GaN
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region. In case of the VOC, the device with a Hp-GaN of 100 nm and a Hi-GaN of 700 nm exhibited the
highest VOC, as shown in Figure 4b. Because a short Hp-GaN degenerated the carrier transport, the VOC

of the devices with a Hp-GaN of 60 nm was a smaller than that of the devices with a Hp-GaN of 100 nm.
The device also obtained the highest Pout_max. The Pout_max value was affected by a change of the VOC.
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Figure 5 shows energy band diagrams of the diodes with different values of Di-GaN. As the Di-GaN

decreased, the depletion region was extended in the i-GaN region. Because the depletion region was
influenced by the Di-GaN, we examined the variations of JSC, VOC and Pout_max depending on the Di-GaN

and Hi-GaN. As shown in Figure 6, the diode with a low Di-GaN exhibited an improved JSC because of a
wider depletion region in the i-GaN region. The excess carriers could be moved by the built-in electric
field. Although the device with a Di-GaN of 1 × 1016 cm−3 exhibited a higher VOC, the diode with a
Di-GaN of 5 × 1015 cm−3 obtained a higher Pout_max. This result indicated that reducing the Di-GaN is
important to improving transport efficiency. However, in terms of GaN epitaxial technology based on
MOCVD method, it was difficult to reduce the Di-GaN below 1 × 1016 cm−3 because residual impurities
remained during the growth process. Therefore, we determined that the optimum point for the
Di-GaN was 1 × 1016 cm−3. As a result, the diode structure with a Hp-GaN of 100 nm, Hi-GaN of 700 nm,
and Di-GaN of 1 × 1016 cm−3 was optimized, and the effects of native trap states on performances of the
optimized diode were investigated with variations of trap level and density.
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Figure 5. Energy band diagrams of the diodes with different values of Di-GaN. All the devices were
designed with a Hp-GaN of 100 nm and a Hi-GaN of 700 nm. The Dp-GaN and Dn-GaN of the devices were
5 × 1017 cm−3 and 5 × 1018 cm−3, respectively.

The energy spectrum of the 63Ni source exhibited a wide range to a 66 keV peak energy [19].
We additionally confirmed the performances of the optimized diode depending on the injected electron
energy. The current characteristics of the diodes irradiated by different e-beam energies is shown in
Figure 7a. As the energy increased up to 30 keV, the current became higher. This was because many
EHPs were generated by a wide distribution of absorption rate as shown in Figure 7b. However,
when the electrons with an energy above 40 keV were injected, the current of the irradiated device
was lower than that of the device irradiated by the 17 keV e-beam. These results revealed that the
variations of the current of the irradiated diodes depending on the energy of the e-beam were large.
The probability of beta particles generated from the 63Ni source showed a high distribution below
20 keV [19]. Also, the depletion width formed in the i-GaN region was small at about 600 nm (in case of
Di-GaN = 1 × 1016 cm−3), and the diffusion length of GaN can be shortened by native defects. Therefore,
in order to achieve a high efficiency BV cell using the 63Ni source, it is necessary to analyze the
performances of GaN-based diodes considering the spectrum of the 63Ni source.
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5 × 1018 cm−3, respectively.

Figure 8 shows reverse current density and Pout of the irradiated diodes with and without the
native trap states including donor and acceptor-like traps. The reverse current density was significantly
degenerated by the trap states. This result means that the trap-assisted recombination was caused by
the native defects in the GaN material. As a result, the Pout of the device with the trap states was lower
than that of the device without the trap states. We confirmed the effects of individual traps on current
characteristics of the irradiated devices. As a shown in Figure 9, the impact of acceptor-like trap states
was stronger than that of donor-like trap states. This result proved that the acceptor-like trap states
represented the dominant factor for the recombination.
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Figure 9. Effects of trap states on current characteristics of the e-beam-irradiated diodes. The Hp-GaN

and Hi-GaN in the diode were 100 nm and 700 nm, respectively. Dp-GaN, Di-GaN, and Dn-GaN were
5 × 1017 cm−3, 1 × 1016 cm−3, and 5 × 1018 cm−3, respectively.

In addition, we investigated the effects of trap density on JSC, VOC, and Pout_max. As the trap
density increased, the performances were totally degenerated by the acceptor-like trap state, as shown
in Figure 10. The donor-like trap states reduced the JSC less than the acceptor-like trap state. While the
donor-like trap states (EC-0.6 eV) slightly decreased the VOC, the shallow donor-like trap states
(EC-0.23 eV) increased VOC. As a result, the Pout_max was unaffected by the shallow donor-like trap
states (EC-0.23 eV). It is important to reduce the acceptor-like traps to improve the conversion efficiency
of the betavoltaic cell.
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4. Conclusions

In this work, we designed a p-i-n diode with a variation of geometric parameters, namely, Hi-GaN,
Di-GaN, and Hp-GaN, and analyzed Pout using 17 keV e-beam irradiation. The Hi-GaN and Hp-GaN affected
the absorption rate vs. depth. A low Di-GaN produced an increase in depletion width. The optimized
structure with a Hi-GaN of 700 nm, Di-GaN of 1 × 1016 cm−3, and Hp-GaN of 100 nm obtained an improved
Pout. In addition, the effects of native trap states on reverse current characteristics were investigated
with various trap levels and densities. When the acceptor-like trap density increased from 1014 cm−3

to 1016 cm−3, the trap significantly decreased the Pout_max by about 15%. GaN with low acceptor-like
traps was needed to enhance the Pout of a BV cell. These results provide design considerations for
achieving a high efficiency BV cell.
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