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Ethanolic extract of Schizonepeta tenuifolia e
attenuates osteoclast formation and

activation in vitro and protects against
lipopolysaccharide-induced bone loss

in vivo
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Abstract

Background: Excessive osteoclast activity is a major cause of metabolic bone disorders, such as osteopenia,
rheumatoid arthritis, and osteoporosis. Thus, discovery of agents targeting osteoclast differentiation and bone
resorption is important for development of novel treatments for bone diseases. It has been demonstrated
that ethanolic extract of schizonepeta tenuifolia (EEST) has potent anti-oxidant and anti-inflammatory activities.
However, the beneficial effects of EEST on bone metabolism have not been studied. Therefore, we intend to
investigate the effects of EEST on osteoclast differentiation.

Methods: We examined the effects and mechanisms of action of the EEST on osteoclastogenesis in vitro
in bone marrow macrophages (BMMs) stimulated with receptor activator of nuclear factor kappa-B ligand
(RANKL) and in vivo using a mouse model of lipopolysaccharide (LPS)-induced bone destruction.

Results: We found that EEST inhibited phosphorylation of Akt and IkB at early stages of RANKL-induced
osteoclastogenesis. Furthermore, EEST negatively controlled the transcription and translation levels of nuclear
factor of activated T cells c1 (NFATc1) and the translation level of c-Fos at the final stage of osteoclast
differentiation. Reflecting these effects, EEST blocked both filamentous actin (F-actin) ring formation and bone
resorbing activity of mature osteoclasts in vitro. The inhibitory effects of EEST on osteoclast formation and
activity were observed in an LPS-mediated bone erosion mouse model using micro-CT and histological
analysis.

Conclusions: EEST is a potential agent that is able to treat osteoclast-related bone diseases, such as
0steoporosis.
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Abbreviations: BMCs, Bone marrow cells; BMMs, Bone marrow macrophages; BV/TV, Bone volume per tissue
volume; DC-STAMP, Dendritic cell-specific transmembrane protein; EEST, Ethanolic extract of Schizonepeta
tenuifolia; ELISA, Enzyme-linked immunosorbent assay; ERK, Extracellular signal-regulated kinase; F-actin, Filamentous
actin; FBS, Fetal bovine serum; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; H&E, Hematoxylin and eosin;

IKK, Inhibitor of IkB kinase; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; MAPKs, Mitogen-activated protein
kinases; M-CSF, Macrophage colony-stimulating factor; NFATc1, Nuclear factor of activated T cells c1; NFkB, Nuclear
factor kappa-B; PGE,, Prostaglandin E,; RANKL, Receptor activator of nuclear factor kappa-B ligand; Tb.N, Trabecular
number; Tb.Sp, Trabecular separation; Th.Th, Trabecular thickness; TRAF6, Tumor necrosis factor receptor-associated
factor6; TRAP™ MNCs, TRAP-positive multinucleated cells; Vitamin Ds, Dihydroxyvitamin Ds; XTT, Sodium 3'-[1-(phenyl-
aminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro); a-MEM, a-minimum essential medium

Background

Skeletal tissue continuously undergoes remodeling. This
is defined by three physiological processes. First, in the
resorption phase, osteoclasts dissolve the old bone. Next,
in the reversal phase, mononuclear cells arrive on the
bone surface to complete resorption stage. Finally, in the
formation phase, osteoblasts initiate formation of new bone
matrix in response to signals of the mononuclear cells [1].
Osteoclast over-activity, caused by such risk factors as an
inflammatory response and estrogen hormone deficiency,
expedites perturbation of steady-state bone remodeling.
This leads to severe bone diseases, including osteoporosis
and osteopenia, which are directly associated with excessive
bone destruction and impaired bone quality [2, 3].

The initiation of osteoclast differentiation from hema-
topoietic stem cell of the monocyte/macrophage lineage
is dependent on stimulation by two important cytokines:
macrophage colony-stimulating factor (M-CSF), which
is required for osteoclast proliferation and survival, and
receptor activator of nuclear factor kappa-B ligand
(RANKL), which triggers various signals for osteoclastogen-
esis by binding to the RANK receptor, the surface marker
of osteoclast precursors [4, 5]. In response to M-CSF
and RANKL stimulation, tumor necrosis factor receptor-
associated factor6 (TRAF6) is recruited, which leads to
subsequent activation of downstream transducers of the
RANKL-dependent pathway. The downstream transduc-
ers include mitogen-activated protein kinases (MAPKs),
such as p38, ¢-Jun N-terminal kinase (JNK), and extracel-
lular signal-regulated kinase (ERK); Akt; and nuclear fac-
tor kappa-B (NF«xB). Activation of this signaling pathways
leads to the nuclear translocation of c-Fos and nuclear
factor of activated T cell c1 (NFATc1), which are recog-
nized as two master osteoclast regulators. This results
increase expression of various osteoclast-specific marker
genes that are crucial for development and function
of mature osteoclasts, such as [3-integrin, dendritic
cell-specific transmembrane protein (DC-STAMP), and
Cathepsin K [6-10].

Lipopolysaccharide (LPS) leads to the intracellular in-
duction of p38, JNK, and NFkB in macrophages and
monocytes, and promotes the differentiation and survival
of osteoclasts through the production of other factors
such as PGE,, interleukin 1, RANKL, and TNF [11-13].
Therefore, LPS is an important mediator of pathological
bone destruction associated with inflammation.

In this study, we screened several plant-derived extracts
by tartrate-resistant acid phosphate (TRAP) staining and
confirmed that ethanolic extract of Schizonepeta tenuifolia
(EEST) can suppress osteoclast activity. Although previous
reports demonstrated that EEST exerts various pharmaco-
logical effects, including anti-inflammatory, anti-oxidant,
and hemostatic activity, the effects of EEST on bone
metabolism have not been studied [14—16]. Therefore,
we investigated the effects of EEST on RANKL-induced
osteoclast differentiation and its underlying intracellular
mechanisms in vitro. Furthermore, we performed in vivo
experiments using a LPS-mediated bone erosion mouse
model in order to verify the therapeutic value of EEST for
treatment of osteoporosis.

Methods

Plant materials and EEST preparation

The 95 % EEST (sale number: CA03-094) of the Korean
Plant Extract Bank (KPEB) at the Korea Research Insti-
tute of Bioscience and Biotechnology (KRIBB) (Daejeon,
Korea) was acquired from the plant samples purchased
from an Oriental medicine market in Korea and then
authenticated by three taxonomic experts at Chungbuk,
Chungnam, and Pusan National University. Also, all forms
of extraction from the KPEB were produced through
standardization procedure. The KPEB extraction protocol
consists of 5 stages: extraction, filtration and yield testing,
concentration, drying, and storage. First, extraction of ST
was performed using 95 % ethanol with a sonicator (SDN-
900H, SD Ultrasonic Cleaner, Seoul, Korea) at 45 °C for
3 days (15 min sonication followed by 2 h standing; re-
peated 10 times per day). Next, The EEST was filtered
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through Whatman filter paper No.2 (Advantec, Tokyo,
Japan). The filtrates were combined, evaporated under
vacuum, and then lyophilized with a CleanVac 12 vac-
uum freeze dryer (Biotron; Gangneung, Korea) at -70 °C
for 24 h under reduced pressure (<20 Pa). A 50 mg/mL
stock solution of EEST was prepared in dimethyl sulfoxide
(DMSO) and stored at -20 °C.

Reagents

A TRAP staining solution was obtained from Sigma Aldrich
(St. Louis, MO, USA) and a sodium 3’-[1-(phenyl-
aminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)
(XTT) assay kit was purchased from Roche (Indianapolis,
IN, USA). The a-minimum essential medium (a-MEM),
fetal bovine serum (FBS), and penicillin-streptomycin were
purchased from Gibco-BRL (Grand Island, NY, USA), and
soluble human recombinant M-CSF and RANKL were
purchased from Peprotech (London, UK). Specific anti-
bodies against c-Fos and NFATcl were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Specific primary antibodies against phospho-p38, p38,
phospho-Akt, Akt, phospho-ERK, ERK, phospho-JNK,
JNK, phospho-IkB, and IkB were purchased from Cell
Signaling Technology (Beverly, MA, USA), and that
against the house-keeping gene GAPDH was purchased
from Santa Cruz Biotechnology.

Osteoclast differentiation from mouse bone marrow
macrophages (BMM:s)

To obtain osteoclast precursors, we prepared mouse BMMs
as described previously [17] and BMMs were incubated
with M-CSF (30 ng/mL) and RANKL (50 ng/mL) in the
absence and presence of EEST (1-50 pg/mL). In this
experiment, the control group was treated with 0.1 %
DMSO, and the other 5 groups were treated with EEST at
concentrations of 1, 5, 10, 25, and 50 pg/mL. After 3 days,
the culture medium was replaced with fresh medium
with the same composition. After an additional day,
cells were stained with a TRAP solution and TRAP-
positive multinucleated cells (TRAP" MNCs) contain-
ing more than 5 nuclei were observed and counted as
described previously [17].

Evaluation of cytotoxicity, analysis of western blotting
and quantitative real-time reverse transcriptase
polymerase chain reaction (RT-PCR), retroviral gene
transfection, and assay of bone resorption in co-culture
system of BMCs and primary osteoblasts

The experiments were performed as described previously
[17]. The primer sets used for the real-time PCR were listed
in Table 1. The retroviral vectors used for gene transfection
were pMX-IRES-EGFP, pMX-Akt-IRES-EGFP, and pMX-
constitutively active (CA)-IKKB-IRES-EGFP packaging.
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Table 1 Primer sequences used for real-time PCR analysis

Gene name Primer sequence (5" — 3')
GAPDH Forward 5'-TCA AGA AGG TGG TGA AGC AG-3'
Reverse 5'-AGT GGG AGT TGC TGT TGA AGT-3'
c-Fos Forward 5'-GGT GAA GAC CGT GTC AGG AG-3'
Reverse 5'-TAT TCC GTT CCC TTC GGA TT-3'
NFATcT Forward 5'-GAG TAC ACC TTC CAG CAC CTT-3"
Reverse 5'-TAT GAT GTC GGG GAA AGA GA-3'
Cathepsin K Forward 5'-CCA GTG GGA GCT ATG GAA GA-3'
Reverse 5'-CTC CAG GTT ATG GGC AGA GA-3'
B3-integrin Forward 5'-GGA GTG GCT GAT CCA GAT GT-3'
Reverse 5'-TCT GAC CAT CTT CCC TGT CC-3
Atp6v0d2 Forward 5'-GAC CCT GTG GCA CTT TTT GT-3'
Reverse 5'-GTG TTT GAG CTT GGG GAG AA-3’
DC-STAMP Forward 5'-TCC TCC ATG AAC AAA CAG TTC CA-3'
Reverse 5'-AGA CGT GGT TTA GGA ATG CAG CTC-3'

Immunofluorescence staining and confocal microscopy
BMMs were incubated with M-CSF (30 ng/mL) and
RANKL (50 ng/mL) in the presence and absence of EEST
(50 pg/mL). After 3 days, the culture medium was replaced
with fresh medium containing the same constituents. After
an additional day, cells were stained with phalloidin and a
DAPI solution for visualization of filamentous actin (F-
actin) and nuclei as described previously [17]. The fluores-
cence signal was observed using a laser scanning confocal
microscope (Olympus FV1200; Olympus, Shinjuku, Japan),
and images representative of 5 experiments were analyzed
using Image-Pro Plus software (Media Cybernetics Inc.,
Rockville, MD, USA).

LPS-mediated bone erosion mouse model and micro-CT
and histological analysis

Five-week-old male ICR mice were purchased from
Samtako Inc. (Osan, Korea). The mice were kept under
controlled temperature (22—24 °C) and humidity (55-60 %)
with a 12 h light/dark cycle. The use of experimental ani-
mals was reviewed by the institutional animal care and
use committee (IACUC) and approved under WKU15-91.
To examine the effect of EEST on LPS-induced bone
destruction, 5-week-old male ICR mice were randomly
divided into 3 groups (5 mice per group): Control (treated
with PBS), LPS (treated only with LPS), and LPS+ ST
(treated with both LPS and EEST). EEST (200 mg/kg) or
PBS was administered orally 1 day before LPS injection
(5 mg/kg), and then every other 8 days. LPS was injected
intraperitoneally on day 2 and 6. All mice were sacrificed
after 8 days and femur of each mouse were examined by
high-resolution micro-CT analysis and histological ana-
lysis including hematoxylin and eosin (H&E) and TRAP
staining as described previously [17]. Briefly, micro-CT
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analysis was performed using bone-related parameters, in-
cluding bone volume fraction (BV/TV), trabecular thick-
ness (Tb.Th), trabecular separation (Tb.Sp), and trabecular
number (Tb.N) which are minimal set of variables that
should be investigated for trabecular bone regions [18].
Nomenclature, symbols, and units used in this study were
recommended by the American Society for Bone Mineral
Research (ASBMR) Nomenclature Committee.

Statistical analysis

Each experiment was conducted at least 3 times, and
data were expressed as mean + standard deviation (SD).
All statistical analyses were performed using Statistical
Package for the Social Sciences Software (SPSS; Korean
version 14.0). Student’s t-test was used to compare pa-
rameters between 2 groups, while analysis of variance
followed by Tukey post-hoc test was used to compare
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parameters among 3 groups. P<0.05 was considered
statistically significant.

Results and discussion

EEST exerts inhibitory effects on TRAP-positive osteoclast
formation induced by RANKL treatment without
cytotoxicity

To screen the effects of EEST on osteoclast formation,
we treated mouse BMMs with the indicated concentra-
tions of EEST in culture medium (a-MEM containing
30 ng/mL M-CSF and 50 ng/mL RANKL). We observed
that EEST suppressed the number of TRAP* MNCs with
more than 5 nuclei in a dose-dependent manner com-
pared to DMSO-treated control group (Fig. 1a and b). In
addition, EEST did not exert any cytotoxic effects during
the differentiation of BMMs into osteoclasts (Fig. 1c).
Our results indicated that EEST effectively suppressed

MNCs with more than 5 nuclei were counted. ***P < 0.001,
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Fig. 1 EEST attenuates RANKL-induced osteoclast differentiation in a dose-dependent manner with no cytotoxicity. a BMMs were cultured for

4 days in the presence of M-CSF (30 ng/mL) and RANKL (50 ng/mL) with the indicated concentrations of EEST. Cells were fixed in 3.7 % formalin,
permeabilized with 0.1 % Triton X-100, and stained with TRAP solution. TRAP™ MNCs were photographed under a light microscope. b TRAP*
**P < 0.01 vs. control. € BMMs were seeded into a 96-well plate and cultured for 3 days
in the presence of M-CSF (30 ng/mL) and the indicated concentrations of EEST. After 3 days, the absorbance at 450 nm was determined using an
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RANKL-dependent osteoclast formation without cyto-
toxicity at various concentrations (1-50 pg/mL).

EEST affects early signaling events of osteoclastogenesis
via dephosphorylation of Akt and IkB

Next, we performed western blotting to confirm whether
EEST was related with RANKL-dependent signal trans-
ducers, such as MAPKs, including p38, ERK, and JNK;
Akt; and IkB. As shown in Fig. 2a, EEST strongly reduced
the phosphorylation of Akt and weakly suppressed the
phosphorylation of IkB. In addition, we reaffirmed the role
of EEST on the activation of Akt and IkB using retroviral
vectors. Overexpression of Akt and CA form of IKKp, a
catalytic subunit of IkB kinase complex, was sufficient to
reverse the inhibitory effect of EEST on osteoclast forma-
tion. Previously, it has been shown that Akt plays a critical
role in osteoclast survival by regulating its downstream
target, GSK3p, and the signaling cascade of NFATcl, a
master transcription factor for osteoclastogenesis. An Akt
inhibitor, LY294002, significantly suppresses osteoclast
formation and NFATcl expression in vitro, and sys-
temic injection of LY294002 attenuates multiple myeloma-
induced abnormal osteoclast formation and osteolysis
in vivo [19, 20]. The other early signaling molecule,
IkB, is also essential for the regulation of osteoclast
activity. The inhibitor of IkB kinase (IKK), which induces
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phosphorylation of IkB, suppresses RANKL-induced osteo-
clast formation and activity in vitro, and ovariectomy-
mediated bone erosion in vivo by targeting osteoclastic
bone resorption [21]. Therefore, our results suggested that
EEST suppresses osteoclast formation by targeting two sig-
nal transducers, Akt and IkB at the early stage of osteoclast
differentiation.

EEST suppresses mRNA and protein expressions of
NFATc1 and protein expression of c-Fos

Through the verification of the role of EEST on the early
stage of osteoclastogenesis, we assumed that EEST was
also associated with the final stage of RANKL-mediated
osteoclast differentiation. At this stage, the transcription
factors c-Fos and NFATcl are activated in response to
the activation of early signal transducers [22, 23]. It has
previously been shown that embryonic stem cells with
NFATCc1 deficiency are not capable of differentiating into
functional osteoclasts, and the retrovirus-mediated over-
expression of NFATcl induces normal osteoclast differ-
entiation even in the absence of RANKL [22]. Ectopic
expression of c-Fos reverses the osteoclast dysfunction-
induced symptom of osteopetrosis, which is observed in
c-Fos knockout mice [23]. In this study, we found that
EEST blocked the expression of NFATcl gene at both
the transcription and translation levels and c-Fos gene at
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Fig. 2 EEST down-regulates RANKL-mediated phosphorylation of Akt and IkB. a BMMs were cultured for 1 day in the presence of M-CSF (10 ng/mL).
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the translation level (Fig. 3). Collectively, EEST showed
suppression effects on the expression of two major tran-
scription factors in response to downregulation of Akt
and IkB during osteoclast differentiation.

EEST inhibits formation of F-actin structure and bone
resorption activity of mature osteoclasts

During the development of functional osteoclasts, the
organization of F-actin structure is required for bone
resorption activity. Once the multinucleated osteoclast
attaches to the bone surface, its membrane becomes polar-
ized and secretes both hydrogen ions and lytic enzymes into
the resorption lacuna in order to dissolve the bone matrix.
This region is surrounded by a tight sealing zone that is rec-
ognized as a physiological feature of mature osteoclasts and
composed of F-actin ring-like structures [24, 25]. In this
study, we confirmed that EEST significantly inhibited the
formation F-actin ring-positive osteoclasts and subse-
quently reduced the pit area formed as a result of the bone
resorption activity of mature osteoclasts (Fig. 4a and b).
Also, this phenomenon was induced by the decreased
expression of various osteoclast-marker genes, including
B3-integrin, DC-STAMP, Atp6v0d2, and Cathepsin K, which
are required for the cell-to-cell fusion needed to organize
F-actin structure and bone resorption [26—29]. Our results
demonstrated that EEST negatively regulated the develop-
ment of functional osteoclasts by attenuating the transcrip-
tion of several osteoclast-specific marker genes.
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EEST exerts a protective effects in LPS-induced bone
erosion mice model

Finally, to determine if the in vitro effect of EEST on
osteoclast activity could be confirmed in vivo, commonly
used mouse model of osteoporosis was applied. Among
the osteoporotic models, in this study, we focused on
the therapeutic value of EEST on inflammation-induced
bone loss because EEST has been proved to exert a sig-
nificant anti-inflammatory effect [14]. LPS is an efficient
tool for the induction of inflammatory osteoporosis in
mice [30]. Thus, we selected bone loss model induced
by LPS injection to suggest the therapeutic value of
EEST on inflammatory osteoporosis. Mice were injected
with LPS intraperitoneally on day 1 and 4 to induce sys-
temic inflammatory response and subsequent bone loss
and orally administered with EEST or PBS every 8 days.
After, the left femora of sacrificed mice were analyzed by
micro-CT and the right femora were stained with H&E
and TRAP solution. While the bone mass in the femora
of LPS-treated mice was lower than that of controls,
there was a partial recovery of bone density in mice
treated with both LPS and EEST (Fig. 5a). Morphometric
analysis of the femora of LPS-treated mice showed
decreased BV/TV and Tb.N and increased Tb.Sp, while
restoration of these parameters was observed in the
LPS + EEST group (Fig. 5b). Histological analysis
confirmed that LPS + EEST treatment inhibited LPS-
induced erosion of bone matrix and formation
of TRAP-positive osteoclasts within growth plates
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Fig. 3 EEST inhibits protein expression of c-Fos and both mRNA and protein expression of NFATc1. a BMMs were pretreated with or without EEST
(50 pg/mL) for 1 h and then stimulated with M-CSF (30 ng/mL) and RANKL (50 ng/mL) for the indicated times. The cell lysates were analyzed by
western blotting with antibodies against c-Fos, NFATc1, and GAPDH. b BMMs were stimulated with RANKL (50 ng/mL) and M-CSF (30 ng/mL) in
the presence or absence of EEST (50 ug/mL) for the indicated times. Total RNA was isolated from cells using the QIAzol reagent, and mRNA expression
of c-Fos and NFATc1 was determined using quantitative real-time RT-PCR. ***P < 0.001 vs. control in the indicated time
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Fig. 4 EEST negatively controls F-actin structure, bone-resorbing activity, and expression of osteoclast-specific genes. a BMMs were cultured for

4 days in the presence of M-CSF (30 ng/mL) and RANKL (50 ng/mL) with or without EEST (50 pg/mL). Cells were fixed with 3.7 % formalin,
permeabilized with 0.1 % Triton X-100, and stained with phalloidin and DAPI. Mature osteoclasts were seeded on hydroxyapatite-coated plates
for 24 h with EEST (50 pug/mL) treatment. Adherent cells were removed and photographed under a light microscope. b The relative ratio of
pit areas was quantified using Image J. ***P <0.001 vs. control. ¢ BMMs were stimulated with RANKL (50 ng/mL) and M-CSF (30 ng/mL) in the
presence or absence of EEST (50 pug/mL) for the indicated times. Total RNA was isolated from cells using QIAzol reagent, and mRNA expression
of B3-integrin, DC-STAMP, Atp6v0d?2, and Cathepsin K was determined using quantitative real-time RT-PCR. ***P < 0.001 vs. control in the indicated time

J

(Fig. 5¢ and d). The present findings suggested that
EEST exhibited protective effects on osteoclast differ-
entiation and subsequent bone resorption in vivo. Also,
it was thought that our further study could be in need
of demonstrating the effect of EEST on OVX-mediated
bone loss to more clarify the protective effect of EEST
on osteoporosis.

Conclusions

In the present study, we demonstrated that EEST attenu-
ated RANKL-induced osteoclast differentiation by down-
regulating Akt and IkB phosphorylation in the early
signaling event and subsequently targeted NFATc1 at the
transcriptional and translational levels and c-Fos at the
translational level. Moreover, EEST exerted suppression

a Control

Th.N (1/mm)
Th.Sp (mm)

s

Control

was counted by histomorphometric analysis

Fig. 5 EEST recovers LPS-induced inflammatory bone loss in mice. a Mice were sacrificed 8 days after the first LPS injection and 2D or 3D radiographs
of the coronal and transverse planes of the proximal femora were obtained by micro-CT. b The BV/TV, Tb.Sp, Tb.Th, and Tb.N of the femora were
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effects on F-actin ring formation and bone resorption
in vitro and LPS-mediated bone erosion in vivo. Taken
together, our findings supported the potential value of
EEST as a plant-derived therapeutic agent to treat bone-
related disorders, particularly osteoporosis.
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