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Membrane remodeling by SARS-CoV-2 – double-enveloped viral 
replication
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Abstract

The ongoing pandemic of the new severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused more than one 
million deaths, overwhelmed many public health systems, and led to a worldwide economic recession. This has raised an 
unprecedented need to develop antiviral drugs and vaccines, which requires profound knowledge of the fundamental pathology 
of the virus, including its entry, replication, and release from host cells. The genome of coronaviruses comprises around 30 kb of 
positive single-stranded RNA, representing one of the largest RNA genomes of viruses. The 5′ part of the genome encodes a large 
polyprotein, PP1ab, which gives rise to 16 non-structural proteins (nsp1– nsp16). Two proteases encoded in nsp3 and nsp5 cleave 
the polyprotein into individual proteins. Most nsps belong to the viral replicase complex that promotes replication of the viral 
genome and translation of structural proteins by producing subgenomic mRNAs. The replicase complexes are found on double-
membrane vesicles (DMVs) that contain viral double-stranded RNA. Expression of a small subset of viral proteins, including nsp3 
and nsp4, is sufficient to induce formation of these DMVs in human cells, suggesting that both proteins deform host membranes 
into such structures. We will discuss the formation of DMVs and provide an overview of other membrane remodeling processes 
that are induced by coronaviruses.
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Introduction
Coronaviruses are enveloped viruses that belong to the order 
Nidovirales. They possess a positive-sense single-stranded  
RNA genome and are characterized by the production 
of subgenomic mRNAs during infection. The subfamily  
Orthocoronavirinae comprises alpha-, beta-, gamma-, and 
delta-coronaviruses that infect a broad range of amphibians, 
birds, and mammals. Alpha-coronaviruses comprise the human  
coronavirus NL63 that causes mild to moderate respiratory tract 
infections. Severe acute respiratory syndrome coronavirus 2  
(SARS-CoV-2), together with SARS-CoV and MERS-CoV  
(Middle East respiratory syndrome–related coronavirus), belongs 
to the genus beta-coronavirus, which also comprises human coro-
navirus (HCoV)-OC43 and -HKU1. The latter cause mild upper 
respiratory tract infections such as the common cold, whereas 
MERS and SARS-CoV are responsible for severe forms of 
lower respiratory tract infections. The highest mortality rate was 
observed in patients infected with MERS-CoV (30%)1, followed  
by SARS-CoV2 (9%) and SARS-CoV-2 (<0.5%)3. However, the 
total number of deaths does not correlate with the mortality rate. 
For example, MERS-CoV and SARS-CoV-2 have caused 848 
and 774 deaths, respectively, while SARS-CoV-2 has already 
killed more than 1,000,000 people4–6. The primary reason for 
the large number of Covid-19 cases and victims is related to the 
extremely rapid spread of the disease, which is triggered by a 
large proportion of asymptomatic infections and superspreading  
events7–9. Until an efficient treatment of the disease or a vac-
cine is found, social distancing and physical barriers are essen-
tial to control viral circulation and to limit the propagation of  
the virus.

Since the onset of the first coronavirus outbreak with  
SARS-CoV in 2002, our knowledge regarding the fundamen-
tal biology of coronaviruses has been tremendously advanced. 
However, many fundamental questions regarding the viral 
life cycle remain to be answered. In this review, we provide 
an overview of the molecular biology of SARS-CoV-2 and 
focus on membrane remodeling events that are induced by viral  
proteins to promote viral replication.

Uptake of severe acute respiratory syndrome 
coronavirus 2: a plan B to avoid endocytic 
compartments
Coronaviruses are enveloped by a membrane derived from 
the host cell during budding. Three viral transmembrane pro-
teins are embedded in this membrane: the spike (S) protein, the 
envelope (E) protein, and the membrane (M) protein. Much 
effort has been dedicated to characterize the S-protein of  
SARS-CoV-2 since this protein is key to enter cells and a pri-
mary target of the adaptive immune system of the host. The 
S-protein belongs to the well-characterized class I fusion  
proteins and shares high similarity with the S-protein of 
SARS-CoV, to hemagglutinin of influenza A viruses, and to 
the envelop protein of HIV10. The human receptor and bind-
ing partner for the S-proteins of both SARS coronaviruses is the  
angiotensin-converting enzyme 2 (ACE2)11,12. The firm inter-
action of the receptor binding (S1) domain of the S-protein  

with ACE2 promotes tight adhesion of the virus to the host 
cell plasma membrane13. Entry of viruses into the host cells 
depends on the fusion of viral envelope and host cell membranes  
(Figure 1a). The fusion process is triggered by the S2 
domain of the S-protein, which harbors a fusion peptide. In 
order to be activated, the S-protein needs to be cleaved at 
two proteolytic cleavage sites. The first cleavage site of the  
SARS-CoV-2 S-protein, which is located between the S1 and 
S2 domains, is cleaved by furin-like proteases probably during  
S-protein biosynthesis14. The second cleavage site in the S2 
domain is cut by the host cell protease TMPRSS2 after the  
S-protein has bound to ACE2 on target cells11. The S1 subunit  
is released and the S2 subunit undergoes a first conformational 
rearrangement to expose the fusion peptide. This is followed 
by an insertion of this peptide into the host cell membrane.  
A second large conformational change of the S2 subunit trig-
gers fusion of the viral envelope and host cell membranes15. 
Since TMPRSS2 is a plasma membrane protein, cleavage and 
activation of the SARS-CoV-2 S-protein take place at the host 
cell plasma membrane. A similar mechanism has been reported 
for the uptake of SARS-CoV16. However, SARS-CoV and 
MERS-CoV can also be taken up into cells that do not express  
TMPRSS2 via clathrin-dependent endocytosis followed by 
cleavage and activation by the pH-sensitive protease cathe-
psin L (Figure 1b)17–19. Establishing the entry pathway of  
SARS-CoV-2 is of tremendous importance to understand its  
pathogenicity and to identify vulnerable cell types20. ACE2 and 
TMPRSS2 are highly enriched in nasal epithelial cells which 
correlates with viral replication in the upper respiratory tract21.  
The efficient colonization of these cells promotes viral spread-
ing and infection and renders SARS-CoV-2 more contagious  
than other related coronaviruses22. Epithelial cells of the lower 
respiratory tract, including bronchial and small airway tis-
sues, express significantly less ACE2 and TMPRSS2, suggest-
ing that they are less susceptible to viral infection. However,  
clathrin-dependent and -independent endocytosis followed by 
the fusion of viral envelope and host endolysosomal membranes 
provides a second access route to host cells23–25. Lysosomotropic  
agents such as chloroquine inhibit entry of SARS-CoV-2,  
suggesting that this coronavirus can also be taken up by endo-
cytosis, which contributes to the colonization of cells lacking  
TMPRSS2 (Figure 1b)26. Although the specific contribution of 
the two alternative routes for the entry of SARS-CoV-2 into host 
cells remains to be established, recent evidence suggests that  
clinical symptoms of patients with Covid-19 correlate with expres-
sion levels of ACE2 and TMPRSS2. In children, known to be 
less susceptible to SARS-CoV-2 infections, strongly reduced 
expression levels of ACE2 and TMPRSS2 in upper and lower  
respiratory tract tissues have been observed27.

Critical functions but intrinsically disordered – viral 
non-structural proteins
Whatever path is taken by viral particles to gain access into 
human cells, fusion of viral and host membranes releases viral 
capsids into the cytoplasm of host cells. The capsid contains 
the genome of CoVs, which is single-stranded positive-sense  
RNA that possesses a 5′ cap and a 3′ poly (A) tail. The genome 
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thus serves as a template for translation. In the early phase of  
infection, the two partially overlapping open reading frames 
(ORFs) 1 and 2 of the genome are expressed which com-
prise two thirds of the total genome, giving rise to the two  
polyproteins (PPs) 1a and 1ab (Figure 2).

PP1a comprises 11 non-structural proteins (nsps) that are 
cleaved into single nsps by the papain-like protease nsp3 and  
the 3C-like protease nsp5. A programmed ribosomal -1 
frameshift upstream of the stop codon of nsp11 allows continu-
ation of translation and gives rise to PP1ab that is cleaved into  
15 polypeptides, comprising nsp1 to nsp1628. Proteins that are 
generated by cleavage of PP1a modulate cellular pathways 
and remodel endomembranes of host cells to generate com-
partments for viral replication. Proteins, including nsp12 to  
nsp16, are derived from PP1b and, owing to the lower  
frequency of the programmed frameshift, are less abundant29. 
However, these proteins assemble into a complex that associates  

with host endomembranes to coordinate viral replication and  
translation reactions.

Nsp1 of SARS-CoV-2 shuts down translation of host mRNAs 
and RIG-I–dependent innate immunity by binding to the mRNA 
entry tunnel of ribosomes30. Nsp2 is dispensable for viral  
replication in cell culture and no specific function has yet been 
revealed31. The multidomain protein nsp3 combines various 
different functions32. Its papain-like protease (PLpro) cleaves  
nsp1, nsp2, and nsp3. Moreover, nsp3 is a major interaction 
hub and integral member of the viral replication complex. The 
macrodomains of nsp3 suppress the host immune response by 
exerting several enzymatic activities, including ADP-ribose-
1“-phosphate phosphatase, de-mono-ADP-ribosylation, and  
de-poly-ADP-ribosylation33–35. Another important function 
of nsp3 in remodeling host cell endomembranes is related 
to its two transmembrane helices and requires its interaction 
with the transmembrane protein nsp4 and nsp636. Moreover, 

Figure 1. Infection cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection cycle of SARS-CoV-2 is 
shown. (a) Viral entry by binding to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) (red) and fusion of the spike protein 
after proteolytic processing at the plasma membrane by TMPRSS2. (b) Viral entry by taking advantage of the endocytic pathway involving 
clathrin-dependent or -independent endocytosis and proteolytic processing in lysogenic compartments involving cathepsin L. (c) Formation 
of double-membrane vesicles (DMVs) at the endoplasmic reticulum (ER). (d) DMVs serve as replication organelles to produce viral genomic 
RNA. The interaction of exported RNA and viral N-proteins gives rise to viral capsids (dark blue) that are delivered to budding compartments 
(light blue). Translation of structural proteins, including nucleocapsid (N), membrane (M), surface (S), and envelope (E) proteins, occurs 
from subgenomic mRNAs that are produced by the viral replication–translation complex. (e) Trafficking of viral structural proteins (dark blue) 
from the ER to the Golgi and the plasma membrane following the exocytotic pathway. Proteins accumulate in viral budding compartments 
that are derived from membranes of the exocytic pathway, where capsids bud into the lumen. The compartments fuse with the plasma 
membrane to release viruses. ERGIC, endoplasmic reticulum–Golgi intermediate compartment; rER, rough endoplasmic reticulum; sER, 
smooth endoplasmic reticulum; TGN, trans-Golgi network.



Faculty Reviews 2021 10:(17)Faculty Opinions

nsp3 was recently shown to form part of a pore that spans  
double-membrane vesicles (DMVs)37. Such vesicles are gen-
erated from the endoplasmic reticulum (ER) and serve as  
viral replication organelles.

The two proteins nsp7 and nsp8 are co-factors of the main  
RNA-dependent RNA polymerase nsp1238 and their interaction 
enhances RNA binding and processivity of nsp1239–41. The two 
remaining proteins of PP1a—nsp9 and nsp10—are associated 
with the RNase complex through a direct interaction between 
nsp8 and nsp942. They bind single-stranded RNA and are sup-
posed to regulate or modulate the activity of nsp12 during the  
viral replication cycle43.

The C-terminal part of PP1a contains nsp11, which is a small 
polypeptide that becomes part of nsp12 upon programmed  
ribosomal frameshift. In addition to nsp12, PP1b contains 
proteins that are essential for viral replication, including the  
helicase nsp13 that unwinds RNA44,45. Replication of the large  
and complex viral genome of SARS-CoV-2 depends also on 
nsp14 that proofreads RNA during replication and corrects errors 
made by nsp12. The corresponding 3′-to-5′ exoribonuclease  
activity of nsp14 from HCoV-229E has been shown to be  
essential for the production of viable virus46. Nsp14 is also 
involved in mRNA cap formation by methylating the inverted 
guanosine moiety at the N7 position. The second methylation  
of the cap at the 2′-O position of the first transcribed nucleotide 
is added by nsp1647. Cap methylation also depends on nsp10, 

which interacts with nsp14 and nsp16, suggesting that cap  
methylating enzymes assemble together with the RNA polymer-
ase and associated proteins nsp8, nsp9, and nsp13 to form  
part of a bigger replication complex48. Recent studies have 
started to reveal the molecular composition of the replica-
tion machinery, providing insights into the function of the  
complex49–51. Nsp15 is a nidoviral RNA uridylate-specific endori-
bonuclease (NendoU) which is involved mainly in suppress-
ing antiviral immune responses by degrading cytoplasmic viral  
RNA52,53.

Double is better than single – viral replication and 
double-membrane vesicles
Cells have evolved various antiviral strategies to counteract 
viral infection by detecting characteristic structures termed  
pathogen-associated molecular patterns (PAMPs). Double-stranded 
RNA (dsRNA) is a potent PAMP and is an intermediate that 
is produced during replication of RNA viruses, including  
SARS-CoV-254. Pattern recognition receptors such as Toll-like 
receptor 3 as well as RIG-I–like receptors RIG-1 and MDA-5  
detect dsRNA and activate signaling cascades that induce 
the production of type 1 interferons (IFNs), including IFN-α  
and IFN-β55. These cytokines induce antiviral responses in  
neighboring cells and activate innate and adaptive immune 
responses. Coronaviruses, including SARS-CoV and SARS-CoV-2, 
shield their dsRNA intermediates in DMVs, probably to evade 
IFN-1 activation56. Together with other strategies, including RNA  
capping and interference with antiviral signaling pathways,  

Figure 2. Replication and translation of viral genomic RNA. Double-membrane vesicles (DMVs) contain double-stranded viral RNA, which 
is an intermediate of viral genomic RNA replication. Channels that span the double membrane allow viral RNAs, including positive-strand viral 
genomic RNA and subgenomic RNAs, to be exported. Translation of open reading frame 1a (ORF1a) gives rise to the polyprotein 1a (PP1a) 
comprising nsp1 to nsp11. A programmed ribosomal frameshift leads to transcription of PP1ab comprising nsp1 to nsp16. Subgenomic RNAs 
contain a common 5′ leader sequence and their translation gives rise to S (surface), E (envelope), M (membrane), and N (nucleocapsid) 
structural proteins. The 3′ part of the genome comprises additional ORFs (3a, 6, 7a, 7b, 8, and 10) that are not depicted. Their transcription 
leads to additional subgenomic RNAs (not shown). L, leader sequence.
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coronaviruses severely delay IFN-1 induction and corresponding  
pro-inflammatory immune responses57,58.

DMVs are abundant structures induced by many +RNA viruses, 
including arteriviruses59,60, hepatitis C virus61, noro- and  
picornaviruses62,63, and coronaviruses64,65. The morphology of these  
vesicles shows remarkable similarities with autophagosomes, 
and for some viruses, including SARS-CoV, a direct link 
between formation of DMVs and autophagy has been proposed66.  
Interestingly, expression of nsp3 and nsp4 appears to be sufficient 
to induce DMVs67. However, how these structures are formed 
remains elusive. Insights into potential molecular mechanisms 
for DMV formation come from transmission electron micros-
copy studies of cells that express single nsps or combinations  
of them.

Individually expressed nsp3 and nsp4 co-localize with ER mark-
ers, consistent with their co-translational insertion into the  
ER67,68. A recent study demonstrated that nsp3 forms together 
with other, yet-to-be-identified viral or host proteins pores 
that span DMVs, allowing for exchange of luminal and cyto-
plasmic material and for export of viral RNA37. The pore  
possesses a sixfold symmetry, and nsp3 is the major constituent 
of its cytoplasmic portion that possesses a crown-like structure. 
This suggests that the transmembrane domains of nsp3 span the  
cytoplasmic membrane of DMVs. Furthermore, nsp4 has been 
shown to interact with nsp3 and this interaction is required and 
sufficient to induce pairing of ER membranes36. Given that 
DMVs originate from the ER, it is tempting to speculate that  
nsp3 and nsp4 engage each other to form the pore with nsp4 
spanning the inner membrane of DMVs. Consistent with this 
hypothesis, intraluminal loops of nsp3 and nsp4 are involved 
in the interaction of both proteins36. Whether DMVs directly  
emerge from these paired ER structures remains to be established.

A recent study provided evidence that DMVs are the primary 
site for viral RNA synthesis56. Moreover, electron-tomography 
of cells infected with the murine hepatitis coronavirus (MHV)  
revealed channel-like structures in DMVs, connecting the lumen 
of DMVs with the cytoplasm37. Although replication organelles 
of Flock House nodavirus (FHV) differ from DMVs, they  
also contain a pore opening toward the cytoplasm which shares 
remarkable structural similarity to channels observed in DMVs 
induced by MHV69. Moreover, this pore contains the FHV  
protein A, which harbors RNA polymerase and RNA capping 
activities, suggesting that these pores are central organization  
platforms for the viral replication and transcription machinery.

The major component of the protein pore in DMVs of MHV 
is nsp3, which lacks similar enzymatic activities. However, 
nsp3 of SARS-CoV was found to interact with nsp7 and nsp12, 
both of which form part of the viral replication and transcrip-
tion complex70. Furthermore, nsp3 interacts with the N-protein, 
which together with viral RNA forms the capsid, suggesting 
that nsp3 is a central organization hub for viral replication and  
capsid assembly71.

Double-membrane vesicles remain mysterious 
compartments
The generation of DMVs is not only a hallmark of cells infected 
by all coronaviruses. Similar structures are also observed 
in arteri-, noro-, and picorna-viruses and hepatitis C virus.  
Inhibiting their biogenesis can lead to potent antiviral therapies 
with a broad spectrum of action. This, however, requires that 
the molecular mechanism of DMV biogenesis is fully charac-
terized and well understood. Unfortunately, our current knowl-
edge is rather limited, and controversial observations regarding  
the biogenesis of DMVs have been made. This is particularly 
true for autophagy, one of the most versatile recycling pathways  
in eukaryotic cells.

Autophagy delivers damaged or superfluous cytoplasmic  
components, including organelles and protein aggregates, to lyso-
somes for degradation72. During this process, a double-membrane  
cup-like structure that engulfs autophagic cargo is formed. 
Sealing of this membrane gives rise to double-membrane  
limited autophagosomes. The obvious morphological similarity 
between such autophagosomes and viral DMVs suggests that 
viruses hijack autophagy-related (ATG) proteins to induce the  
formation of DMVs. Consistent with this hypothesis, ATG5, 
which is essential for canonical autophagy, was found to be  
required for MHV replication in embryonic stem cells73. By  
contrast, replication of MHV in mouse embryonic fibroblasts did  
not depend on ATG574 or ATG766, implying that the contribution  
of canonical autophagy to viral replication is cell type–specific.  
This, however, does not necessarily indicate that MHV replicates  
independently of autophagy in these cells because an ATG5/
ATG7-independent autophagy pathway exists in embryonic  
tissues75.

Another potential connection between autophagy and viral  
replication involves LC3, an important autophagy protein and 
widely used cellular marker for autophagosomes. In canoni-
cal autophagy, LC3 is conjugated to the lipid phosphati-
dylethanolamine in autophagic membranes. The reaction is 
known as LC3 lipidation and involves conversion of LC3-I  
(non-lipidated) into LC3-II (lipidated) by a Ub-like conjuga-
tion system comprising E1 enzyme ATG7, the E2 enzyme ATG3,  
and the E3-ligase ATG12–ATG5-ATG16L176. LC3 was found 
to co-localize with MHV nsp8, indicating that components 
of the autophagy pathways are indeed hijacked by MHV73.  
Moreover, depletion of LC3 strongly impaired MHV replica-
tion, suggesting that LC3 is required for viral replication66.  
Similar observations were made in SARS-CoV–infected cells77. 
By contrast, lipidation of LC3 was not required for replication 
of MHV or SARS-CoV in bone marrow–derived macrophages 
or mouse embryonic fibroblasts, although LC3 was found to  
co-localize with viral nsps78.

LC3-II tethers cargo to autophagic membranes through its 
interaction with autophagy receptors such as p6279. Given 
that DMVs are devoid of such cargo, it is plausible that  
LC3-II is dispensable for viral replication. This implies that nsps  
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co-localize with LC3-I instead of LC3-II. Although autophagy-
independent functions of LC3-II have been discovered in 
the past, the molecular function of LC3-I remained less well  
understood80. However, LC3-I appears to be involved in  
ER-associated degradation (ERAD), which is an ER stress 
response and quality control pathway that ensures that unfolded 
proteins are removed from the ER81,82. In this pathway, LC3-I 
was found to co-localize with vesicles that remove ERAD regu-
lators from the ER. Thus, it is possible that coronaviruses coopt  
ERAD-related pathways by recruiting LC3-I to induce the  
formation of DMVs81.

Without any doubt, the ER plays a central role in the replica-
tion of coronaviruses. Many electron microscopy studies of 
infected cells demonstrated that ER membranes are heavily  
deformed and remodeled56. As discussed in the previous section, 
the viral proteins nsp3, nsp4, and nsp6 are central coordinators 
of such rearrangements. Nsp6 is of particular interest regarding 
the relationship between ER membranes, viral replication, 
and autophagy. Autophagosomes are formed at distinct domains 
of the ER which are enriched in phosphatidylinositol-3- 
phosphate (PtdIns3P) by the action of an autophagy-specific  
PtdIns3–kinase complex. PtdIns3P binding proteins, includ-
ing DFCP1, are recruited to these domains and induce the  
formation of omegasomes, which are cradle-like extensions 
of the ER (Figure 1c). Omegasomes serve as platforms for 
autophagosome biogenesis by coordinating the recruitment of 
autophagy proteins and lipids83,84. Nsp6 of the avian coronavirus 
IBV (infectious bronchitis virus) was shown to co-localize 
with the PtdIns (3)P binding proteins DFCP1 and WIPI2 
at the ER, suggesting that nsp8 initiates the formation of  
autophagosomes85. Similar observations have been made for 
nsp6 from MHV and SARS-CoV. However, expansion of such 
autophagosomes was limited by nsp6. As a result, much smaller 
autophagosomes were formed in nsp6-expressing cells86. Although 
expression of nsp6 is sufficient to induce autophagy, the forma-
tion of DMVs depends on the co-expression of nsp3 and nsp4.  
This suggests that nsp6 initiates the formation of omegasomes  

but that nsp3 and nsp4 are required to prevent formation of 
canonical autophagosomes by inducing the formation of DMVs  
(Figure 1c).

Conclusions
Understanding membrane dynamics in cells is challenging. 
Even for fundamental transport processes between organelles, 
the biogenesis of organelles, and their degradation, many open 
questions remain. Revealing how complex viruses such as  
SARS-CoV-2 and other coronaviruses replicate and bud by 
manipulating cellular organelles and membrane trafficking 
pathways adds another layer of complexity. On the other hand, 
viral and bacterial pathogens have been excellent models to  
study fundamental cellular functions for a long time. Many 
insights into the dynamics of the actin cytoskeleton have been 
revealed by studying intracellular pathogens. Using coro-
navirus as models is a remarkable opportunity to reveal  
fundamental principles of membrane dynamics but also rep-
resents a challenge. This is particularly true for the budding 
process of coronaviruses, which is not at all understood at a 
molecular level54. Electron microscopy studies of cells infected 
with MHV revealed that virions bud into vacuolar struc-
tures that are derived from membranes of the secretory path-
way, notably the ER–Golgi intermediate compartment and the  
Golgi87. However, these vacuoles possess remarkably differ-
ent morphologies compared with canonical cellular organelles88.  
Furthermore, viral budding requires that viral RNA produced 
in DMVs and host membranes containing viral structural  
proteins converge in budding compartments (Figure 1e). This 
requires that structural proteins, including S- and M-protein of 
coronaviruses, are delivered to these structures. If the S-protein  
is expressed in human cells, it is transported by the canoni-
cal secretory pathway to the plasma membrane89. In infected 
cells, however, the S-protein needs to be diverted to budding 
compartments. How transport of viral capsid, donor mem-
branes, and structural proteins is coordinated remains another 
open question and a major challenge for future research  
(Figure 1e).
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