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Review Article
Molecular Diagnostics for Soil-Transmitted Helminths
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Abstract. Historically, the diagnosis of soil-transmitted helminths (STHs) (e.g., Strongyloides stercoralis, Trichuris
trichiura, Ancylostoma duodenale, Necator americanus, and Ascaris lumbricoides) has relied on often-insensitive micros-
copy techniques. Over the past several years, there has been an effort to use molecular diagnostics, particularly quanti-
tative polymerase chain reaction (qPCR), to detect intestinal pathogens. While some platforms have been approved by
regulatory bodies (e.g., Food and Drug Administration) to detect intestinal bacteria, viruses, and protozoa, there are
no approved tests currently available for STH. Although studies comparing qPCR to microscopy methods for STH are
imperfect, due in large part to a lack of a sufficient gold standard, they do show a significant increase in sensitivity and
specificity of qPCR compared with microscopic techniques. These studies, as well as the advantages and disadvantages
of using qPCR for STH diagnosis, are discussed. Guidelines for those designing future studies utilizing qPCR are pro-
posed for optimizing results, as is the proposition for using standardized molecular diagnostics routinely for STH in
clinical laboratories and for field-based studies when possible.

INTRODUCTION

Soil-transmitted helminths (STHs) encompass a number of
intestinal parasitic nematodes that are acquired either by lar-
vae burrowing through intact skin (Strongyloides stercoralis,
the hookworms Ancylostoma duodenale and related spp.,
and Necator americanus) or by the fecal oral route (Ascaris
lumbricoides and Trichuris trichiura). As a group, STH
are on the World Health Organization’s (WHO’s) list of 17
neglected tropical diseases1 because of the significant mor-
bidity they cause and their propensity to be poverty promot-
ing. Although WHO does not include S. stercoralis on its
formal list of STH, we include it here because it is highly
prevalent and can be a significant cause of morbidity and
mortality2 in low-, middle- and high-income countries alike.
Infections with STHs are often clinically asymptomatic, but

they can be associated with eosinophilia and/or prolonged gas-
trointestinal symptoms, which most often occur in returning
travelers3–5 and immigrants.6–8 These infections are often
underdiagnosed given the decreasing number of well-trained
personnel with the competence in identifying eggs and/or lar-
vae in traditional stool-based microscopic methods and the
intermittent shedding of eggs and/or larvae by some of these
parasites (e.g., Strongyloides6,9,10).
Over the past 20 years, there has been an increasing effort

to use molecular diagnostics for STH in epidemiologic stud-
ies and for the diagnosis of individual patients in some
high-income countries.11,12 With the recent Food and Drug
Administration (FDA) approval of several molecular diag-
nostic tools for stool bacterial and a few protozoa patho-
gens,13,14 the use of twenty-first century technology for the
detection of intestinal pathogens has finally begun. However,
there is no such FDA-approved molecular platform for diag-
nosing gastrointestinal helminth infections. In this review, we
summarize the work that has been done in this growing field
with specific attention paid to the strengths and limitations

of using molecular diagnostics (particularly quantitative poly-
merase chain reaction [qPCR] platforms) in detecting STH.

AN INADEQUATE GOLD STANDARD

Part of the difficulty in determining the sensitivity and
specificity of qPCR and other molecular-based diagnostics is
the lack of a sufficient gold standard against which to com-
pare these newer techniques, given the general insensitivity
of stool-based microscopic methods commonly in use. For
example, the Kato-Katz (KK) technique was initially devel-
oped to detect Schistosoma spp. eggs,15 but is currently the
most commonly used technique in STH surveys.16 It is
particularly problematic in accurately detecting hookworm
infections as the stool must be prepared immediately,17

and the clarification step (i.e., glycerin) can make the eggs
unrecognizable.18 Interestingly, it is partly due to the lack of
sensitivity of KK in identifying the larvae of S. stercoralis
that has informed the decision by the WHO to not include
this pathogen as an STH.16

Some studies have attempted to deal with this (lack of suf-
ficient gold standard) problem by considering true positives
to be the sum of the positives found by microscopy and/or
PCR.19–22 Others have used several different microscopic
detection methods with or without the use of statistical
modeling to project the true prevalence, sensitivity, and
specificity for any given method.23 Regardless of the method
used, with rare exception, studies comparing microscopy
to molecular methods (primarily qPCR) to diagnose STH
have found markedly increased sensitivities with molecular
diagnostics (Table 1). Moreover, because many of the molecu-
lar diagnostic techniques are multiplexed24,42,43 or multi-
parallel,19,21,22 studies have also shown an increased ability
to detect multiple concurrent infections using qPCR when
compared with microscopy.19,21,43–45

APPLICATIONS OF QPCR AS AN STH DIAGNOSTIC

The WHO has set a worldwide goal to eliminate childhood
morbidity caused by STH by 2020. Dictating which commu-
nities receive anthelmintic drugs, how often they receive
them, and when community treatment is stopped is based on
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population prevalence rates determined by a small com-
munity sampling.16 Therefore, the very sensitive nature of
qPCR (even post-treatment where eggs are often no longer
visible), the improved ability to detect multiple helminths in
a given sample and the ability to reproducibly quantitate egg
burden, would be a huge asset to control programs.
Research studies are already utilizing qPCR for mass

screening of stool samples for STH in malaria46 and in vac-
cine studies (currently underway) as stool can be stored rela-
tively easily (see about preservatives in the section Technical
Considerations in Using qPCR as an STH diagnostic) and
sent offsite for qPCR not only for STH but also for protozoa
and other gastrointestinal pathogens.
One of the most common criticisms of qPCR is the high

cost compared with traditional methods. In one price com-
parison, a multiplex platform was estimated to cost about the
same in consumables as the cost of microscopy,45 and con-
sumable cost for multi-parallel singleplex qPCR of one
group was estimated to be almost half the cost of micros-
copy19 on a per test basis. Thus, depending on the technique
used, cost may not be a prohibitive factor.

TECHNICAL CONSIDERATIONS IN USING QPCR AS
AN STH DIAGNOSTIC

Despite the sensitive, rapid, and quantitative nature of
qPCR for the diagnosis of STH, there are important methodo-
logical considerations in test design and results interpretation.
Stool contains bile acids and other substances that inhibit the
PCR product amplification.47 Early on in the use of molecular
diagnostics for fecal pathogens, there were significant sensitiv-
ity problems when DNA extraction techniques that were not
specifically designed to remove these inhibitors48 were used.
PCR inhibitors are largely removed without problem using
1) more recent in-house developed protocols,27,49 2) tissue kits
with additional inhibitor removal steps,24,50 and 3) stool and
soil-engineered kits for DNA extraction.19,21,43,50–53

A more clinically validated study will also amplify an inter-
nal control for each specimen to ensure efficient PCR inhibi-
tor removal and to eliminate the possibility of false negatives
in the molecular diagnostic results.21,24,43,49,50,52

Sensitivity can also be decreased by formalin fixation of the
stool prior to DNA extraction.54 While specific stool preserva-
tion methods have not been directly compared in helminth
detection through qPCR, in studies assessing the impact of dif-
ferent preservative measures on protozoal DNA amplifica-
tion,55–57 it has been shown that samples stored in potassium
dichromate can be stored at room temperature for prolonged
periods before qPCR without any significant loss in sensitivity.
Unlike bacteria, which have cell walls that are easy to lyse,

some physical stress is required to optimize the release of
the nucleic acids from helminth eggs or larvae (and even
some protozoa58). While freeze-thaw cycles, heating, and/or
sonication do appear to offer an advantage over standard
lysis buffer methods,49,59 the use of a tissue homogenization
(“bead beating”) step with beads resistant to degradation
(i.e., not glass) likely offers the most thorough disruption of
parasite ova, thereby increasing molecular-based assay sen-
sitivities significantly.60 The amount of stool extracted, the
type of physical disruption method used, as well as the rela-
tive efficiency of commercial kits in extracting DNA50,60

likely explain much of the variability in sensitivity in pub-
lished studies (see Table 1).
When interpreting molecular diagnostic results, it is also

important to know the DNA sequence being amplified
(see Table 2) and the limitations inherent in testing for a
widely conserved sequence compared with sequence(s)
that are species specific. In terms of qPCR platforms,
singleplex (often using a multi-parallel approach19,21,22,52,63)
offers slightly more sensitivity compared with multiplexed
assays24,42,44,53,64,65(in which reagents in a given tube/well may
be limiting). However, it may be possible to optimize a multi-
plex format to be equally sensitive to a singleplex approach.43

Multiplexed assays do, however, require more sophisticated
and expensive equipment and labeled probes that may be
less universally available (and more costly).

QPCR IN THE DETECTION OF EACH OF THE
MAJOR STH

Ascaris lumbricoides. At an estimated prevalence rate of
819 million infections worldwide, A. lumbricoides is by far

TABLE 1
Targets and unique primer sequences reported in the literature for PCR for STH*

Organism Target region Citations of unique primer sequences

Strongyloides stercoralis ITS-1 25

18S 26

Cytochrome oxidase 1 26,27

Sequence repeats 22,26

ITS-1, 5.8S, ITS-2 28

Ancylostoma duodenale/ceylanicum ITS-2 24,29

ITS-1, 5.8S, ITS-2 30,31

A. duodenale Cytochrome oxidase 1 32

Sequence repeats 22

Ascaris lumbricoides ITS-1 22,33,34

Cytochrome oxidase 1 35

Necator americanus ITS-2 24,36–39

ITS-1, 5.8S, ITS-2 30,31,39,40

Cytochrome oxidase 1 32

Sequence repeats 22

Trichuris trichiura ITS-1 19

ITS-2 41

Sequence repeats 22

ITS = internal transcribed spacer; qPCR = quantitative polymerase chain reaction; STH = soil-transmitted helminth.
*Included are studies utilizing conventional, nested, qPCR.
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the most common STH.66 Several large studies have shown
a clear relationship between stool DNA concentration as
determined by qPCR and egg counts.19,21,43 Interestingly,
there is also a good correlation between DNA quantification
in the stool (presumably reflecting egg DNA) and the num-
ber of expelled adult worms after albendazole treatment.21

The evaluation of the existing data on A. lumbricoides across
multiple studies (Table 1) has been aided enormously by the
fact that all of the studies have targeted the internal tran-
scribed spacer 1 region (see Table 2). In addition, of all the
STH, KK identifies A. lumbricoides the most easily. More
reliable reproducibility likely explains the relatively small
gap (still in favor of the molecular diagnostics) in sensitivities
between KK and qPCR for Ascaris (Table 1).
Hookworms. Necator americanus and A. duodenale are

classically the two species of hookworm considered to be the
most prevalent and clinically relevant worldwide. However,
in certain regions of the world, Ancylostoma ceylanicum30

and Oesophagostomum bifurcum24 are very prevalent intesti-
nal parasites, both of which are indistinguishable from
N. americanus and A. duodenale using standard microscopic
diagnostic methods. Thus, in areas where molecular testing
has yet to characterize the exact species of infecting hook-
worms, the presumed predominant hookworm species may
not always be present. This inability to accurately distinguish
among the hookworms species morphologically has led to
some confusion in that highly species-specific primer/probe
combinations have led to some “false negatives” when com-
paring stool microscopy to qPCR.17,61 Indeed, egg-spiking
experiments have determined that qPCR can detect a single
hookworm egg in 200 mg of stool36 suggesting qPCR is extra-
ordinarily sensitive, but the eggs seen by microscopy may not be
the species that the primer/probe set was designed to detect.
Under optimal microscopic conditions, stool egg counts,

stool larval counts, and clinical outcomes have been highly
correlated with qPCR cycle times.21,23,24,43 For example, a
study on hookworm infection in Malawian children found a
significant interrelationship between the burden of hook-
worms as determined by qPCR, particularly A. duodenale,
and the severity of iron deficiency and anemia.67

Trichuris trichiura. Trichuris infections in some popula-
tions are associated with iron deficiency anemia.68–70 The
ova of Trichuris spp. are notorious for being more difficult
to break open in the DNA extraction process than any other
STH. Indeed, it is clear that a tissue homogenization step is
imperative to achieve egg disruption.71 This parasite is the
least well studied in the context of molecularly based diagno-

sis. However in the few studies where T. trichiura infection
has been assessed,19,22,52 homogenization with or without a
heating step has shown to yield highly sensitive qPCR results
(Table 1), in one case predicting the limit of detection to be
a single egg.22 Egg counts have also been shown to correlate
highly when comparing microscopy to qPCR.19 Similar to
hookworm, a number of Trichuris species besides T. trichiura
are increasingly being recognized as having the potential to
be a human pathogen.72 In cases where sequences highly
specific for T. trichiura are targeted in qPCR, other related
species (e.g., Trichuris ovis) may be missed.22

Strongyloides stercoralis. Strongyloidiasis, caused by
S. stercoralis, is problematic due to the prolonged period
maintained by this infection, as well as the potential for accel-
erated autoinfection with immune suppression (most often
associated with corticosteroid use or human T-lymphotropic
virus type 1 infection). Of all the intestinal helminths, it is
certainly the one most difficult to diagnose through stool
microscopy. This is due to the intermittent nature of larval
shedding in the stool, as well as the relatively low numbers
of larvae found in the stool (with the exception during accel-
erated autoinfection).9

Of the DNA sequences targeted (see Table 2), amplifica-
tion of the 18S small subunit (Genbank accession number
AY029262) has been proven to be more sensitive than cyto-
chrome c oxidase 1 or the dispersed repeat sequence,26 and
has been one of the most (if not the most) used sequence in
qPCR for S. stercoralis.
One of the easiest and most sensitive methods for detecting

infection with S. stercoralis is through the Koga agar plate cul-
ture, and so is often the method to which qPCR is compared.
However, this test also can give a positive result in the setting
of hookworm infection and can contribute to perceived false
negatives and an overall low sensitivity seen in some studies
using qPCR.26,61,62 However, in many epidemiologic surveys,
qPCR has typically increased overall diagnostic yield by 2- to
8-fold when compared with a variety of microscopic tech-
niques.12,19,27,45,51,63,73 Unlike the other STH, however, the
quantification of larvae in the stool has not been shown to pre-
dict the adult worm burden, and so qPCR would not be used
as a reflection of adult worm burden in a clinical setting.

PROPOSED GUIDELINES IN USING QPCR TO
DIAGNOSE STH IN RESEARCH STUDIES

Given the variability in sensitivity and specificity of qPCR
found in previous studies, we propose some guidelines for use

TABLE 2
Reported sensitivities of qPCR for diagnosing STH compared with reported stool microscopy sensitivities*

Organism Sensitivities reported by qPCR Sensitivities by microscopy

Ascaris lumbricoides 85.7%,†20 98%,**21 100%52 71.4%,†20 70,** 21 88%52

Hookworms 96.9%,†20 78.9%,61 75.7–83.3%,¶‖23 98%,21 100%36 31.3%,†20 79.2–88.8%,‖23 32%**21

Strongyloides stercoralis 76%,¶62 83.3%,†20 83.3–88.9%,§61 11.6%,¶‖23 93.8%,‡‡51 86.4%,§‖26 84.7%††27 16.7%,†20 50%,‡62 28.3%‖23

Trichuris trichiura 100%52 88%52

qPCR = quantitative polymerase chain reaction; STH = soil-transmitted helminth.
*Unless otherwise stated, gold standard in determining true positives was the sum of positives by qPCR and microscopy method used. Study specific microscopy methods (if described) are

listed below.
†Single stool sample prepared with a combination of Kato-Katz, wet preparation, and formol-ether concentration methods.
‡Single stool sample subjected to Baermann funnel concentration and Koga agar plate culture.
§Sensitivity excludes those positive by Koga agar and negative by Baermann funnel. See text for details.
¶No internal controls used to rule out PCR inhibition in this study.
‖Mathematical modeling to determine gold standard taking into account results of single stool subjected to FLOTAC, Kato-Katz, Baermann, and qPCR.
**Single stool sample prepared by Kato-Katz, with duplicate slides assessed by two technicians.
††Gold standard a combination of nested PCR, Koga agar plate culture, and formalin ether concentration.
‡‡Single stool sample subjected to formalin-ethyl acetate concentration, agar plate culture, and Harada Mori technique.
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in designing trials comparing qPCR with microscopy results.
First, DNA extraction should be performed using a commercial
stool or soil DNA extraction kit, or published protocols vali-
dated for use in stool-based PCR. A physical disruption step
early in DNA extraction (use of a tissue homogenizer with
ceramic or zirconia/silica beads, particularly if attempting to
detect Trichuris spp.) should be used. To exclude the possibility
of false-negative results due to PCR inhibitors, samples should
be spiked with an internal control and amplified along with tar-
get sequences of interest. Only validated primer/probe
sequences should be used for a particular target. Alternatively,
one can validate new sequences through Basic Local Alignment
Search Tool74 searches. Once identified, the primers/probes
derived from these new targets can be tested using genomic
DNA from the species of interest and from potentially cross-
reactive organisms to determine specificity. In performing stool
PCR surveys, one should ideally know the endemic hookworm
and Trichuris species in the population to be tested based on
previous molecular testing/sequencing; if unavailable it might be
important to include a pilot discovery phase to determine the
actual species of infecting parasitic helminth found in the stool.

CONCLUSION

The highly sensitive, rapid, and scalable nature of qPCR
makes its utilization in diagnosing STH extremely appealing
over insensitive and labor-intensive traditional microscopic
methods. We have suggested here its superiority over micros-
copy methods (particularly KK) in sensitivity while still pro-
viding a quantitative measure of infection intensity. There are,
however, important technical lessons that have been learned
that provide a framework to maximize the utility of this poten-
tially valuable molecular approach, which we have highlighted
here. Until now molecular detection of STH has been restricted
to the research setting. Given the neglected nature of STH and
the large cost of the regulatory processes, moving forward in
developing a FDA- or European Union-approved platform
would require significant political will and/or philanthropic
efforts. Nevertheless, given that surveillance and monitoring
for many other pathogens are being done using standardized
(but not commercialized) molecular techniques, we would
argue that use of qPCR in detecting STH would likely provide
a more accurate and cost-effective approach to the WHO STH
elimination strategy and should be considered seriously.
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