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INTRODUCTION

On its discovery in 1965 by Gold and Freedman 1 in
the blood of patients with colorectal cancer, human
carcinoembryonic antigen [CEA (since re-designated
CEACAM5)] was initially thought to be a tumour-
specific antigen. Although CEACAM5 was subse-
quently found in normal tissues, its consistent
overexpression in many cancers has made it a tumour
marker widely used for patient management and a
popular molecular target for novel cancer therapies.

After the cloning of CEACAM5 cDNA in 1986 2,
other CEACAM5-related cell adhesion molecules
were also identified in humans and other mamma-
lian species 3–5. The CEACAM family members are
highly glycosylated proteins that belong to the im-
munoglobulin gene superfamily 6. In humans, the
CEACAM family consists of membrane-linked and
secretory glycoproteins. The former are anchored to
the cell surface either by a glycophosphatidyl–inosi-
tol (GPI) anchor or a transmembrane domain. The GPI-
anchored members include CEACAM5 (the original
CEA), CEACAM6, CEACAM7, and CEACAM8 3.
Thus far, the GPI-anchored CEACAMs have been de-
tected only in primates, and not in lower mam-
mals 3–5,7.

The enormous volume of literature describing
the aberrant expression of CEACAM5 and
CEACAM6 in various types of cancers, the prognos-
tic values of such expression, and CEACAM5-tar-

geted therapies has tended to dilute studies reveal-
ing the significant biologic functions of these anti-
gens and their potential clinical implications. This
editorial overview highlights current knowledge of
the biologic functions of CEACAM5 and CEACAM6
in relation to tumorigenesis.

CEACAM5 AND CEACAM6 IN HUMAN
CANCERS

CEACAM5 is overexpressed in cancers of the gas-
trointestinal tract, pancreas, liver, gallbladder, lung,
breast, female reproductive system, medullary thy-
roid, urinary bladder, and prostate 3,8–11. Similarly,
CEACAM6 is overexpressed in cancers of the colon,
stomach, pancreas, lung, breast, and female repro-
ductive system, and in leukemia 3,8. Overall,
CEACAM5 or CEACAM6, or both, are overexpressed
in as many as 70% of all human tumours 12. In addi-
tion, that overexpression is often associated with poor
prognosis—specifically, poor clinical outcome and
reduced survival 13–16.

This overwhelming correlation suggests an in-
strumental role for these molecules in tumorigenesis.
In fact, CEACAM5 and CEACAM6 have a variety of
tumorigenic effects on cells cultured in vitro and in
in vivo model systems. Overexpression of CEACAM5
and CEACAM6 impedes myogenic, adipogenic, neu-
rogenic, and colonic differentiation programs 17–19,
inhibits anoikis and apoptosis in colon and pancre-
atic cancer cells 20–22, disrupts cell polarization and
tissue architecture 19, enhances liver metastasis 22,23,
increases chemoresistance 24, and increases colon-
tumour 25 and lung-tumour (Chan et al. Higher inci-
dence of spontaneous lung tumours in the CEABAC
mice. In preparation) susceptibility in a transgenic
mouse model.

This broad spectrum of tumorigenic effects arises
from functions at the molecular level. CEACAM5 and
CEACAM6 have been shown to activate integrin sig-
nalling pathways 26,27. Proteins that are GPI-anchored,
including CEACAM5 and CEACAM6, are often lo-
calized in the membrane microdomains called “lipid
rafts” 28. These rafts carry specific subsets of
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signalling molecules and are freely mobile on the cell
membrane. Growing evidence suggests the presence
of specific types of lipid rafts 28,29. CEACAM5 and
CEACAM6 have been shown to be co-localized with
integrin α5β1 in the same specific lipid rafts 30.

CEACAM5 and CEACAM6 function as intercel-
lular adhesion molecules because of parallel and anti-
parallel self-binding of their extracellular domains 31,
and therefore small CEACAM5- and CEACAM6-con-
taining lipid rafts can cluster together to form bigger
rafts 29, thus co-clustering their associated signalling
elements. This co-clustering could underlie the ob-
served activation of downstream signalling cascades,
such as the integrin signalling pathway, including el-
ements ILK, PI3K, and AKT 26. This mode of signal
activation would critically depend on the cell-surface
level of CEACAM5 and CEACAM6. That is, the down-
stream signal and consequent cellular behaviour would
depend in a nonlinear threshold fashion on the con-
centration of CEACAM5, CEACAM6, or both.

CEACAM5 AND CEACAM6 IN COLORECTAL
CANCER

Colorectal cancers are the end result of multiple trans-
formational events in normal epithelia. A set of neo-
plastic events, termed the adenoma–carcinoma
sequence, was originally proposed by Vogelstein and
colleagues for traditional adenomas 32. The loss of
functional APC causes a transition from normal epi-
thelium to aberrant crypt foci (ACF), the earliest de-
tectable tumorigenic change, followed by Kras
activation (adenoma formation), loss of SMAD2 and
SMAD4, and TP53 inactivation (carcinoma forma-
tion). With growing knowledge of the genetics of
colorectal cancers, more gene mutations are being
placed into this basic paradigm, although all the
events are not necessarily present and their sequence
can vary 33,34.

In contrast to the traditional adenomatous pol-
yps, hyperplastic polyps are commonly believed not
to progress to malignant lesions 35. However, in re-
cent years, sessile serrated adenoma, serrated ad-
enoma, and mixed polyps (a subgroup of hyperplastic
lesions showing a serrated feature) have been shown
to have malignant potential 36. These serrated lesions
show frequent BRAF (a member of the RAF family
of serine and threonine kinases) mutations and wide-
spread DNA methylation, and they have recently been
considered premalignant lesions that follow the ser-
rated pathway of neoplastic transformation as pro-
posed by Jass and colleagues 36–38. A general
inhibition of anoikis caused by mutation in a specific
gene can lead to serrated polyp formation 37. Muta-
tions in or downregulation of hMLH1 or MGMT
(methylguanine methyltransferase) can then lead to
progression to MSI-H (high level of microsatellite in-
stability) and MSI-L (low level of microsatellite insta-
bility) colorectal cancers respectively 38.

Although CEACAM5—and to a lesser extent
CEACAM6—are consistently overexpressed in most
colorectal cancers and have a broad range of tumori-
genic effects, they have not yet been assigned to any
proposed pathway. On the one hand, the
overexpression of CEACAM5 in 30%–90% of ACFs
suggests that this overexpression can be an early event
in the adenoma–carcinoma sequence 39,40. On the
other hand, CEACAM5 overexpression in serrated
polyps and its anti-apoptotic ability may suggest its
involvement in the serrated pathway 41. Similarly, the
overexpression of CEACAM6 in hyperplastic polyps
and traditional adenomas alike suggests that
CEACAM6 may also be involved in these neoplastic
pathways 42.

A transgenic mouse containing both the
CEACAM5 and CEACAM6 genes in a large (187 kb)
piece of human genomic DNA (the CEABAC mouse)
has recently been constructed 43. At low-to-moder-
ate expression levels of CEACAM5 or CEACAM6 (or
both), a partial block in cell differentiation, a mild-
to-moderate colonocyte hyperproliferation, and an
inhibition of anoikis or apoptosis are evident in the
transgenic colon. These mice are found to be signifi-
cantly more prone to develop carcinogen-induced
colon tumours, specifically the traditional adeno-
matous type 25. At higher (tumour-like) expression
levels, a complete block in cell differentiation and
extreme colonocyte hyperproliferation can be ob-
served. These mice show massively enlarged colons
comprising continuous non-focal cytologic and ar-
chitectural abnormalities, including dysplastic fea-
tures and serrated morphology. These results suggest
that, although moderate expression levels of
CEACAM5 and CEACAM6 can cause an imbalance
of tissue homeostasis leading to increased tumour
susceptibility following the classical pathway of co-
lonic neoplasia, tumour-like expression levels alone
produce a severe imbalance leading directly to tu-
mour formation, specifically the serrated subtype.
Hence, we propose that CEACAM5 and CEACAM6
can play a significant role in both neoplastic path-
ways (Chan et al. Colorectal hyperplasia and dyspla-
sia due to human CEA and CEACAM6 expression in
transgenic mice. Submitted manuscript).

CONCLUSION

CEACAM5 and CEACAM6 are commonly considered
inert tumour markers, despite the discovery and docu-
mentation of their tumorigenic functions over the past
two decades. Nevertheless, because of their ectopic
or deregulated overexpression in up to 70% of all
tumours, CEACAM5 and CEACAM6 represent popular
targets for novel cancer therapies, including cancer
vaccines, cellular immunotherapy, radioimmuno-
therapy, and antibody therapy. With growing knowl-
edge of the effects of CEACAM5 and CEACAM6 on
tumour biology, novel therapeutic strategies that focus
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more on perturbing the tumorigenic functions of these
antigens may now be indicated.
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