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end-diastolic volume (EDV), end-systolic volume (ESV), 
stroke volume (SV), ejection fraction (EF) and LV mass 
(LVM). Agreement between manual and InlineVF auto-
mated analyses were evaluated using Bland–Altman analy-
sis and the intra-class correlation coefficient (ICC). Tenfold 
cross-validation was used to establish a linear regression 
calibration between manual and InlineVF results. InlineVF 
D13A returned results in 4423 cases, whereas InlineVF 
E11C returned results in 4775 cases and also reported LVM. 
Rapid visual assessment of the E11C results found 178 cases 
(3.7%) with grossly misplaced contours or landmarks. In the 
remaining 4597 cases, LV function showed good agreement: 
ESV −6.4 ± 9.0 ml, 0.853 (mean ± SD of the differences, 
ICC) EDV −3.0 ± 11.6 ml, 0.937; SV 3.4 ± 9.8 ml, 0.855; 

Abstract  UK Biobank, a large cohort study, plans to 
acquire 100,000 cardiac MRI studies by 2020. Although 
fully-automated left ventricular (LV) analysis was performed 
in the original acquisition, this was not designed for unsuper-
vised incorporation into epidemiological studies. We sought 
to evaluate automated LV mass and volume (Siemens syngo 
InlineVF versions D13A and E11C), against manual analy-
sis in a substantial sub-cohort of UK Biobank participants. 
Eight readers from two centers, trained to give consistent 
results, manually analyzed 4874 UK Biobank cases for LV 

Availability of data and material: The data will be made 
available on request from the UK Biobank within six months of 
publication.
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and EF 3.5 ± 5.1%, 0.586. Although LV mass was consist-
ently overestimated (29.9 ± 17.0 g, 0.534) due to larger 
epicardial contours on all slices, linear regression could be 
used to correct the bias and improve accuracy. Automated 
InlineVF results can be used for case-control studies in UK 
Biobank, provided visual quality control and linear bias 
correction are performed. Improvements between InlineVF 
D13A and InlineVF E11C show the field is rapidly advanc-
ing, with further improvements expected in the near future.

Keywords  Ventricular function · Automated analysis · 
UK Biobank

Abbreviations
CMR	� Cardiovascular magnetic resonance imaging
EDV	� End-diastolic volume
ESV	� End-systolic volume
SV	� Stroke volume
EF	� Ejection fraction
LV	� Left ventricular
LVM	� Left ventricular mass
SSFP	� Steady state free precession

Introduction

UK Biobank is a large prospective cohort study designed to 
assess the determinants of diseases of middle and old age 
[1]. Initial data collection in 500,000 participants, including 
genetic, physical and functional measures, was completed 
in 2010. Participants will be followed for 20 years, enabling 
nested case-control studies to assess exposures and pre-
existing characteristics in the development of disease and 
the effect of treatment. In 2013, an imaging extension was 
initiated with the goal of imaging 100,000 UK Biobank par-
ticipants by 2020 [2]. The imaging studies include a 20 min 
cardiovascular magnetic resonance (CMR) examination, to 
assess cardiac phenotypes including ventricular function 
[3]. However, analysis of ventricular function parameters in 
100,000 cases is impractical using current manual methods, 
which require drawing the ventricular boundaries at end-
diastole (ED) and end-systole (ES) [4]. Also, manual assess-
ment requires substantial training and is subject to inter-
observer and inter-center variation [5]. Large-scale CMR 

studies, such as UK Biobank, therefore present substantial 
challenges and opportunities for epidemiological analysis of 
cardiac phenotypes [6–9].

Recently, fully-automatic analyses of ventricular function 
are becoming available, with immediate application to large 
cohort studies [10–13]. In the UK Biobank CMR imaging 
examination, the Siemens syngo InlineVF (Siemens Health-
care, Erlangen, Germany) fully automated analysis of left 
ventricular (LV) volume was performed during acquisition. 
This software automatically identifies LV landmarks at the 
LV base (mitral valve) and apex in long-axis cine acquisi-
tions, locates endocardial and epicardial contours at ED and 
ES in each short-axis cine slice, and performs volume calcu-
lations to determine ventricular function parameters (Fig. 1). 
However, the software was designed for supervised analysis 
with visual assessment for quality control in a clinical set-
ting. Since these results are already available to research-
ers as part of the initial UK Biobank CMR image dataset, 
their application to large cohort studies such as UK Biobank 
requires investigation. Although the D13A version was used 
in the initial automated analysis, a subsequent E11C version 
will also be made available. This paper compares the perfor-
mance of these versions in the first 5,000 UK Biobank cases.

We sought firstly to evaluate the performance of auto-
mated ventricular function analysis against a standard man-
ual analysis, in a substantial sub-cohort of UK Biobank. The 
second objective was to correct for bias between the auto-
mated and manual analyses to enable automated results to be 
used in future UK Biobank case-control studies.

Methods

Subjects

CMR examinations from the first 5065 UK Biobank imag-
ing extension participants were assessed. All participants 
gave written informed consent and the appropriate institu-
tional review boards approved the study protocol (National 
Research Ethics Service North West 11/NW/0382).

Imaging protocol

The full CMR protocol and rationale have been described 
in detail previously [3]. Briefly, all imaging was conducted 
on a 1.5 T scanner (MAGNETOM Aera, syngo MR D13A, 
Siemens Healthcare GmbH, Erlangen, Germany) using a 
phased-array cardiac coil. Ventricular function scans con-
sisted of retrospectively gated cine balanced steady-state free 
precession breath-hold acquisitions performed in horizontal 
long axis, vertical long axis, left ventricular outflow tract 
orientations, as well as a complete short axis stack covering 
the left and right ventricles. Typical parameters were: TR/
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of London, Charterhouse Square, London EC1M 6BQ, UK
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TE = 2.6/1.1 ms, flip angle 80°, GRAPPA factor 2, voxel size 
1.8 × 1.8 × 8 mm3 (6 mm for long axis). The actual temporal 
resolution of 32 ms was interpolated to 50 phases per cardiac 
cycle (~20 ms).

Manual analysis

Manual analysis of LV volumes and mass were performed 
in accordance with the Society of Cardiovascular Magnetic 

Resonance recommendations [4]. Eight readers in two core 
laboratories were trained according to standard operating 
procedures prior to study commencement, to ensure mini-
mal inter-observer bias. CMR examinations were analysed 
using cvi42 post-processing software (Version 5.1.1, Circle 
Cardiovascular Imaging Inc., Calgary, Canada). The ED 
frame was selected as the first frame of the series and the 
ES frame was selected as the smallest LV blood pool area in 
the mid-ventricular slice. At both ED and ES, the most basal 

Fig. 1   a InlineVF results for a typical case with good agreement for 
volume (<5 ml for EDV and ESV) but overestimation of mass (61 g) 
compared with manual analysis. b InlineVF results for a case with 

relatively large discrepancy between manual and inlineVF results 
(30 ml in EDV). Contours show errors at the base slice 
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slice included had at least 50% of the LV blood pool sur-
rounded by myocardium. Papillary muscles were included 
in the blood pool. Inter-observer errors were quantified in 
50 randomly selected cases. The software provided ED and 
ES volume (EDV, ESV respectively), ejection fraction (EF), 
stroke volume (SV) and mass (LVM). LVM was calculated 
assuming a myocardial density of 1.05 g/ml.

InlineVF

The D13A version of the InlineVF analysis algorithm was 
performed as part of the image acquisition and results stored 
as a separate DICOM image series as part of the image data 
for each case. The InlineVF algorithm has been described 
previously [10, 14, 15]. Briefly, shortest path algorithms 
were used to determine epicardial and endocardial contours 
that were propagated to other frames and used in other slices 
as a geometric prior. All frames were segmented in each 
slice using an inverse consistent deformable registration to 
register all frames to the first frame. The segmentation was 
propagated to other frames through the forward and back-
ward deformation fields. The long axis slices were used to 
detect basal and apical landmarks using machine learning 
methods [15]. These landmarks were used to define a base 
plane approximation at the level of the mitral valve, which 
was used to cut contours to avoid inclusion of atrial vol-
ume in the ventricle. Papillary muscles were included in the 
blood pool. LV volumes and mass were calculated by slice 
summation, with a correction for the location of the base 
plane. LVM was calculated by assuming a myocardial den-
sity of 1.05 g/ml. In this paper we used the LVM calculated 
at ED for both InlineVF and manual estimates.

A subsequent release of the software, version E11C, was 
applied retrospectively in a batch-processing mode proto-
type. The E11C version provided an estimate of LVM cal-
culated from the epicardial contours, whereas the D13A ver-
sion did not. Other changes incorporated in E11C included 
a refined detection of the LV blood pool: In addition to the 
detection of the heart based on a Fourier transform over time 
to detect moving objects, RV insert points were also detected 
to derive a blood pool feature point. Thresholded connected 
components were then clustered across slices to recover the 
blood pool, using information about the location of the con-
nected component with respect to the blood pool point as 
an additional feature in the clustering algorithm. The batch-
processing prototype was implemented on a Windows 7 
workstation using Python and Windows Batch scripts. The 
input was the directory containing DICOM images for an 
entire study and the output was the LV mass and volume.

Outliers with EDV or ESV > 500 ml in the automated 
results were rejected as unphysiological. For the E11C 
results, a rapid visual assessment of resulting contours was 
also performed. Algorithm failures were identified if the 

InlineVF contours were grossly erroneous (e.g. contouring 
of organs other than the LV) or identification of the land-
marks or LV base plane was grossly incorrect or absent.

Statistics

Agreement was assessed by Bland–Altman analysis of bias 
(mean difference) and precision (standard deviations of the 
differences), 95% limits of agreement, and two-way random 
single measures intra-class correlation coefficient (ICC) 
for agreement (i.e. including systematic differences) [16]. 
The Levene test was used to test for differences in preci-
sion. Significant differences were defined at p < 0.05. Linear 
regression was performed to determine a correction between 
manual and InlineVF parameters. The correction parameters 
were assessed using Monte Carlo cross-validation [17]. The 
dataset was randomly divided into 90% training and 10% 
test cases, and prediction errors calculated in the test cases 
using the linear correction derived from the training cases. 
The resulting prediction errors were averaged for 500 trials. 
Statistical analysis was performed using R (version 3.3.2) 
statistical software [18].

Results

A total of 5065 consecutive UK Biobank CMR examina-
tions were evaluated. Of these, 191 cases had either CMR 
data of insufficient quality for manual LV analysis or the 
CMR identifier could not be matched with the UK Biobank 
identifier. Manual LV analysis was performed in the remain-
ing 4874 cases. Table 1 shows participant demographics. 
Typical inter-observer errors quantified in 50 cases were 
−2.2 ± 4.7 ml for EDV, −2.4 ± 4.7 ml for ESV, 0.53 ± 5.8 ml 
for SV, 2.7 ± 6.6% for EF, 1.9 ± 6.5 g for LVM.

InlineVF D13A results were obtained in 4423 cases (9% 
failure rate). However, several cases returned erroneous vol-
umes due to gross failures of the algorithm to detect LV 
features. Some of these cases could be readily identified as 
unphysiological EDV or ESV. However, many cases could 
not be automatically identified as failures from the volumes 
alone. Excluding the 10 cases with EDV or ESV > 500 ml 
as implausible, and so outliers for this cohort, comparisons 
between manual and automated results in the remaining 
4413 cases are shown in Table 2. Bias (mean differences) 
were small but standard deviations of the differences were 
relatively large, leading to wide limits of agreement.

InlineVF E11C results were obtained in 4775 cases 
(2% failure rate). Excluding the 101 cases with EDV or 
ESV > 500 ml, comparisons between manual and automated 
results in the remaining 4674 cases are shown in Table 3. 
Biases were again small and precision in EDV and ESV was 
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somewhat improved (p < 0.05) over the D13A version. LVM 
showed consistent overestimation relative to manual results.

Rapid visual assessment of the 4775 InlineVF E11C con-
tours and landmarks found 178 cases with gross errors in 
automated contour or landmark placement (36 in contours 
only, 46 in the landmarks only, and 96 in both contours and 
landmarks). Results for the remaining 4597 cases (6% total 
failure rate) are shown in Table 4. The precision in the EDV, 
ESV, SV and EF estimates were considerably improved (all 
p < 0.05), whereas LVM precision (p = 0.12) was unaffected, 
compared with Table 3.

Figure 1a shows an example of InlineVF E11C results for 
a typical case with good agreement for volume (<5 ml for 
EDV and ESV) but overestimation of mass (61 g) compared 
with manual analysis. This shows some errors in contour 
placement for the basal slice, but the difference in LVM 
was mainly due to consistently larger epicardial contours 
for all slices. Figure 1b shows a case with a relatively large 
discrepancy between manual and InlineVF results (30 ml in 
EDV). This case illustrates good contours for most slices, 
except for the basal slice. Figure 2a shows a case that was 
classified as a failure by visual inspection. The algorithm in 
this case has detected both ventricles as the LV. Figure 2b 
shows another case classified as a failure, but with errors at 
the basal and apical slices only.

Figure 3 shows Bland–Altman plots for ventricular func-
tion parameters and LV mass for the InlineVF E11C results 
with visual failures removed (n = 4597). LVM showed a con-
sistent overestimation with the InlineVF results, increasing 

Table 1   Participant characteristics

All continuous values are reported in mean ± standard deviation (SD), 
while categories are reported in number (percentage)
a Angina, myocardial infarction, heart failure/pulmonary oedema, 
arrhythmia, cardiomyopathy, atrial fibrillation, stroke, ischaemic 
stroke, transient ischaemic attack, peripheral vascular disease
b Asthma, chronic obstructive airways disease, emphysema/chronic 
bronchitis, bronchiectasis, interstitial lung disease, asbestosis, pulmo-
nary fibrosis, fibrosing alveolitis/unspecified alveolitis, sleep apnoea, 
respiratory failure;
c Renal failure, renal failure requiring dialysis, diabetic nephropathy

n 4874
Age (years) 62 ± 8
Male 2313 (48%)
Caucasian ethnicity 4728 (97%)
Weight (kg) 76 ± 15
Height (cm) 170 ± 9
Body mass index (kg/m2) 26 ± 4
Body surface area (m2) 1.86 ± 0.21
Systolic blood pressure (mmHg) 137 ± 18
Diastolic blood pressure (mmHg) 79 ± 10
Heart Rate (bpm) 70 ± 12
Use of anti-hypertensive, lipid-lowering medications or 

insulin
1593 (33%)

Diabetes 256 (5%)
Cardiovascular diseasesa 401 (8%)
Respiratory diseasesb 805 (17%)
Renal diseasesc 12 (0.2%)

Table 2   Comparison of manual 
and inlineVF D13A results, 
n = 4413

Values are mean ± SD. Unphysiological cases were removed

EDV (ml) ESV (ml) SV (ml) EF (%)

Manual 144.0 ± 34.3 59.2 ± 20.3 84.9 ± 19.2 59.4 ± 6.4
InlineVF D13A 139.9 ± 37.5 62.3 ± 25.8 77.6 ± 18.2 56.1 ± 6.5
Differences −4.2 ± 21.6 3.1 ± 19.0 −7.3 ± 10.9 −3.3 ± 6.0
Limits of agreement (−46.6, 38.2) (−34.1, 40.4) (−28.7, 14.0) (−15.0, 

8.5)
R2 0.676 0.466 0.692 0.318
ICC 0.813 0.658 0.772 0.499

Table 3   Comparison of manual 
and inlineVF E11C results, 
n = 4674

Values are mean ± SD. Unphysiological cases were removed

EDV (ml) ESV (ml) SV (ml) EF (%) LVM (g)

Manual 144.3 ± 34.3 59.4 ± 20.4 85.0 ± 19.3 59.3 ± 6.4 89.7 ± 24.8
InlineVF E11C 141.8 ± 35.0 53.7 ± 22.8 88.1 ± 19.9 62.7 ± 7.3 119.2 ± 32.5
Differences −2.5 ± 17.4 −5.6 ± 16.0 3.1 ± 11.0 3.4 ± 6.2 29.5 ± 17.8
Limits of agreement (−36.6, 31.5) (−37.0, 25.7) (−18.4, 24.7) (−8.8, 15.6) (−5.4, 64.4)
R2 0.765 0.535 0.771 0.348 0.705
ICC 0.872 0.703 0.832 0.521 0.533
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Table 4   Comparison of manual 
and inlineVF E11C Results, 
n = 4597

Values are mean ± SD. Visually assessed failures were removed

EDV (ml) ESV (ml) SV (ml) EF (%) LVM (g)

Manual 144.5 ± 34.3 59.4 ± 20.5 85.1 ± 19.2 59.3 ± 6.4 89.8 ± 24.8
InlineVF E11C 141.5 ± 33.1 53.1 ± 19.3 88.4 ± 19.1 63.0 ± 6.4 119.7 ± 32.0
Differences −3.0 ± 11.6 −6.4 ± 9.0 3.4 ± 9.8 3.5 ± 5.1 29.9 ± 17.0
Limits of agreement (−25.7, 19.7) (−24.1, 11.3) (−15.9, 22.7) (−6.3, 13.7) (−3.4, 63.2)
R2 0.887 0.807 0.754 0.466 0.725
ICC 0.937 0.853 0.855 0.586 0.534

Fig. 2   InlineVF results for two cases classified as failure by visual inspection. a Base landmarks incorrect and LV contours cover both ventri-
cles. b LV contours show gross errors at the base and apex 
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with increasing mass. This is verified in Fig. 4 (linear regres-
sion plots), in which LV EDV and ESV showed regression 
lines near the line of identity, and LVM had the largest devi-
ation from identity, with a consistent overestimation that was 
well characterized by a linear regression.

A tenfold cross-validation was performed to determine 
the robustness of the linear regression parameters. The 
resulting regression parameters are shown in Table 5. Slopes 
were close to identity for EDV and ESV, but lower slopes 
and higher intercepts were found for SV, EF and LVM. 
Table 5 also shows the errors of prediction if automated 
results were used in place of manual results (after linear cor-
rection using the mean slope and intercept found by cross-
validation). Bias has been removed, as expected, but preci-
sion is also improved for the LVM estimate. The inter-class 

correlation coefficients between the corrected automated 
results and the manual results also show improvement for 
all parameters.

In order to estimate the number of cases required for 
case control studies using the InlineVF estimates in UK 
Biobank, a number of assumptions are required. The error 
of the measurement can be estimated from the precision 
values shown in Table 5. Table 6 shows indicative power 
calculations illustrating the number of subjects required 
to detect a difference in CMR variables, assuming a type 
I error rate of 5%, and standardized effect size (mean 
effect divided by standard deviation) of 30–100%. For 
example, a study designed to detect a 30% standardized 
effect size for LV mass, assuming a standard deviation of 
13 g (Table 5), would require 234 patients in each group 
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Fig. 3   Bland–Atman plots for InlineVF E11C results with visual failures removed (n = 4597). Dotted lines are mean difference ± 1.96 SD
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to detect of a mean change of 4 g (30% of 13 g) with 
90% power. However, additional variation is likely due to 
variability in the manual results and intrinsic biological 
variability.

Discussion

Fully automated image analysis methods are desirable for 
large cohort studies such as UK Biobank, due to the com-
plex nature of image analysis and the requirement for large 
numbers of cases. Automated analysis tools for LV func-
tion are now becoming more widely available, for a recent 

Fig. 4   Linear regression plots 
the InlineVF E11C results 
with visual failures removed 
(n = 4597). Solid line is the 
linear regression; dotted line is 
the line of identity
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review see [11]; however, most studies have reported limited 
numbers of cases. An open benchmark challenge compari-
son of fully-automated and semi-automated methods in 95 
cases showed that the fully-automated Siemens InlineVF 
algorithm performed as well as semi-automated methods 
[10]. More recently, automated methods have been reported 
in studies with over 1000 participants [13, 19].

The Siemens InlineVF analysis tool was one of the first 
fully automated LV analysis methods commercially avail-
able on standard scanners [20, 21], and the D13 version was 
enabled for the initial UK Biobank imaging acquisitions and 
these results are available to researchers as part of the initial 
image dataset. However, this tool was designed for clinical 
review in association with visual inspection of results, as 
required by regulatory and certification bodies. Application 
to epidemiological research studies such as UK Biobank is 
therefore unclear. In this study, we report the largest evalua-
tion of a fully-automated LV analysis algorithm performed 
to date, to our knowledge. Improvements with the E11C ver-
sion of InlineVF as well as LVM quantification, using visual 
inspection and linear bias correction, are demonstrated.

Although the detection failure rate was considerably 
improved in the E11C version, a review of remaining failures 
highlighted some conditions where misdetection was more 
likely. Firstly, the aorta can appear very bright and pulsate 
strongly in some cases, leading to mis-detection of the left 
ventricular blood pool. Secondly, the whole heart (left and 
right ventricles) may be detected as the left ventricle if the 
contrast between blood and myocardium is weak, or if there 
is some blurring due to irregular heart rate or breathing. 
Thirdly, the algorithm can fail if the gray level distributions 
of the different regions (blood, myocardium, lungs, partial 

voluming) cannot be modeled correctly due to unexpected 
intensities and contrast in the images. To some extent, such 
failures could be mitigated by re-acquisition with better 
breath-holds, adjusted slice positioning, or arrhythmia rejec-
tion. However, in the context of large cohort studies such as 
UK Biobank, it is not desirable to expend a large effort to 
achieve a 100% success rate, since a small number of drop-
outs can be accommodated.

The best precision (standard deviation of the differences) 
obtainable was about twice that of the manual inter-observer 
precision for EDV and ESV, and over three times for LVM. 
However, the technology of automated image analysis is cur-
rently advancing at a rapid pace, with new developments in 
machine learning (e.g. deep convolutional neural networks) 
showing considerable promise [22]. Therefore, we expect 
that improvements in algorithms will lead to improved preci-
sion, leading to a reduction in the number of cases required 
for case-control studies.

Limitations of the study include the visual assessment 
required to detect algorithm failures. Although this is fast 
on a case-by-case basis, review of many thousands of cases 
is time-consuming. In the future it would be useful to auto-
matically assess the quality of the analysis, for example to 
automatically flag failures, or give an uncertainty in the esti-
mate. Some failures could be detected simply by implau-
sibly large or small LV volumes (as in Fig. 2a). However 
this is not possible for the case in Fig. 2b, a more complex 
method is required. It may be possible to detect such fail-
ures using machine learning methods, which would in turn 
lead to better performance of the original detection. This 
is an active area of further study. Another area of future 
research is the correction of breath-hold misregistration. 

Table 5   Linear regression 
results (Monte Carlo cross-
validation)

Corrected errors are mean differences and standard deviation of differences between manual and corrected 
InlineVF values (using the average linear regression model from cross-validation). Similarly corrected ICC 
uses the corrected InlineVF values

Slope Intercept Corrected errors Corrected ICC

EDV 0.975 ± 0.003 6.53 ± 0.36 ml 0.0 ± 11.54 ml 0.940
ESV 0.954 ± 0.004 8.79 ± 0.22 ml 0.0 ± 8.99 ml 0.893
SV 0.870 ± 0.003 8.13 ± 0.26 ml 0.0 ± 9.52 ml 0.859
EF 0.682 ± 0.005 16.34 ± 0.30% 0.0 ± 4.68% 0.636
LVM 0.660 ± 0.003 10.84 ± 0.29 g 0.0 ± 13.01 g 0.841

Table 6   Example power calculations showing number of cases (in each group) required to detect a difference in CMR variables between two 
groups of equal sizes

Significance level is 0.05, and a two-sided t test is assumed. Standardized effect sizes of 30, 60 and 100% are shown

Power 80% 90%

Effect size 30% 60% 100% 30% 60% 100%
n 175 45 17 234 59 22
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The long axis slices were used to determine a basal cut-off 
plane below which volume was included in the ventricle. 
Inconsistent breath-holding can influence the position of this 
plane. Although the base plane is an average of all the long 
axis slices, and is therefore robust to moderate breath-hold 
misregistation, future methods will enable better registration 
of the short and long axis slices.

Another potential limitation was that the manual results 
were treated as correct for all calculations. It is known 
that the manual contouring can show bias between cent-
ers due to differences in training [5]. Suinesiaputra et al. 
[5] provided a consensus dataset of 15 cases derived from 
analyses from seven independent centers for benchmark-
ing purposes. Readers from the current study also ana-
lyzed these cases, resulting in typical consensus errors of 
EDV = −6.72 ± 12.03 ml; ESV = −3.58 ± 12.75 ml; EF = 
−0.72 ± 3.51%; LVM = −1.28 ± 11.96 g. Thus, the manual 
results of the current study are in good agreement with pre-
vious studies and other centers. Another source of poten-
tial error is the choice of ED and ES frames, since this was 
assessed manually by visual inspection of the mid-ventric-
ular slice. The automatic algorithm, in contrast, computed 
volume for all frames and reported the maximum and mini-
mum volumes. Future studies should investigate the perfor-
mance of different vendor’s software and quantify differ-
ences between methods.

Conclusions

Automated InlineVF results provided in UK Biobank can 
be used for case-control studies, provided visual assessment 
for quality control and linear adjustment of bias are per-
formed. Further improvements in performance are expected 
in the near future with rapid advances in automated analysis 
technologies.

Acknowledgements  This research has been conducted using the 
UK Biobank Resource under application 2964. Funding was provided 
by British Heart Foundation (PG/14/89/31194), and by the National 
Institutes of Health (USA) 1R01HL121754. SN, SKP acknowledge 
the National Institute for Health Research (NIHR) Oxford Biomedi-
cal Research Centre based at The Oxford University Hospitals Trust 
at the University of Oxford, and the British Heart Foundation Centre 
of Research Excellence. Aaron Lee and Steffen Petersen acknowledge 
support from the NIHR Biomedical Research Centre at Barts Health 
NHS Trust and from the “SmartHeart” EPSRC programme grant (EP/
P001009/1).

Compliance with ethical standards 

Conflict of interest  AAY reports receiving consulting fees from Sie-
mens Healthcare. AG, MPJ, CH are employees of Siemens Healthcare. 
SEP reports receiving consulting fees from Circle Cardiovascular Im-
aging, Inc., Calgary, Canada.

Ethical Approval  All human studies were approved by the appropri-
ate ethics committees and have therefore been performed in accord-
ance with the ethical standards laid down in the 1964 Declaration of 
Helsinki and its later amendments. All persons gave their informed 
consent prior to their inclusion in the study. Details that might disclose 
the identity of the subjects under study have been omitted.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.

References

	 1.	 Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, 
Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong 
G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R 
(2015) UK Biobank: an open access resource for identifying the 
causes of a wide range of complex diseases of middle and old age. 
PLoS Med 12(3):e1001779. doi:10.1371/journal.pmed.1001779

	 2.	 Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis 
JM, Friedrich MG, Leeson P, Nagel E, Plein S, Rademakers FE, 
Young AA, Garratt S, Peakman T, Sellors J, Collins R, Neubauer 
S (2013) Imaging in population science: cardiovascular magnetic 
resonance in 100,000 participants of UK Biobank—rationale, 
challenges and approaches. J Cardiovasc Magn Reson 15(1):46

	 3.	 Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, 
Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins 
R, Piechnik S, Neubauer S (2016) UK Biobank’s cardiovascular 
magnetic resonance protocol. J Cardiovasc Magn Reson 18:8. 
doi:10.1186/s12968-016-0227-4

	 4.	 Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel 
MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, 
Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized 
image interpretation and post processing in cardiovascular mag-
netic resonance: Society for Cardiovascular Magnetic Resonance 
(SCMR) board of trustees task force on standardized post process-
ing. J Cardiovasc Magn Reson 15:35

	 5.	 Suinesiaputra A, Bluemke DA, Cowan BR, Friedrich MG, Kramer 
CM, Kwong R, Plein S, Schulz-Menger J, Westenberg JJ, Young 
AA, Nagel E (2015) Quantification of LV function and mass 
by cardiovascular magnetic resonance: multi-center variability 
and consensus contours. J Cardiovasc Magn Reson 17(1):63. 
doi:10.1186/s12968-015-0170-9

	 6.	 Medrano-Gracia P, Cowan BR, Suinesiaputra A, Young AA 
(2015) Challenges of cardiac image analysis in large-scale pop-
ulation-based studies. Curr Cardiol Rep 17(3):563. doi:10.1007/
s11886-015-0563-2

	 7.	 Rueckert D, Glocker B, Kainz B (2016) Learning clinically useful 
information from images: past, present and future. Med Image 
Anal 33:13–18. doi:10.1016/j.media.2016.06.009

	 8.	 Frangi AF, Taylor ZA, Gooya A (2016) Precision Imaging: more 
descriptive, predictive and integrative imaging. Med Image Anal 
33:27–32. doi:10.1016/j.media.2016.06.024

	 9.	 Suinesiaputra A, McCulloch AD, Nash MP, Pontre B, Young 
AA (2016) Cardiac image modelling: breadth and depth in 
heart disease. Med Image Anal 33:38–43. doi:10.1016/j.
media.2016.06.027

	10.	 Suinesiaputra A, Cowan BR, Al-Agamy AO, AlAttar MA, Ayache 
N, Fahmy AS, Khalifa AM, Medrano-Gracia P, Jolly MP, Kadish 
AH, Lee DC, Margeta J, Warfield SK, Young AA (2014) A 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1186/s12968-015-0170-9
https://doi.org/10.1007/s11886-015-0563-2
https://doi.org/10.1007/s11886-015-0563-2
https://doi.org/10.1016/j.media.2016.06.009
https://doi.org/10.1016/j.media.2016.06.024
https://doi.org/10.1016/j.media.2016.06.027
https://doi.org/10.1016/j.media.2016.06.027


291Int J Cardiovasc Imaging (2018) 34:281–291	

1 3

collaborative resource to build consensus for automated left ven-
tricular segmentation of cardiac MR images. Med Image Anal 
18(1):50–62

	11.	 Peng P, Lekadir K, Gooya A, Shao L, Petersen SE, Frangi AF 
(2016) A review of heart chamber segmentation for structural and 
functional analysis using cardiac magnetic resonance imaging. 
MAGMA 29(2):155–195. doi:10.1007/s10334-015-0521-4

	12.	 Lu YL, Connelly KA, Dick AJ, Wright GA, Radau PE (2013) 
Automatic functional analysis of left ventricle in cardiac cine 
MRI. Quant Imaging Med Surg 3(4):200–209. doi:10.3978/j.
issn.2223-4292.2013.08.02

	13.	 Corden B, de Marvao A, Dawes TJ, Shi W, Rueckert D, Cook 
SA, O’Regan DP (2016) Relationship between body composition 
and left ventricular geometry using three dimensional cardiovas-
cular magnetic resonance. J Cardiovasc Magn Reson 18(1):32. 
doi:10.1186/s12968-016-0251-4

	14.	 Jolly MP, Guetter C, Lu X, Xue H, Guehring J (2013) Auto-
matic segmentation of the myocardium in cine MR images using 
deformable registration. In: Camara O, Mansi T, Pop M, Rhode 
K, Sermesant M, Young AA (eds) Statistical atlases and compu-
tational models of the heart. Imaging and modelling challenges. 
Lecture Notes in Computer Science, Springer, Berlin, pp 98–108

	15.	 Lu X, Georgescu B, Jolly MP, Guehring J, Young A, Cowan B, 
Littmann A, Comaniciu D (2010) Cardiac anchoring in MRI 
through context modeling. Med Image Comput Comput Assist 
Interv 13(Pt 1):383–390

	16.	 Hallgren KA (2012) Computing inter-rater reliability for obser-
vational data: an overview and tutorial. Tutor Quant Methods 
Psychol 8(1):23–34

	17.	 Shao J (1993) Linear model selection by cross-validation. J Amer 
Statistical Assoc 88(422):486–494

	18.	 R Team (2014) R: A language and environment for statistical com-
puting. http://www.R-project.org/

	19.	 de Marvao A, Dawes TJ, Shi W, Durighel G, Rueckert D, Cook 
SA, O’Regan DP (2015) Precursors of hypertensive heart pheno-
type develop in healthy adults: a high-resolution 3D MRI study. 
JACC 8(11):1260–1269. doi:10.1016/j.jcmg.2015.08.007

	20.	 Theisen D, Sandner TA, Bauner K, Hayes C, Rist C, Reiser MF, 
Wintersperger BJ (2009) Unsupervised fully automated inline 
analysis of global left ventricular function in CINE MR imaging. 
Invest Radiol 44(8):463–468. doi:10.1097/RLI.0b013e3181aaf429

	21.	 Lin K, Collins JD, Lloyd-Jones DM, Jolly MP, Li D, Markl M, 
Carr JC (2016) Automated assessment of left ventricular func-
tion and mass using heart deformation analysis: initial experience 
in 160 older adults. Acad Radiol 23(3):321–325. doi:10.1016/j.
acra.2015.10.020

	22.	 Avendi MR, Kheradvar A, Jafarkhani H (2016) A combined deep-
learning and deformable-model approach to fully automatic seg-
mentation of the left ventricle in cardiac MRI. Med Image Anal 
30:108–119. doi:10.1016/j.media.2016.01.005

https://doi.org/10.1007/s10334-015-0521-4
https://doi.org/10.3978/j.issn.2223-4292.2013.08.02
https://doi.org/10.3978/j.issn.2223-4292.2013.08.02
https://doi.org/10.1186/s12968-016-0251-4
http://www.R-project.org/
https://doi.org/10.1016/j.jcmg.2015.08.007
https://doi.org/10.1097/RLI.0b013e3181aaf429
https://doi.org/10.1016/j.acra.2015.10.020
https://doi.org/10.1016/j.acra.2015.10.020
https://doi.org/10.1016/j.media.2016.01.005

	Fully-automated left ventricular mass and volume MRI analysis in the UK Biobank population cohort: evaluation of initial results
	Abstract 
	Introduction
	Methods
	Subjects
	Imaging protocol
	Manual analysis
	InlineVF
	Statistics

	Results
	Discussion
	Conclusions
	Acknowledgements 
	References


