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Abstract: Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is
currently the method of choice for untargeted metabolomic analysis. The availability of established
protocols to achieve a high confidence identification of metabolites is crucial. The aim of this
work is to describe the workflow that we have applied to build an Accurate Mass Retention Time
(AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried
out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra,
obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow
injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded
stable retention times. The adopted chromatographic protocol included a gradient separation using
a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column.
An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples
analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification,
according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric
plasma and urine samples, respectively. This library represents a starting point for future metabolomic
studies in pediatric settings.

Keywords: LC-HRMS; metabolomics; library; chromatography; pediatrics

1. Introduction

Metabolomics is an emerging technology that allows the comprehensive study of
the low molecular weight molecules within an organism [1,2]. It represents a powerful
tool for precision medicine, being helpful for understanding the mechanisms of diseases,
in the discovery of new therapeutic targets or biomarkers for diagnosis and monitoring
the activity of therapeutics [3–5]. High resolution mass spectrometry (HRMS) is an in-
creasingly used instrument for metabolomics, thanks to its high performance allowing
the analysis of complex matrices and the detection of hundreds of metabolites [6]. One
of the major bottlenecks of metabolomics is the identification process of compounds that
is necessary to draw any biological conclusion from untargeted metabolomics data [7].
Data processing workflows incorporate several defined steps, such as noise filtering, peak
detection, peak deconvolution, retention time alignment and finally feature annotation [8].
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Feature annotation is performed by comparing an experimental mass measurement to
a database of known metabolites in order to generate potential candidates. Several
databases (such as mzCloud, HMDB, METLIN or MassBank) were developed to assist
researchers in compound putative identification and are continuously implemented by the
scientific community [9–11]. Moreover, given the wide variety of chromatographic and
mass spectrometric conditions that can be employed to generate metabolomic experiments,
it is essential that established metabolomics laboratories implement fixed, robust and
reliable protocols that yield stable retention times [12].

Standardization in metabolomics is still an unmet need but many efforts have been
made towards realizing this aim. In 2007, the Metabolomics Standards Initiative (MSI)
defined the guidelines for reporting the minimum metadata relative to metabolite iden-
tification with four different levels with level 1 being the highest confident identification
when a structure is confirmed with a minimum of two independent and orthogonal data
from a pure reference standard under identical analytical conditions [13].

The aim of this paper is to describe the development of an Accurate Mass Reten-
tion Time (AMRT) database starting from a commercial metabolite library of standards
(MSMLS). This database has been integrated into the protocol used in our laboratory for
metabolomic untargeted analyses and was tested on human plasma and urine samples
derived from pediatric subjects.

2. Results
2.1. Accurate Mass Retention Time Library

An AMRT library was obtained using a commercial metabolite library of standards
(MSMLS) composed by 634 metabolites (listed in Supplementary Table S1). Each molecule
was individually characterized through flow injection analysis (FIA). The MS1 (molecular
ion or adduct) was selected in both negative and positive polarity and fragmented using
12 different normalized collision energies (NCE) (a parameter that is adopted by Ther-
mofisher Scientific instruments) in order to collect a complete and sharable database that
might be also used with other mass spectrometers. Optimal NCE with a high degree of
confidence in the identification of compounds and structural information in our setting
were selected. The library of the list of compounds, the molecular ions and the fragmenta-
tion spectra were shared as a public format (file format *.msp). Figure 1 schematizes NCE
adopted and shows that the most frequently used are 20, 40 and 50 in positive mode and
10, 30, 40 in negative mode.

The chromatographic conditions which allowed the best results in terms of peak
suitability score to be obtained, in our hands, were the following: ACQUITY BEH C18
(with mobile phase A: 0.1% formic acid in H2O and mobile phase B 0.1% formic acid in
acetonitrile) for reversed phase and ACQUITY BEH Amide (with mobile phase A: 5 mM
ammonium formate in H2O pH 3 and mobile phase B 100% acetonitrile) for hydrophilic
interaction liquid chromatography (HILIC) separation. The choice of reversed-phase
column was quite straightforward as, for both polarities, ACQUITY BEH C18 fulfilled both
threshold values (e.g., symmetry and width values—50 positive mode and 67 negative
mode, Table 1). For HILIC columns the choice was more difficult: at pH 8, two columns
showed good performances, with a value of 32 for both Accucore Amide HILIC and Shodex
Asahipak NH2P-50 2D, but at pH 2 the same columns showed the worst performances.
Therefore, we decided to use the ACQUITY BEH Amide column because it maintained
a better performance on both polarities (Table 1).

A total of 359 and 191 compounds were identified by using reversed phase and
HILIC columns, respectively. Supplementary Table S2 shows the AMRT database obtained
containing the list of compounds with their optimal NCE and the corresponding RT .



Molecules 2021, 26, 4256 3 of 9

Molecules 2021, 26, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. Figure shows in ordinates the number of molecules and in abscises the best normalized collision energy. The 
panel above (A) is show positive mode results and in panel below (B) in negative mode. 

The chromatographic conditions which allowed the best results in terms of peak 
suitability score to be obtained, in our hands, were the following: ACQUITY BEH C18 
(with mobile phase A: 0.1% formic acid in H2O and mobile phase B 0.1% formic acid in 
acetonitrile) for reversed phase and ACQUITY BEH Amide (with mobile phase A: 5 mM 
ammonium formate in H2O pH 3 and mobile phase B 100% acetonitrile) for hydrophilic 
interaction liquid chromatography (HILIC) separation. The choice of reversed-phase 
column was quite straightforward as, for both polarities, ACQUITY BEH C18 fulfilled 
both threshold values (e.g., symmetry and width values—50 positive mode and 67 negative 
mode, Table 1). For HILIC columns the choice was more difficult: at pH 8, two columns 
showed good performances, with a value of 32 for both Accucore Amide HILIC and 
Shodex Asahipak NH2P-50 2D, but at pH 2 the same columns showed the worst 
performances. Therefore, we decided to use the ACQUITY BEH Amide column because 
it maintained a better performance on both polarities (Table 1). 

  

Figure 1. Figure shows in ordinates the number of molecules and in abscises the best normalized collision energy. The panel
above (A) is show positive mode results and in panel below (B) in negative mode.

Table 1. Chromatographic columns and mobile phases tested during method development with the reports of how many
peaks fulfill chromatographic suitability criteria: symmetry, peak width and the conjunction of both.

Column Positive Negative

Reversed Phase Phase
B—Solvent Symmetry Width Symmetry

+ Width Symmetry Width Symmetry
+ Width

ACQUITY BEH C18 ACN 112 119 50 136 100 67
MeOH 72 129 29 91 101 40

Hypersil GOLD CN ACN 62 108 14 63 75 24
MeOH 56 99 12 59 59 12

Hypersil GOLD aQ ACN 82 137 42 110 82 49
MeOH 60 125 19 76 60 24

Accucore Polar Premium ACN 84 120 30 105 56 28
MeOH 64 108 19 92 76 26

HILIC Phase A—pH Symmetry Width Symmetry
+ Width Symmetry Width Symmetry

+ Width

ACQUITY BEH Amide pH 2 75 120 25 63 72 25
pH 8 87 133 26 38 77 21

Accucore Amide HILIC pH 2 73 114 22 20 34 6
pH 8 76 118 32 21 42 15

Shodex Asahipak NH2P-50 2D pH 2 51 100 10 27 84 5
pH 8 71 116 32 45 116 8

SeQuant ZIC-pHILIC pH 2 65 130 18 59 60 24
pH 8 69 120 22 38 44 18
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2.2. Analysis on Real Samples

A total of 132 and 124 compounds (listed in Supplementary Table S3) belonging to the
AMRT database were identified with level 1 identification in plasma and urine samples,
respectively. Figure 2 shows the number of metabolites identified in plasma and highlights
the importance of combining the different chromatographic conditions and MS polarities
in order to increase the number of identified compounds [14]. The identified metabolites
were preliminarily checked in order to verify their concordance with the expected results.
Some key metabolites, consistent with the pediatric origin of our study samples, could be
identified both in plasma and urine samples: betaine (associated to low adiposity), acetyl-
carnitine (typically increased after starvation), indoxyl sulphate (deriving from hepatic
transformation of indole, in turn a microbiome tryptophan (Trp) metabolite). Interestingly,
two other Trp metabolites synthesized by gut microbiota, indole-3-methyl acetate and
5-Hydroxyindoleacetic acid, were found in urine samples [15–18].
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Moreover, a number of metabolites associated with diet components were identified.
Oxalic and ascorbic acid, two metabolites associated with a diet rich in fruits and vegeta-
bles were found in plasma; creatinine, associated with a diet rich in proteins was found
both in plasma and in urine. P-hydroxyphenylacetic acid and riboflavin, associated with
a diet rich in nuts and seeds and dairy products, respectively, were identified in urine
samples [19]. Some metabolites related to carbohydrates (3-hydroxybutyric, citric, and
aconitic acid), amino acids (proline, valine, leucine, isoleucine) and lipids (suberic acid)
were also identified in urine. All these findings are in line with a Mediterranean diet (MD),
consistent with the origin of our study subjects and in line with the findings of a previously
published study on 1H NMR human urinary metabolome profiles of individuals following
an MD [20]. Moreover, the metabolites identified in urine indicating a low-fat diet, such as
hippurate, histidine and its derivates methyl-histidine, carnosine, and anserine, were also
identified [20].

3. Discussion

Untargeted metabolomic analysis is a powerful technique, in that it allows the col-
lection of data without pre-existing knowledge, being, thus, very useful for several appli-
cations [21]. Sample preparation protocols, chromatographic conditions and instrument
platforms have an impact on the results directly influencing the subset of metabolites that
can be found. One of the bottlenecks of the untargeted strategy is represented by the correct
identification of the molecules which represents a crucial point for drawing the correct
biological conclusions [7].
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A few published papers describe similar findings but, differently from ours, the
resulting spectral libraries and RT databases were not shared in a public format [22,23].

The retention time database that we share is strictly related to our chromatographic
conditions, so it can be useful only for those who decide to strictly adopt our choice of
columns, phases and flow rates. Whereas some variables, such as dead volumes, specific to
the system used are barely controllable, we suggest using our data as a starting point. This
approach allowed us to obtain a level 1 identification of about 400 metabolites that can also
be integrated in small molecule identification software, such as Compound Discoverer, MS
DIALS, XCMS, and MZmine [8,24–26].

For each molecule the choice of the best fragmentation energy for both positive
and negative polarities allowed us to optimize the identification process. Usually in
discovery experiments a stepped energy of 30, 40, 50 eV is used. Our data suggest,
however, that for many molecules these energies are not optimal and this could affect the
correct identification of the metabolites, especially in complex matrices such as plasma and
urine [27].

Our protocol was successfully applied to the two most commonly analyzed biolog-
ical fluids (urine and plasma) allowing us to obtain a high number of level 1 identified
metabolites: 132 in plasma and 124 in urine.

Notably, some key metabolites could be identified. Among them carnitine is partic-
ularly interesting for its involvement in brain degeneration and cognitive performance
processes [28] and correlation to birth weight in healthy neonates [29].

Moreover, the presence of metabolic substrates and intermediates, both in blood and
urine samples, may derive from exosomes and macrovesicles that possess a metabolic
activity as previously demonstrated [30,31].

Another interesting finding is represented by the identification of metabolites associ-
ated with some diet components or a particular diet. Indeed, it was shown that diet, gut
microbiome, and metabolome are closely related, with short-term diet being more strongly
related to plasma metabolome [32].

Metabolites produced by the microbiome, especially in response to diet, have the
potential to affect the metabolic processes of the host, both positively and negatively. The
interplay between human and microbiome metabolic pathways was shown to particu-
larly affect serum indole-containing molecules [18]. Consistently, in our plasma and urine
samples, we have found several indole-containing metabolites of tryptophan. A corre-
lation between dysbiotic microbiota and diseases, such as cancer, inflammatory bowel
diseases and neurodegenerations, such as Parkinson disease [33], imply a promising role
for untargeted large-scale metabolomic studies to be applied clinically.

In conclusion, in this paper we have shared a standardized workflow for achieving
safe metabolite assignment by high-resolution mass spectrometry coupled with UHPLC.
This information and related data can be used as a starting point by those who want to
approach untargeted metabolomics analysis.

The reliable identification of several metabolites in a single chromatographic run
opens interesting scenarios for the study of metabolic processes in both disease and health,
quantifying markers typical of disease but also of diet—lifestyle or gut microbiome. Our
aim is to apply the AMRT database on real samples in order to improve the stratifica-
tion of pediatric patients, to produce new knowledge of pathology by identifying and
characterizing metabolic dysregulation.

4. Materials and Methods
4.1. Chemicals

Ammonium formate, ammonium bicarbonate, acetonitrile (ACN), methanol (MeOH)
and formic acid (FA), all LC-MS grade, were purchased from Sigma Aldrich Srl (Milan,
Italy). Water was purified by reverse osmosis and filtrated through a Milli-Q purification
system (Millipore, Milford, MA, USA).



Molecules 2021, 26, 4256 6 of 9

Four reversed phase columns: ACQUITY BEH C18 (1.7 µm 2.1 × 100 mm, Waters
S.p.A., Sesto San Giovanni, Milan, Italy), Hypersil GOLD aQ (2.6 µm 2.1 × 100 mm,
ThermoFisher Scientific, Milan, Italy), Hypersil GOLD CN (1.9 µm 2.1 × 100, ThermoFisher
Scientific, Milan, Italy), Accucore Polar Premium (2.6 µm 2.1 × 150, ThermoFisher Scientific,
Milan, Italy) and four HILIC columns: ACQUITY BEH Amide (1.7 µm 2.1 × 150 mm,
Waters S.p.A., Sesto San Giovanni, Milan, Italy), Accucore Amide HILIC (2.6 µm 2.1 × 150,
ThermoFisher Scientific, Milan, Italy), SeQuant ZIC-pHILIC (5 µm 2.1 × 150 mm, Merck
S.p.a., Milan, Italy), Shodex Asahipak NH2P-50 2D (5 µm 2.0 × 150, Phenomenex, Bologna,
Italy) were employed for the development of chromatographic conditions.

4.2. Library of Standards

The library of standards was purchased from IROA Technologies (Bolton, MA, USA).
MSMLS contains over 634 unique small molecule compounds, provided at 5 µg per

well, arranged in 7 polypropylene plates with alphanumeric assigned positions. Forty-two
compounds were excluded from analyses: 5 of them were out of our defined mass range
(70–1000 m/z) and 37 were duplicates. Compounds were dissolved using two different
solutions (10% methanol for plates 1–5 and chloroform: methanol: water 1:1:0.3 for plates
6–7) in order to obtain a 0.1 µg/µL concentration.

4.3. Urine and Plasma Samples

Plasma and urine samples were obtained from 50 pediatric subjects (age 0–16 years,
25 males and 25 females) admitted at different wards of the Giannina Gaslini Institute
(Genoa, Italy), a tertiary care pediatric Hospital. Leftover samples after routine analyses
were used. Plasma was obtained from peripheral venous blood collected in 3 mL EDTA
K3-containing tubes, centrifuged at 4000× g for 5 min at 4 ◦C. Urine was collected from
single spot. A sample pool for each matrix was obtained, aliquoted and stored at −20 ◦C
until used.

A written consent allowing the collection of leftover samples and the use of clinical
and nongenetic data for clinical research was signed by patient’s guardians. No formal
approval from the Internal Review Board was required since no additional blood sampling
was needed in order to set up our metabolomic protocol.

A 50 µL aliquot of each pool was extracted adding 150 µL cold (−20 ◦C) methanol,
vortex-mixed and centrifugated at 14,000 rpm for 10 min. The supernatant was collected
and stored at −80 ◦C until analyzed.

4.4. Mass Spectrometric Conditions and Spectral Library

LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled
to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher
Scientific, Milan, Italy). Ionization was obtained using a heated electrospray source (HESI)
probe both in positive and negative mode. In order to build the MSMLS spectral library,
the 592 compounds contained in the corresponding wells were analyzed by FIA at a flow
rate of 0.15 mL/min of 60/40 ACN/H20, 0.2% FA, and a run time of 0.5 min.

For each compound the molecular ion was selected and fragmented using 12 different
collision energies from 10 to 120 eV, with steps of 10 eV. For some compounds that were
not capable of generating the molecular ion in the ion source, the most abundant adduct
was considered.

The following parameters were used in order to maximize signal and optimize stability
(CV < 5%) for both polarities: sheath gas of 30 a.u, auxiliary gas of 10 a.u, auxiliary gas
temperature of 300 ◦C and capillary temperature of 300 ◦C. A spray voltage of 4000 and
3000 V in positive and negative modes, respectively, was used. Data were acquired in MS1

Full Scan mode with a resolution of 70,000, automatic gain control (AGC) 1 × 106, mass
range 70–1000 m/z and a maximum injection time of 200 ms, followed by a parallel reaction
monitoring (PRM) event with an inclusion list of only one precursor with a MS2 resolution
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of 17,500, AGC 5 ×105, maximum injection time of 60 ms and an isolation window of
1.2 m/z.

All raw data file were processed with mzVault 2.1 (Thermo Fisher Scientific, Milan,
Italy) to build the fragmentation library. The best energy was automatically selected by
the software’s algorithm and then the results were manually reviewed ensuring that the
spectra contained both the molecular ion and a sufficient number of fragments.

4.5. Selection of Chromatographic Conditions and Retention Time Assignment

Eight different chromatographic columns and different mobile phases were tested
using a single mixture containing all the metabolites spiked in plasma. Raw data were
analyzed in order to choose column and eluents which ensured the best separation using
Tracefinder 4.1 software (Thermo Fisher Scientific, Milan, Italy) adopting a screening
approach. In particular, for each metabolite in the library, the software extracted a mass
trace, integrated the peaks found and chose the peak with the highest intensity on which
the following chromatographic suitability criteria were tested: symmetry, peak width,
tailing and column overload. The peaks with best scores in terms of symmetry (at peak
height 50%, a threshold above 90%) and peak width (at peak height 50%, a value between
1.8 and 3.6 s) were selected.

The mobile phases tested for C18 columns were: phase A, water 0.1% FA; phase B,
MeOH 0.1% FA or ACN 0.1% FA. The mobile phases tested for HILIC columns were:
phase A, H2O 5 mM ammonium formate (pH 3) and H2O 5 mM ammonium bicarbonate
(pH 8); phase B, ACN. The linear gradient for reversed phase columns started with 1% B
and in 15 min increased up to 100% with a flow rate of 250 µL/min, then the columns were
normalized for 5 min with 1% phase B. The linear gradient for HILIC columns started with
90% B and decreased to 30% B in 15 min with a flow rate of 200 µL/min, the columns were
then normalized with 90% phase B for 9 min. The column temperature was maintained at
40 ◦C for C18 columns and at 25 ◦C for HILIC columns. Subsequently, to determine the
retention times, MSMLS was divided into 9 mixtures composed of non-isobaric molecules
(as specified in Supplementary Table S2). The 9 different mixtures were then spiked in
plasma matrix, extracted and injected with the conditions selected above.

The experiments were performed in data-dependent acquisition mode (DDA) with
inclusion mass list priority, with both positive and negative polarity. A maximum of
5 MS/MS experiments were triggered for each DDA scan. The intensity threshold was
set at 1.6 × 105 using an isolation window of 1.4 Da. The m/z values of signals already
selected for MS/MS were put on an exclusion list for 20 s. Resolution of 70,000 (at m/z 200)
and 17,500, AGC of 3 × 106 and 1 × 105, 100 ms and 50 maximum injection time were used
for MS1 and MS2 scans, respectively.

4.6. Untargeted Metabolomic Analysis of Real Samples

Plasma and urine samples were analyzed using the chromatographic conditions which
yielded the best results and analyzed in DDA mode with fragmentation priority. We have
divided all the molecules of the library, based on the retention times (with a retention time
window of ±0.5 min), in numerous inclusion list files limiting overlaps as much as possible.
The experiments were performed separately for each polarity, alternating MS and MS/MS
experiments. Resolutions of 70,000 (at m/z 200) and 17,500, AGC of 1 × 106 and 2 × 105,
injection times of 100 and 65 ms maximum were used for MS1 and MS2 scans, respectively.
The loop count was set at 5, the m/z values of the signals already selected for MS/MS were
put in an exclusion list for 5 s. The minimum AGC target for the triggering of MS/MS was
set at 2 × 103 using an isolation window of 1.4. A normalized stepped collision energy of
20, 40, 80 was used.

For data processing, compound Discoverer ver. 3.1 (Thermo Fisher Scientific, Milan,
Italy) was used, the workflow of data processing was shared (Workflow.cdProcessingWF).
AMRT was used as the unique database for identification of unknown features.
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