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The small free radical gas nitric oxide (NO) plays a key role in various physiological

and pathological processes through enhancement of endothelial cell survival and

proliferation. In particular, NO has emerged as a molecule of interest in carcinogenesis

and tumor progression due to its crucial role in various cancer-related events including cell

invasion, metastasis, and angiogenesis. The dimethylarginine dimethylaminohydrolase

(DDAH) family of enzymes metabolize the endogenous nitric oxide synthase (NOS)

inhibitors, asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA),

and are thus key for maintaining homeostatic control of NO. Dysregulation of

the DDAH/ADMA/NO pathway resulting in increased local NO availability often

promotes tumor growth, angiogenesis, and vasculogenic mimicry. Recent literature has

demonstrated increased DDAH expression in tumors of different origins and has also

suggested a potential ADMA-independent role for DDAH enzymes in addition to their

well-studied ADMA-mediated influence on NO. Inhibition of DDAH expression and/or

activity in cell culture models and in vivo studies has indicated the potential therapeutic

benefit of this pathway through inhibition of both angiogenesis and vasculogenic mimicry,

and strategies for manipulating DDAH function in cancer are currently being actively

pursued by several research groups. This review will thus provide a timely discussion

on the expression, regulation, and function of DDAH enzymes in regard to angiogenesis

and vasculogenic mimicry, and will offer insight into the therapeutic potential of DDAH

inhibition in cancer based on preclinical studies.
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INTRODUCTION

Despite recent therapeutic advances, cancer remains among one
of the leading causes of death worldwide, and the development
of novel anti-tumor therapies is still a key priority. Clinical and
experimental studies have documented the critical importance
of an adequate blood supply for local solid tumor growth and
distant metastasis (1–4). Furthermore, the ability of tumor cells
to induce new blood vessel growth is a determining factor
in both tumor size and spread. The process of angiogenesis,
involving the formation, sprouting, extension, and remodeling
of pre-existing blood vessels, is a well-accepted paradigm for
the development of these intra-tumoral vascular networks (5,
6). Anti-angiogenic treatments for solid tumors have received
much attention, yet studies have consistently revealed variable
benefits among cancers of different origins. Positive results are
often modest and not beneficial when long-term survival is
considered (7–10).

Vasculogenic mimicry (VM) describes an alternative
mechanism by which particularly aggressive tumors can acquire
a micro-circulation: this process involves the formation of vessel-
like networks lined by the tumor cells, effectively mimicking a
true vascular endothelium (11–14). Not only does this process
occur de novo, without the need for endothelial cells and
independently of angiogenesis (15), but the tumor-lined vessels
are also able to fuse to the conventional vascular network (16).
There is evidence for VM networks in a number of cancers
including those of the breast (17), prostate (18), brain (19), and
ovaries (20, 21). The presence of these networks is generally
predictive of poor survival and increasedmetastatic potential due
to entrance of the tumor cells into the vasculature (17, 22–25).
Intriguingly, the use of anti-angiogenic treatments may actually
be a driving factor in the development of VM (26, 27), which
may be at least partly induced by the resulting hypoxia (28). The
presence of VM in cancers therefore represents a highly clinically
relevant challenge both from a prognostic and a therapeutic
point of view.

The signaling molecule nitric oxide (NO), a small short-lived
free radical gas, has a fundamental role in diverse physiological
processes across different tissues. Perhaps the most well-studied
and established of these is its role in maintaining physiological
homeostasis of the cardiovascular system. Research published
simultaneously in 1987 by Ignarro et al. and Palmer et al.
first identified NO as the endothelium-derived relaxing factor
(29, 30). It is now clear that NO is not only a powerful
vasodilator, central to the control of vascular tone, and blood
pressure (31, 32), but is also critical for inhibition of platelet
aggregation and promoting anti-inflammatory effects (33, 34).
Importantly, NO is known to participate in vascular permeability
and angiogenesis mediated by vascular endothelial growth
factor (VEGF) (35). Due to the essential and diverse roles
of NO, it is not surprising that altered NO concentrations
result in significant pathophysiological conditions. These include
numerous cardiovascular disorders, as well as neurodegenerative
disorders, inflammatory arthritis, septic shock, schizophrenia,
and various cancers, as previously reviewed (36).

The importance of NO in a range of cellular processes is
further highlighted by its tight regulation atmultiple levels, which
is critical for both its spatial and dosage control. Endogenous
NO is the product of a two-step redox reaction requiring
molecular oxygen and a series of cofactors including flavin
mono- and di-nucleotide, calmodulin, nicotinamide adenine
dinucleotide phosphate, and tetrahydrobiopterin (37, 38). This
biochemical synthesis of endogenous NO is governed by
the family of nitric oxide synthase (NOS) enzymes through
the stereospecific conversion of the natural amino acid L-
arginine to L-citrulline and NO. The three distinct mammalian
isoforms of NOS are NOS1 (also known as neuronal or
nNOS), NOS2 (inducible or iNOS), and NOS3 (endothelial or
eNOS), each exhibiting a unique expression pattern and named
for their location of initial isolation; nNOS is predominantly
expressed by resident cells of the central and peripheral
nervous system including both neuronal and non-neuronal
cells (39, 40), iNOS is expressed in inflammatory cells and
can also be found in many other cell types in response to
immunologic or inflammatory agents such as cytokines and
lipopolysaccharides (41), and eNOS is predominantly expressed
in endothelial cells. There is thus a regulation of NO synthesis
that exists at the level of NOS transcription, post-translational
modifications and specific cellular expression, as well as
metabolic regulation at the level of NOS substrate availability
(42). The activity of all three NOS isoforms is also regulated
by the competitive inhibitors asymmetric dimethylarginine
(ADMA) and monomethyl arginine (L-NMMA), which are
ubiquitous endogenous metabolites of protein degradation that
compete with the NOS substrate, L-arginine, for binding
to the NOS active site (43–48). The two members of the
dimethylarginine dimethylaminohydrolase (DDAH) family of
enzymes, DDAH1 and DDAH2, are responsible for the
degradation of the NOS inhibitors ADMA and L-NMMA (49)
and are therefore key components in maintaining homeostatic
control of NO.

There is a growing body of literature which demonstrates
NO as a molecule of interest in carcinogenesis and tumor
growth progression (50–52). In particular, dysregulation of
the DDAH/ADMA/NO pathway, resulting in increased local
NO availability, is often associated with promotion of tumor
angiogenesis, growth, invasion, and metastasis. Increased
expression of DDAH enzymes in tumors of different origins
has been reported by numerous research groups in recent
years, and inhibition of DDAH expression and/or activity
in cell culture models and in vivo studies has indicated the
potential therapeutic benefit of targeting this pathway (53–56).
Additionally, whilst ADMA-mediated regulation of angiogenesis
is highly relevant for tumor growth, DDAH enzymes may have
dual ADMA-dependent and -independent effects on cancer
progression. In this review we revisit the relevance of NO in
cancer and provide an update in relation to cancer angiogenesis
and VM. We also summarize a pioneering body of evidence for
the potentially important expression, regulation, and function of
DDAH enzymes in cancer initiation and/or progression. Finally,
we discuss and offer insight into the therapeutic potential of
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DDAH inhibition as a cancer anti-angiogenic agent based on
preclinical studies.

NITRIC OXIDE AS A CELLULAR
MODULATOR OF ANGIOGENESIS

Nitric oxide (NO) is an endogenously and ubiquitously produced
free radical gas that is readily able to permeate cell membranes
due to its small size and high lipophilicity. The half-life of NO
has been estimated to be within the range of 0.1–2s, thus allowing
for rapid termination of NO signaling cascades following removal
of the initial stimulus (57). Despite its short half-life, NO has a
unique ability, as a result of its physicochemical properties, to
diffuse over long distances (several 100µ) within milliseconds.
In addition, in contrast to conventional biosignaling molecules
which act solely by binding to specific receptor molecules, NO
manifests many of its biological actions via a wide range of
chemical reactions. The precise reaction is dependent upon local
NO concentration as well as composition of the extracellular and
intracellular environment (58, 59). NO thus acts as a pleiotropic
messenger, directly influencing a number of biological processes
and pathophysiological conditions (36, 60).

The first physiological role identified for NO was its ability to
bind and activate soluble guanylyl cyclase (sGC) in the cGMP
signaling cascade (61); to date this remains the only known
receptor for NO. Here, NO targets the heme component of
sGC which allows for further coupling with cGMP-dependent
protein kinase G, phosphodiesterases, and cyclic nucleotide
gated channels (62, 63). In addition to inducing immune and
inflammatory responses, this binding of NO to sGC mediates
relaxation of smoothmuscle and blood vessels, with a consequent
increase in blood flow (64), prevents leukocyte adhesion
and inhibits platelet aggregation thus maintaining vascular
homeostasis and preventing atherosclerosis (65). Importantly,
a number of studies indicate that NO is vital in promoting
angiogenesis (66, 67). Angiogenesis is stimulated by NO
production and attenuated when NO bioactivity is reduced,
however the exact mechanisms underpinning these processes
are complex.

NO is considered an “endothelial survival” factor as it inhibits
apoptosis (68, 69) and enhances endothelial cell proliferation
(70, 71), migration (67, 72), and podokinesis (73). These events
are in part due to NO-mediated (primarily via eNOS and
iNOS) increase in vascular endothelial growth factor (VEGF) or
fibroblast growth factor expression (71, 74), and suppression of
angiostatin production (75). There is a bidirectional interaction
between VEGF and NO; VEGF can also promote NO synthesis
via PI3 K/AKT-mediated phosphorylation of eNOS (76, 77).
NO has also been identified as a regulator of isoforms of
the antiangiogenic matricellular protein thrombospondin (TSP)
through phosphorylation of extracellular signal-regulated kinase
(ERK). Specifically, NO represses transcription of TSP2 (78),
and triphasically regulates TSP1 protein expression dose-
dependently (79). Furthermore, NO facilitates angiogenesis
through stimulating the expression of matrix metalloproteinase
(MMP). This is thought to be mediated by a cross talk between
eNOS/iNOS and MMP via the VEGF receptor/cyclic adenosine

monophosphate/protein kinase A/AKT/ERK signaling pathway.
Consequently, ERKs upregulate the expression of membrane
MMPs, thus favoring endothelial cell migration and vascular tube
formation (80–82).

THE DUAL ROLE OF NITRIC OXIDE IN
CANCER

As synthesis of NO is generally a tightly regulated process,
aberrant and dysregulated NO production is implicated
in numerous pathophysiological conditions. It has been
increasingly recognized that altered NO synthesis is associated
with cancer initiation and progression, particularly cancer-driven
angiogenesis, vasculogenic mimicry, and resulting metastasis.
The dichotomous role of NO in cancer has been the subject
of several reviews which highlight that NO can exhibit both
oncogenic and tumor suppressing behavior depending on cancer
type, location and stage, as well as local NO concentration and
duration of exposure (50, 52, 83–87).

Modulation of NO concentration appears beneficial in
mediating tumor regression and treatment for cancers
characterized by reduced NO signaling, and this has been
the focus of several research groups in recent years. An
increase in NO concentration via the use of glyceryl trinitrate
(GTN) reduced hypoxia-induced metastatic potential of
an in vitro and in vivo model of murine melanoma (88)
and exerted pro-apoptotic effects in colon cancer cell lines
(89). Treatment with GTN has also shown potential for
the treatment of prostate and small cell lung cancer by
increasing sensitivity to chemotherapeutic agents (90–93).
Similarly, the NO donor sodium nitroprusside has been
demonstrated to suppress cell invasion in in vitro models
of prostate and bladder cancer (94) and cell migration
of gastric epithelial cells (95). Furthermore, it has shown
protective effects due to apoptosis and growth inhibition in
models of cervical cancer, pancreatic cancer, lymphoma, and
glioma (96–99).

In contrast, other studies have demonstrated that excessive
NO production is associated with poor prognosis and increased
invasiveness of tumors of the breast (100–105) and with survival,
proliferation and dedifferentiation of prostate cancer cells (106,
107). In head and neck cancer, excessive NO correlates with
cancer risk and metastatic potential (52, 108, 109), and in
colorectal cancer increased NO leads to enhanced angiogenesis
and invasiveness (110, 111). Elevated NO concentrations have
also been correlated with endometrial, cervical and gastric
cancers, and tumors of the central nervous system (112–118).
For these conditions, however, there is currently no targeted
approach for intervention of NO production available for
clinical use.

DDAH ENZYMES AS MODULATORS OF NO
SYNTHESIS

Together the NOS enzymes share 50–60% homology (119)
and are all inhibited by asymmetrically methylated arginines
(43–48). Methylarginines are endogenous metabolites of protein
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degradation and consist of monomethyl arginine (NMMA),
asymmetric dimethylarginine (ADMA), and symmetric
dimethylarginine (SDMA). They are continuously produced as
the combination of two cellular processes: post-translational
N-methylation of arginine residues incorporated into proteins,
catalyzed by a family of protein methyltransferase (PRMT)
enzymes (1–9) (120), and their subsequent release into the
cytosol following proteolysis (121). Free methylarginines can
then accumulate in the cytoplasm or cross cellular membranes
where they are able to exert their biological function of
inhibiting NOS enzymes in neighboring cells. Transport of
methylarginines across cell membranes is typically controlled
through transporters of the cationic amino acid (CAT) family,
particularly CAT1, CAT2A, and CAT2B (122, 123). Both ADMA
and NMMA inhibit all NOS isoforms, however plasma ADMA
concentrations are considerably higher than those of NMMA
(46, 124) and as such the relative contribution of NMMA to
NOS inhibition has often been underestimated. Whilst ADMA
and NMMA both compete with L-arginine for binding to the
NOS active site (43–48), SDMA is not a direct inhibitor of NO
synthesis. It can, however, reduce the availability of the NOS
substrate L-arginine, by competing for transport by the CAT
transporters (125).

Different routes of elimination have been identified for all
three methylarginines. Two pathways for the metabolism of
ADMA and SDMA are: (1) the transamination to asymmetric
dimethylguanidinovaleric acid (ADGV) for ADMA and to
symmetric dimethylguanidinovaleric acid (SDGV) for SDMA,
mediated by alanine-glyoxylate aminotransferase 2 (AGXT2)
(126–128), and (2) N-alpha-acetylation, although the enzyme
responsible for catalyzing this reaction is still currently unknown
(129–131). Conversion to γ-(dimethylguanidino) butyric acid
has previously been proposed as a catabolic route for ADMA and
SDMA (131), but the significance of this metabolic pathway has
not received any further investigation. NMMA concentrations
can also be regulated by the enzyme peptidylarginine deiminase 4
(PAD4), which catalyzes the deamination of NMMA residues still
incorporated into proteins into L-citrulline (132). Renal excretion
is responsible for the elimination of the majority of SDMA, but
accounts for only a small percentage of ADMA clearance (<10%
in some species) (131, 133–135). Most importantly, ADMA and
NMMA are primarily metabolized by DDAH enzymes into L-
citrulline and dimethylamine or monomethylamine, respectively
(134, 136). The DDAH/ADMA/NO pathway is summarized
in Figure 1.

Two DDAH isoforms have been identified in mammals
(DDAH1 and DDAH2) and it is estimated that collectively
more than 70% of ADMA is metabolized by these enzymes
(137). Indeed, global heterozygous deletion of DDAH1 in mice
increased plasma, brain, and lung ADMA concentrations by
20% (138). The DDAH isoforms are highly conserved at the
amino acid level [62% in humans (49, 139)], particularly with
residues important for substrate binding and hydrolysis. DDAH
isoforms are also highly conserved across species, with high
homology between the human, mouse, rat, and bovine gene
sequences (DDAH1: 92%, DDAH2: 95%). While researchers are
in agreement with DDAH1 being the key enzyme responsible for

ADMA and NMMA metabolism (94, 140), there is conflicting
evidence surrounding the metabolic activity of DDAH2.

Several lines of evidence suggest that under normal conditions
DDAH1 is the isoform responsible for ADMAmetabolism (141).
Firstly, the tissues from DDAH1 KO mice do not display any
DDAH activity (140). Secondly, silencing of DDAH1 in cultured
vascular endothelial cells results in ADMA accumulation and
a decrease in NO production, while silencing of DDAH2 has
no effect (140). Consistent with this finding, overexpression of
DDAH1 in cultured endothelial vascular cells decreases ADMA
content and overexpression of DDAH2 does not (142). Purified
recombinant DDAH2 was originally reported to metabolize
NMMA (49) but following studies have failed to reproduce
the metabolic activity of DDAH2 in vitro (143). Fluctuations
in ADMA concentrations are observed in response to over-
expression and/or knockout of the DDAH2 gene (144–146),
but whether DDAH2 affects ADMA concentration via direct
metabolism or by indirect regulation of its metabolism still
remains unclear. The difficulties in recapitulating DDAH2
activity in vitro may suggest the requirement for additional
cofactors or protein-protein interactions, or a missing step in
the pathway of ADMA metabolism that is not functional in the
cell lysates often used to assess recombinant DDAH2 protein
function. Regardless, based on current available knowledge
the DDAH1 enzyme appears to be key for metabolism of
ADMA/NMMA and thus more relevant in regard to the
treatment of cancer through the ADMA/NO pathway.

Implications for Angiogenesis
The DDAH enzymes play a key role in homeostasis of
the cardiovascular system, and specifically in modulation of
angiogenesis and neovascularization. Whilst it appears that
the majority of DDAH function is attributed to degradation
of ADMA and thus modulation of NO synthesis, ADMA-
independent functions of DDAH have also been identified.

ADMA plays a key inhibitory role in the formation of new
blood vessels; examples include inhibition of proliferation of
bovine retinal capillary endothelial cells (147) and coronary
artery endothelial cells (148). Furthermore, in vitro and in vivo
studies show that ADMAmodulates all the key aspects of VEGF-
induced angiogenesis: activation, proliferation, differentiation,
and migration of endothelial cells. Fiedler and colleagues
demonstrated that increased ADMA concentrations inhibit the
VEGF-induced capacity of human umbilical vein endothelial
cells (HUVECs) to form tubes on Matrigel by disrupting
chemotaxis, migration, protrusion formation, focal adhesion
turnover and reducing cell polarity and gap junction intercellular
communication (74). In the same study, ADMA was also
reported to interfere with activation of Rho GTPases via RhoA
activation and Rac1 and Cdc42 inhibition. By inhibiting NO
synthesis, ADMA reduced VEGF-mediated phosphorylation of
VASP and Rac1 activation in human endothelial cells (74). This is
consistent with what has been previously observed in pulmonary
endothelial cells (149). Moreover, it appears that ADMA can
interfere with the activation of endothelial progenitor cells
(EPCs) (150). ADMA supplementation has also been reported
to accelerate high glucose-induced EPC senescence, whilst the
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FIGURE 1 | Schematic of the NO/ADMA/DDAH pathway. Nitric oxide (NO) is the product of the reaction catalyzed by the enzyme nitric oxide synthase (NOS). NOS

catalyzes the conversion of the proteinogenic amino acid L-arginine (R) into NO and L-citrulline. All 3 isoforms of NOS (endothelial NOS, neuronal NOS and inducible

NOS) are endogenously inhibited by asymmetrically methylated arginines (ADMA or R-Me2 and L-NMMA or R-Me). These endogenous inhibitors of the NO synthesis

are generated and released in the cytosol as the product of 2 biomolecular processes: the post-translational methylation of arginine residues incorporated into

proteins catalyzed by one members of the protein arginine methyltransferase (PRMT) family of enzymes and the release of said methylated residues into the cytosol by

proteolysis. Methylated arginine can act as NOS inhibitors solely in their free form. The enzyme responsible for the metabolism of more than 70% of circulating and

intracellular ADMA and L-NMMA is dimethylarginine dimethylaminohydrolase (DDAH), which converts ADMA and L-NMMA into L-citrulline and dimethylamine (DMA or

Me2-NH2) or monomethylamine (MMA or Me-NH2).

opposite effect was observed with the overexpression of DDAH2
(151). This is in line with association studies showing an inverse
correlation between the number of EPCs in blood and plasma
ADMA levels in coronary artery disease (150), peripheral arterial
disease (152), and after renal transplantation (153). Additionally,
increased plasma ADMA concentrations are linked to higher
cardiovascular risk and numerous vascular diseases, many of
which are associated with low NO output and endothelial
dysfunction (154–158).

The generation of heterozygous DDAH1 knockout mice
by Leiper and colleagues first demonstrated that DDAH1+/−

mice exhibited accumulation of ADMA and reduced NO
concentrations, leading to vascular pathophysiology such as

endothelial dysfunction, structural alterations in the pulmonary
vasculature and decreased heart rate and cardiac output
(138). Importantly, angiogenesis was significantly reduced in
these mice, as assessed by quantification of microvessels
sprouting from aortic rings (149) and hemoglobin content
in plugs (74). Over-expression of DDAH1 reversed the anti-
angiogenic effects associated with increased ADMA (74).
The more recent generation of global DDAH1 deficient
mice further confirmed the importance of DDAH1, but
not DDAH2, for ADMA metabolism and in cardiovascular
physiology (140). DDAH1−/− mice exhibit impaired endothelial
cell proliferation and decreased neovascularization (142). The
generation of an endothelium-specific DDAH1−/− mouse using
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Tie-2 driven Cre expression demonstrated that intracellular
ADMA concentrations are crucial in determining the endothelial
cell response. Whilst the angiogenic response was significantly
impaired both in vivo and ex vivo, plasma ADMA concentrations,
vasoreactivity ex vivo and hemodynamics in vivo remained
unaffected (159). Together, these studies further highlight the
essential role of DDAH1 in ADMA and NMMAmetabolism.

The expression and activity of both DDAH1 and DDAH2
appear to be critical for wound healing and angiogenesis.
Overexpression of DDAH1 in endothelial cells resulted in
enhanced tube formation when grown on Matrigel and
an increase in VEGF mRNA expression; blocking DDAH
activity reversed these effects (160). DDAH1 overexpressing
mice exhibited enhanced neovascularization after hind limb
ischemia (161, 162) and improved endothelial cell regeneration
with reduced neointima formation following vascular injury
(163). Conversely, DDAH1 knockout mice had reduced
endothelial repair and angiogenesis, and impaired endothelial
cell proliferation compared with WT mice in a model of
carotid artery wire injury. Interestingly, VEGF-expression
was reduced in this DDAH1 global KO mouse model via a
mechanism that was independent from the NO/cGMP/PKG
pathway, and regulated by the Ras/PI3K/Akt pathway
(142). In fact, experiments performed in DDAH−/− mice
(142), siRNA-mediated DDAH1 knockdown and DDAH1
overexpressing HUVEC cells (164) have demonstrated that
DDAH1 regulates HUVEC cell cycle progression via Ras/Akt
activation and modulation of cyclinD1, cyclinE, CDC2, and
CDC25C concentrations. Moreover, DDAH1 was reported
to regulate angiogenesis by increasing NO concentrations,
which induces caspase-3 activation in human fetal pulmonary
microvascular endothelial cells (165). Increased angiogenesis
is also observed following transfection of endothelial cell lines
with DDAH2 (166), a process that is partially mediated by the
upregulation of VEGF expression through a Sp1-dependent and
NO-independent mechanism (167). Furthermore, comparative
studies performed in DDAH1+/−, DDAH2+/−, and DDAH2−/−

mice have demonstrated the important role of DDAH2 in
pathogenic retinal ischemia and ischemia-induced angiogenesis
and the protective potential of DDAH2 inhibition against
aberrant neovascularization (146). It seems that this is achieved
through reduced ADMA metabolism and improved vascular
regeneration in a VEGF-independent fashion. Another ADMA-
independent mechanism by which DDAH2 appears to regulate
angiogenesis involves the regulation of VEGF and kinase-
domain insert containing receptor (KDR) expression within
the silent information regulator 1 (SIRT1) pathways in
EPCs (168).

Taken together, these studies demonstrate the key role of the
DDAH/ADMA pathway in the regulation of neovascularization
and endothelial cell proliferation, differentiation, and motility in
vivo and in vitro. Impairment of the DDAH/ADMA/NO pathway
and subsequent endothelial dysfunction have been extensively
studied in relation to cardiovascular and renal disorders. The
importance of the DDAH enzymes in cancer angiogenesis,
neovascularization, and vasculogenic mimicry has only recently
begun to be unraveled.

EXPRESSION AND REGULATION OF THE
DDAH ENZYMES

DDAH Expression
Whilst synthesis of ADMA occurs in all cells, expression of
DDAH isoforms is variable. The two DDAH isoforms (DDAH1
and DDAH2) display distinct but overlapping tissue distribution,
and additionally show some overlap with the constitutively
expressed NOS isoforms. DDAH2 is expressed in the heart,
vascular endothelium, kidney, placenta, and adipose tissue (169,
170). Sites of DDAH1 expression are considerably wider, but
it is predominantly found within the brain, liver, and kidney
(140, 171–176), the organs which represent the major sites of
ADMA metabolism (141, 177, 178), as well as in the heart,
lung, skeletal muscle, nervous system, spinal dorsal horn, and
trophoblasts (138, 179–181). It is also important to mention
that the expression pattern of DDAH1 and DDAH2 does not
necessarily reflect the tissue activity of the enzymes. This issue is
further complicated by the fact that the currently available DDAH
activity assays do not distinguish between DDAH1 and DDAH2
isoforms. Therefore, even if two tissues display the same level
of DDAH activity, it is unclear what amount of activity can be
attributed to each DDAH isoform. This could be of particular
importance given the additional ADMA-independent effects of
both enzymes, as discussed later.

Expression of DDAH Is Altered in Cancer
Identification of genes which are differentially expressed in
cancer relative to normal tissue can be highly beneficial in
terms of developing new diagnostic, prognostic, and targeted
therapeutic treatments for cancer development and progression.
The recent advances in genome-wide transcriptomic and
proteomic techniques have allowed for profiling of different
cancers at various disease stages with this aim in mind.
Interrogation of publicly available data generated by The Cancer
Genome Atlas (TCGA) Research Network (http://cancergenome.
nih.gov) and the Genotype-Tissue Expression (GTEx) project
identified altered expression of DDAH1 and DDAH2 in various
cancer tissues. The online web-tool Gene Expression Profiling
Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn/) (182)
was used to analyse RNA-seq expression data sourced from
these databases and to generate expression profiles of DDAH
mRNA expression in comparable normal and tumor tissues for
each cancer type. In pancreatic adenocarcinoma and thymoma
DDAH1 and DDAH2 mRNA is significantly increased, whilst
both DDAH1 and DDAH2 expression is decreased in lung
squamous cell carcinoma (Figure 2A). Interestingly, with the
exception of these three cancers, the expression of DDAH1 and
DDAH2 does not change in the same direction. Instead, the
expression of either isoform is altered independently of the other.
There is also no evidence for an inverse correlation of DDAH1
and DDAH2 expression (e.g., an increase in DDAH1 expression
paired with a decrease in DDAH2 expression, or vice versa) in
any cancer type for which data is available in the TCGA database.

An increase in DDAH2 mRNA expression is further observed
in glioblastoma, brain lower grade glioma and liver cancer
samples, whilst a decrease is observed in cervical cancer
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FIGURE 2 | DDAH1 and DDAH2 transcript expression in various cancer tissues, determined from publicly available data generated by The Cancer Genome Atlas

(TCGA) Research Network (http://cancergenome.nih.gov) and the Genotype-Tissue Expression (GTEx) project. Gray bars (N) denote normal tissue and red bars (T)

denote corresponding tumor tissue. (A) DDAH1 and DDAH2 expression are both significantly altered in the same direction. (B) DDAH2 expression is significantly

altered in tumor tissue. (C) DDAH1 expression is significantly increased in tumor tissue. (D) DDAH1 expression is significantly decreased in tumor tissue. Graphs were

generated by the online web-tool Gene Expression Profiling Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn/) (182).
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samples relative to normal tissue (Figure 2B). The range
of cancer types that display altered DDAH1 expression is
significantly broader than that for DDAH2. In the majority
of cases where there is a change in DDAH1 expression in
tumor samples, it is significantly increased: these include breast
cancer, colorectal cancer, lymphoid neoplasm diffuse large B-cell
lymphoma, esophageal cancer, ovarian cancer, prostate cancer,
rectal adenocarcinoma, stomach cancer, thyroid cancer, and
uterine corpus endometrial carcinoma (Figure 2C). A decrease
in DDAH1 expression is only found in chromophobe renal cell
carcinoma (a rare form of kidney cancer), melanoma and in
testicular germ cell tumors (Figure 2D). The relative expression
of DDAH1 and DDAH2 mRNA in various cancers, and the
sample number for each analysis, is shown in Figure 2.

In addition to RNA-seq data obtained through mining of
TCGA datasets, a number of research groups have also identified
altered DDAH mRNA and protein expression in various cancer
cell lines and cancer tissues (Table 1). Studies to date have
demonstrated an increase in DDAH1 protein expression in
human glioma, meningioma, prostate cancer, and hepatocellular
carcinoma, primarily by means of large-scale proteomic analysis.
An upregulation of DDAH1 protein has also been observed in
cohorts of melanoma and breast cancer cell lines, relative to
normal melanocyte, and mammary epithelial cells, respectively
(183, 187). Aside from the identification that DDAH1 expression
is significantly altered in these cancers, only a handful of these
studies undertook further analysis into the specific role and
function of DDAH1 within each cancer context.

In addition to protein expression, Buijs et al. (188) further
assessed DDAH1 catalytic activity in hepatocellular carcinoma
(HCC) tissue relative to paired non-tumorous liver tissue. In
tissue homogenates, mass spectrometry analysis of arginine
and ADMA concentrations revealed a 74% increase in the
arginine:ADMA ratio, which is indicative of increased ADMA
metabolism and thus increased NO production. Furthermore,
increased NO concentration was predicted in both tissue
homogenates and serum from preoperative HCC patients, as
measured by NO metabolites (nitrate and nitrite) using a
colorimetric Griess assay. An increase in expression of the
angiogenesis stimulating factor, VEGF, was also observed in HCC
tissue samples. It is important to note that immunofluorescence
analysis of tumor tissue samples confirmed expression of
DDAH1 localized to hepatocytes, and absent from neighboring
endothelial cells of vascular structures (188). We have also
recently published evidence for a novel role of DDAH1
in breast cancer, particularly in the more aggressive and
invasive triple negative breast cancer (TNBC) molecular subtype
(187). In this study we demonstrated high expression of
functional DDAH1 enzyme in TNBC cells relative to normal
mammary epithelial cells. This was determined by both
western blot analysis and mass spectrometry assessment of L-
citrulline formation with 200µM ADMA substrate. Inhibition
of DDAH1 protein expression in these cells resulted in
reduced L-citrulline formation, increased intracellular ADMA
concentration and a reduced arginine:ADMA ratio; all consistent
with decreased ADMA metabolism and consequently decreased
NO production (187).

In 2011, a proteomics and pathway analysis study by
Ummanni et al. identified DDAH1 overexpression in
histologically characterized prostate cancer tissue, and
highlighted its potential as a novel biomarker for prostate
cancer development and/or progression (185). Intriguingly,
whilst western blotting validated dysregulation of DDAH1
protein in tumor tissue, no significant change in DDAH was
observed at the mRNA level. This is somewhat consistent with
data in breast cancer cell lines, where a much greater change in
DDAH1 expression was observed at the protein level compared
to the transcript level (187). It is possible that this phenomenon
is in part due to post-transcriptional regulation of DDAH1, likely
mediated by multiple microRNA regulators in the unusually
long DDAH1 3

′
UTR (2,971 bp). In a recent follow-up study,

tissue microarray analysis further confirmed higher DDAH1
expression in prostate cancer compared to benign prostatic
hyperplasia and normal prostate tissues; the expression of
which correlates well with the aggressiveness of prostate cancer
and suggests its role in disease progression (54). In hormone-
dependent (PC3) and hormone-independent (LNCaP) prostate
cancer cell lines, both of which express DDAH1, generation of
L-citrulline from the enzyme-substrate ADMAwas observed in a
colourimetric assay. In alignment with findings in breast cancer
cell lines (187), specific knockdown of DDAH1 protein in PC3
and LNCaP cell lines not only resulted in reduced L-citrulline
formation, but also significantly increased intracellular ADMA
concentration and decreased NO metabolite concentration.

In contrast to these studies, DDAH1 protein downregulation
was frequently detected in gastric cancer tissues, where its low
expression was associated with more lymph node metastasis and
poorer clinical outcome (193). Knockdown and overexpression
of DDAH1 in gastric cancer cell lines recapitulated these findings:
cells overexpressing DDAH1 migrated more slowly and were less
invasive in vitro, and displayed decreased metastatic potential
in vivo, possibly through inhibition of epithelial-mesenchymal
transition (EMT) pathways (193). The authors also reported
reduced β-catenin expression following DDAH1 overexpression,
and suggested that DDAH1 mediates β-catenin degradation via
the Wnt signaling pathway, thus inhibiting EMT. The exact
mechanism by which DDAH1 modulates β-catenin expression is
currently undefined; there was no assessment of DDAH1 catalytic
activity and subsequent NO production in this study. To the
best of our knowledge, this represents the only study to date
that identifies DDAH1 as a tumor suppressor. It is possible
that the tumor suppressor role of DDAH1 in gastric cancer is
independent of its role in the ADMA/NO pathway.

DDAH2 protein expression has been less extensively studied
in cancer, but an upregulation has been reported in prostate
cancer cell lines as well as the malignant stroma (but not tumor
cells) of non-small-cell lung cancer tissue (166, 184). In the
LNCaP prostate cancer cell line DDAH2 was more strongly
expressed when compared to benign prostate hypertrophy cells,
and was also accompanied by increased eNOS, iNOS, and VEGF
expression (184). It is likely that a combination of these factors,
and not specifically DDAH2 expression, is responsible for the
increased NO production that was observed in these cells.
Interestingly, the NOS inhibitor NG-nitro-L-arginine methyl
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TABLE 1 | DDAH1 and DDAH2 expression in human cancer tissues and cell lines.

Sample Method DDAH1 DDAH2 References

Melanoma cell lines WB, IHC ↑* ↔ (183)

Prostatic cancer cell line (vs. benign prostatic hyperplasia cells) WB ↔ ↑ (184)

Prostate cancer tissue Proteomic ↑ ↔ (185)

Prostate cancer tissue (vs. normal and benign tissue) TMA ↑ ND (54)

Prostate cancer metastasis-derived prostasomes Proteomic ↑ ↔ (186)

Breast cancer cell lines (vs. normal mammary epithelial cells) WB, qRT-PCR ↑ ND (187)

Hepatocellular carcinoma (vs. non-tumorous liver) WB, IF ↑ ND (188)

Cerebrospinal fluid, serum, urine from patients with diffuse intrinsic pontine glioma Proteomic, IHC, WB ↑ ↔ (189)

Meningioma tissue (aggressive vs. indolent) Proteomic, WB ↑ ↔ (190)

Merkel cell carcinoma tissue (poor vs. good prognosis) Transcriptomic ↑ ↔ (191)

Pancreatic carcinoma tissue Transcriptomic ↓ ↔ (192)

Gastric cancer tissue and cell lines IHC, WB, qRT-PCR ↓ ND (193)

Lung adenocarcinoma IHC, ISH, WB ND ↑ (cancer associated fibroblasts) (166)

↑, increased expression; ↓, decreased expression; ↔, no change in expression; ND, not determined; WB, western blot; IHC, immunohistochemistry; TMA, tissue microarray analysis;

qRT-PCR, quantitative realtime-PCR; IF, immunofluorescence; ISH, in situ hybridization.*Upregulated in 78% of cell lines investigated.

ester (L-NAME), which is not degraded by DDAH, significantly
increased DDAH2 expression and elevated NO production (184).
A more recent study in 2016 identified increased expression
of DDAH2 in the stroma fibroblasts of lung adenocarcinomas,
where tumors with high stromal DDAH2 expression had a
poorer prognosis (166). Almost all cases of minimally invasive
adenocarcinoma and invasive adenocarcinoma were positive
for DDAH2, while only half of pre-invasive lesions (atypical
adenomatous hyperplasia and adenocarcinoma in situ) were
positive. In contrast, in normal lung tissue only the vascular
endothelium showed staining for DDAH2 (166).

DDAH Regulation
Regulation of both DDAH1 and DDAH2 expression and activity
is mediated via various mechanisms at different levels.

Post-translational Modulators of DDAH Activity

DDAH exists as a holoenzyme bound to a single inhibitory zinc
ion. Removal of the zinc by either phosphate or imidazole results
in increased DDAH enzymatic activity, thus demonstrating the
regulatory role that the zinc binding site plays (194). The
crystal structure of DDAH1, purified from bovine brain, shows
zinc bound to the active site cysteine (Cys273); 95% of total
DDAH1 purified protein exists as the zinc-bound form. These
data suggest DDAH1 exists predominantly in its inhibited
conformation (195). NO itself is a reversible inhibitor of DDAH
activity through S-nitrosylation of the active site cysteine residue
(Cys273 in bovine DDAH1, Cys274 in human DDAH1, Cys249
in human DDAH2), which involves covalent attachment of
nitrogen monoxide to the thiol chain of the specific cysteine
residues. Typically, this is associated with increased expression
of iNOS and thus increased NO synthesis, and does not occur
under basal conditions (196). It has been demonstrated in
vitro via incubation of purified bovine DDAH or recombinant
bacterial DDAH with a NO donor (DEA NONOate; 2-(N,N-
dimethylamino)-diazenolate-2-oxide) (197, 198). This represents

a feedback loop whereby subsequent accumulation of the DDAH
substrates, ADMA and L-NMMA, in turn reversibly inhibit the
NOS enzymes. Intriguingly, NO-induced DDAH inhibition is
significantly more potent in the absence of zinc (DDAH apo-
enzyme), which suggests zinc binding is protective of DDAH
S-nitrosylation (198). Phosphorylation of rat DDAH1 at Ser33
and Ser56 has been reported (199), however the impact of this
on DDAH1 activity is currently unknown. There is currently
no further evidence to suggest additional posttranslational
modification of DDAH enzymes.

There are a significant number of endogenous compounds,
vitamins, and therapeutics identified to date that act as DDAH
activators or inhibitors without altering gene expression. Many
of these factors modulate DDAH activity via oxidative effects,
such as via attenuation of low-density lipoprotein-induced
endothelial dysfunction or by induction of reactive oxygen
species. Key examples include 17β-estradiol (200), insulin (201),
vitamin E (202), and the antioxidant Probucol (203) as DDAH
activators. In contrast, the cytokine TNF-α (204), glucose (201,
205), s-nitrosohomocysteine (206), and erythropoietin (207) are
significant inhibitors of DDAH activity. With the exception of
s-nitrosohomocysteine, the exact mechanisms by which these
compounds function to modulate DDAH activity is as yet
undefined, however literature suggests that ultimately it is S-
nitrosylation of DDAH and/or a modulation of zinc availability
or binding capacity to the DDAH active site which are likely
contributors. For example, induction of DDAH enzymatic
activity may require a zinc-binding protein to act as a zinc
receptor, thus abolishing the zinc-mediated inhibition of DDAH.
On the other hand, zinc released from a redox sensitive zinc-
binding protein, under conditions of oxidative or nitrosative
stress, may bind to and inactivate DDAH. A recent study by
Bollenbach and colleagues has also identified a DDAH inhibitory
role for some naturally occurring amino acid derivatives,
namely NG-hydroxy-L-arginine, Nω,Nω-dimethyl-L-citrulline
and connatin (208).
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Taken together, the number and diversity of endogenous
compounds, vitamins, and therapeutics which are capable of
altering DDAH activity highlights the importance of quantifying
DDAH activity in tissues of interest. As protein expression
may not necessarily reflect enzyme activity, a comprehensive
understanding of the importance of DDAH enzymes in any
given tissue or disease state requires assessment of transcript
abundance, protein expression, and additionally activity of
DDAH enzymes.

Transcriptional and Post-transcriptional Regulation of

DDAH Expression

The understanding of what regulates DDAH expression in cancer
is very limited. The only study to specifically address regulation
of DDAH1 in cancer was performed in breast cancer cell lines
and identified the microRNA miR-193b as a direct negative
regulator through the DDAH1 3′UTR (187). In MDA-MB-
231 cells expressing endogenous DDAH1, ectopic expression of
miR-193b reduced DDAH1 mRNA and protein expression and
decreased the conversion of ADMA to citrulline. Conversely,
inhibition of miR-193b in the MCF7 cell line, which was absent
for DDAH1 expression, was sufficient to induce DDAH1 (187).
Mir-193b has been previously reported as a tumor suppressor in
breast cancer tissues (209, 210) and is frequently downregulated
in other solid tumors such as melanoma (211), liver cancer (212),
and prostate cancer (213), all of which are reported to exhibit
increased DDAH1 expression (Table 1). It is therefore plausible
that miR-193b is an important regulator of DDAH1 expression
in multiple cancers.

The DDAH1 3′UTR is unusually long (2,971 bp) and is
therefore likely regulated by multiple microRNAs. In addition to
miR-193b, various studies have demonstrated direct regulation of
DDAH1 by miR-21 (214–216); however all studies to date have
been performed in human endothelial cells. miR-21 was one of
the earliest defined oncomiRs, and its role in carcinogenesis has
been thoroughly investigated (217), particularly in gastric cancer
where it is often upregulated (218, 219). In alignment with this,
downregulation of DDAH1 is reported in gastric cancer tissue
and cell lines (193). In HUVECs, transmembrane glycoprotein
neuropilin-1 increases DDAH1 expression, mediated by a
post-transcriptional mechanism involving miR-219-5p (220).
Although this regulation has not been assessed in cancer, miR-
219-5p has been reported to have a tumor suppressive role in
colon cancer (221, 222) and ovarian cancer (223), which may in
part relate to regulation of DDAH1.

Further studies on regulation of DDAH1 have identified that
DDAH1 protein is increased in a time- and dose-dependent
manner in cultured rat smooth muscle cells stimulated with
IL-1β (224), and that O subfamily of forkhead (FoxO)1 is
pivotal in regulation of endothelial activation as a negative
regulator of DDAH1 (225). Agonists of the nuclear receptor
farnesoid X receptor (FXR) have been shown to induce
hepatic DDAH1 transcription through a promoter FXR response
element, resulting in decreased plasma ADMA (172). Another
study has also reported an increase in DDAH1 following
stimulation with an FXR agonist in the liver and kidney,
which was also accompanied by decreased plasma ADMA (226).

Activation of FXR with bile acids has been found to enhance
tumor angiogenesis (227), however whether FXR alters DDAH1
expression in cancer cells has yet to be identified. Furthermore,
metal-responsive factor 1 (MTF1), a pluripotent transcriptional
regulator induced by various stress conditions such as hypoxia
and oxidative stress, increases DDAH1 expression via a direct
binding site in the DDAH1 promoter (228). Hypoxia, which is
often observed in solid tumors, induced DDAH1 expression in
liver cancer HepG2 cells (188), however the exact mechanism
underlying this induction remains to be elucidated.

The promoters of both DDAH1 and DDAH2 contain sterol
response elements (DDAH1 more so than DDAH2). In cultured
endothelial cells, the sterol response element binding protein
(SREBP) transcription factor member, SREBP-2, was found to
bind the DDAH1 promoter and activate transcription (229);
knockdown of SREBP-2 led to a decrease in DDAH1 mRNA
expression. SREBPs are key transcription factors which play a
central role in lipid metabolism, and elevated SREBP levels are
common in various cancers (230, 231). It appears that regulation
by SREBPs is isoform-specific, however, as SREBP-1c decreased
both DDAH1 and DDAH2 expression (229). Finally, an increase
in DDAH activity in human and murine endothelial cell lines
has been demonstrated following treatment with estradiol (200).
In following studies, an estrogen receptor (ER) binding site was
identified within the DDAH2, but not the DDAH1, promoter
(232), suggesting a mechanism for estradiol in transcriptional
regulation of DDAH2. In HUVECs, estradiol increased DDAH2
protein expression, decreased ADMA concentrations, and
increased NO production (233); these effects could be blocked
by ER antagonists (233, 234). Although not yet known, this
regulation of DDAH2 by estradiol and ERmay play an important
role in cancers driven by excessive ER signaling, such as those of
the breast.

IMPACT OF DDAH EXPRESSION ON
TUMOR ANGIOGENESIS AND
VASCULOGENIC MIMICRY

A key aspect of cancer progression involves tumor angiogenesis.
In addition to providing blood flow and nutrients to the
tumor to support growth, angiogenesis is also implicated
in tumor invasion and metastasis as the vasculature
provides the tumor with access to distant organs. This is
of particular concern when vasculogenic mimicry (VM),
the process in which vascular-like structures are generated
by cancer cells, is present. These vascular-like structures
are not only able to fuse to the conventional vascular
network (16), but they can remodel the vasculature such
that it becomes “leaky” (235). Several studies including
our own have demonstrated the functional role that
increased DDAH expression has on both tumor angiogenesis
and VM.

To the best of our knowledge, the only study to assess
the role of DDAH2 on tumor angiogenesis was undertaken
in lung adenocarcinoma. In surgically resected specimens,
high expression of DDAH2 in stroma of invasive lung
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adenocarcinoma correlated with stronger eNOS expression
in the vascular endothelium of the malignant tissue (166).
In vitro assessment of recombinant DDAH2 expression in
HUVECs demonstrated a significant increase in cell proliferation
and capillary-like tube formation, in a model of angiogenesis
(166). Whilst together these findings may be indicative of
a model whereby DDAH2 promotes tumor angiogenesis, a
more definitive assessment of the role of DDAH2 in vivo is
clearly required.

To study the effect of DDAH1 on tumor growth and vascular
development, Kostourou and colleagues generated a rat C6
glioma cell line over-expressing the rat DDAH1 isoform (236–
239). The increased DDAH1 expression resulted in increased
NO synthesis, as indicated by increased cGMP production,
combined with increased expression and secretion of VEGF.
Whilst no change in cell proliferation was observed in in vitro
assays, DDAH1 overexpressing cells grew approximately two-
fold faster than wildtype cells following subcutaneous injection
into the flanks of nude mice (236). The use of non-invasive
magnetic resonance imaging (MRI) for the assessment of blood
vessel development in vivo demonstrated significantly increased
vascularity in these tumors; this was further supported by
increased tumor perfusion as assessed by Hoescht 33342 staining
of functionally perfused vessels. It is thus plausible that the
increased growth of DDAH1 overexpressing tumors is a direct
result of increased blood vessel development. Further analysis of
the tumor angiogenesis identified no difference between vascular
maturation, vascular function and microvessel size between
wildtype and DDAH1 overexpressing cells, suggesting a role for
DDAH1 in the initial stages of vasculogenesis (237). Collectively,
these studies were the first to demonstrate the importance of
DDAH1 in regulation of tumor vessel development and clearly
demonstrated that DDAH1 expression leads to more hypoxic
tumors, higher blood volume, better tumor perfusion, and
increased number of functional vessels (236–238).

It has been further demonstrated that xenografts derived from
cells over-expressing an active site DDAH1 mutant (incapable
of metabolizing ADMA) display an intermediate phenotype
between tumors overexpressing wildtype DDAH1 and control
tumors in terms of growth rate, endothelial content (vessel
area), and hypoxia (239). However, VEGF production by inactive
DDAH1-expressing cells is not significantly altered compared
to wildtype cells (239). Thus, it appears that whilst DDAH1
metabolic activity is essential for the change in VEGF production
(236, 239), cell growth and tumor vascularity are not entirely
dependent upon ADMA metabolism and VEGF production.
One hypothesis put forth by Boult et al. is that metabolically
inactive DDAH may still be able to bind and hold ADMA, thus
sequestering it away from NOS and relieving NOS inhibition
(239). Further support for this hypothesis is provided by an
elegant study in which DDAH1 was overexpressed under control
of a pTet-Off regulatable element in rat C6 glioma cells deficient
in NO production. Xenografts derived from cells with DDAH1
overexpression, lacking the ability to produce NO, were not
significantly different in terms of size, vessel density, vessel
function, or vessel maturation when compared to cells absent
for DDAH1 expression and NO function (240). Together these

studies suggest that, at least in C6 gliomas, the effect of DDAH1
on tumor growth and angiogenesis is purely NO-dependent.

In prostate cancer cell lines, exogenous expression of human
DDAH1 increases cell proliferation, migration and invasion,
and induces expression of multiple NO-regulated genes such
as VEGF, HIF-1α, and iNOS. In alignment with the studies
in rat C6 glioma cells, inhibition of NOS by L-NAME or
1400W is sufficient to reverse the induction of all three pro-
angiogenic genes. Furthermore, overexpression of an active
site mutant human DDAH1 does not significantly alter cell
behavior or VEGF expression, providing additional evidence
that hydrolytic activity of DDAH1 is required for mediation of
prostate cancer growth. Similarly, in vivo assessment of mouse
xenografts has demonstrated significantly increased tumor size,
invasion into muscular regions, mitotic figures, necrosis, pro-
angiogenic factor expression, and tumor microvessel number in
wildtype DDAH1-overexpressing tumors compared to mutated
DDAH1-overexpressing and control tumors (54).

In our own studies assessing VM in triple negative breast
cancer cell lines, specific knockdown of endogenous DDAH1
significantly attenuated cell migration, but not proliferation.
Formation of vessel-like networks in an in vitro assay of
VM, and VEGF expression, were also significantly reduced
(187). Interestingly, expression of a miR-193b mimic, a direct
negative regulator of DDAH1, completely abolished vascular
channel formation (187); this is perhaps suggestive of miR-193b
regulating a network of genes involved in VM. In contrast,
exogenous expression of DDAH1 in a DDAH1-null breast cancer
cell line was not sufficient to induce VM (187), indicating
that DDAH1 is required but not sufficient for VM in breast
cancer. The extent to which DDAH1 can modulate breast cancer
VM via ADMA-dependent or -independent processes is yet to
be established.

Pharmacological Inhibition of DDAH1
Activity in Cancer
There are currently no synthetic compounds which act as
specific DDAH1 or DDAH2 activators, nor are there any
selective DDAH2 inhibitors. With the exception of a few
compounds specifically targeting bacterial DDAH (241–243),
all other synthetic DDAH inhibitors have been synthesized to
selectively target DDAH1. Despite enhanced DDAH2 expression
being linked to a handful of cancers such as lung (166) and
prostate (184), the lack of a robust and reproducible in vitro
DDAH2 activity assay represents a significant limitation for the
development and pharmacokinetic characterization of DDAH2
activity modulators. As a consequence, studies investigating the
effects of DDAH pharmacological inhibition focus solely on
DDAH1. Over the last two decades various different classes
of DDAH1 inhibitors have been synthesized; these exhibit
different structures, features and mechanisms of action, and
have been previously extensively reviewed (244). Whilst some
of these molecules have structural similarity with the DDAH
substrates (methylated arginines) (183, 245–249), others bear a
very different chemical structure (56, 250–252). A comprehensive
discussion on all DDAH inhibitors synthesized to date and
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their impact on endothelial cells falls outside the scope of this
review, however, here we summarize a small body of evidence
that identifies the therapeutic potential for pharmacological
inhibition of DDAH1 in cancer.

The first study to show some potential for DDAH1 inhibition
by a small molecule in cancer was published by (183). The
research group demonstrated that DDAH1 is overexpressed in
melanoma cell lines compared to normal human epidermal
melanocytes and that cellular inhibition of DDAH1 by N5-(1-
imino-2-chloroethyl)-L-ornithine (Cl-NIO) resulted in reduced
nitric oxide production in the A375 melanoma cell line. The
reduction in NO synthesis was measured by quantifying 3-
nitrotyrosine levels and total nitrate and nitrite in the cell culture
supernatant and it was independent of changes in DDAH1 or
iNOS expression (183). Unfortunately, this study did not assess
the effects of DDAH1 inhibition by Cl-NIO on specific tumor
parameters, such as tumor cell viability and proliferation in vitro
and/or in vivo growth of xenograft tumors derived from A375
cells, or assess the impact on angiogenesis.

More recently, the potential therapeutic benefit of inhibiting
DDAH1 was demonstrated for breast cancer (55). DDAH1
activity was inhibited in triple negative breast cancer cell lines
by the potent DDAH1 inhibitors, arginine analogs ZST316
and ZST152 (244, 249), as identified by increased intracellular
ADMA concentrations and decreased intracellular L-citrulline
concentrations (55). In an in vitro Matrigel tube formation
model of VM, both ZST316 and ZST152 significantly inhibited
the number of vessel-like networks formed at concentrations
above 1µM (55). Importantly, the endogenous NOS inhibitor
L-NMMA, which is widely used as a tool to decrease NO
availability, also significantly reduced tube formation in these
assays. By contrast, no inhibition was observed when cells were
treated with SDMA, which is neither a substrate for DDAH1 nor
an inhibitor of NOS. Cell viability and proliferation were not
affected by doses of up to 100µMof ZST316 or ZST152, however,
a decrease in cell migratory potential was observed, whichmay be
in part responsible for the reduced tube formation in the model
of VM (55). Although, these results are somewhat preliminary
and need further confirmation with in vivo studies, they suggest
a promising role for DDAH1 inhibition as a novel treatment
strategy in triple negative breast cancer.

The most recent and comprehensive study which describes
a role for DDAH1 pharmacological inhibition in cancer
demonstrates the ability of the compound 3-amino-6-tert-butyl-
N-(1,3-thiazol-2-yl)-4-(trifluoromethyl)thieno[2,3-b]pyridine-
2-carboxamide (DD1E5) to irreversibly inhibit DDAH1 activity
in prostate cancer cells (56). Treatment with DD1E5 inhibited
proliferation, migration and invasion of prostate cancer cell lines
LNCaP and PC3, but was also able to attenuate proliferation
of cells stably overexpressing DDAH1; this was accompanied
by decreased DDAH1 enzymatic activity, increased ADMA
concentration and decreased NO synthesis. Additionally,
modulation of the angiogenic pathway was observed in prostate
cancer cells following treatment with DD1E5: the pro-angiogenic
factors VEGF, iNOS, c-Myc, and HIF-1α were all downregulated,
indicating that DDAH1 inhibition attenuates the angiogenic
potential of DDAH1+ cells (56). The release of pro-angiogenic

signals bFGF and IL8 was also decreased following DDAH1
inhibition, and this translated into a decrease in endothelial
cell tube formation when cells were cultured in conditioned
media from the treated prostate cancer cells. Most importantly,
in vivo analysis demonstrated that DD1E5 inhibited the growth
of xenograft tumors derived from DDAH1 overexpressing PC3
cells, reduced the expression of VEGF, NOS, and HIF-1α in
xenograft tumors, and resulted in poorer vascularization as
assessed by micro vessel density (56).

CONCLUSION

The DDAH enzymes are responsible for the metabolism of
the endogenous NOS inhibitors, the asymmetrically methylated
arginines ADMA and L-NMMA, and are thus critical factors
in both maintaining and modulating precise NO production. In
endothelial cells, the significance of the DDAH/ADMA/NO axis
is well-documented: NO has a regulatory role which is required
for endothelial cell activation, proliferation and migration, and
which overall is necessary for effective angiogenesis. Studies have
consistently demonstrated that dysregulation of this pathway and
NO synthesis, as a consequence of DDAH modulation, results in
impaired angiogenesis (142, 149, 164, 253).

The role of NO has been extensively studied in cancer,
particularly tumor angiogenesis, yet the literature is not always
entirely clear. It appears that NO can have both oncogenic
and protective roles depending on cancer type, location and
stage, as well as local NO concentration and exposure duration.
Nonetheless, excessive NO production has been associated with
poor prognosis, increased vasculature and increased invasiveness
of multiple cancers such as breast (102, 104, 105), prostate (107),
and colorectal (110, 111). Until recently, the majority of studies
which have assessed the impact of altered NO production in
cancer have focused solely on the role (both expression and
regulation) of the three NOS enzymes. In contrast, limited studies
have addressed the potential impact of DDAH expression and
function in the oncology setting. As discussed here, DDAH
expression (particularly DDAH1) is significantly altered in a
number of different cancers. In the majority of these, DDAH
expression is increased and is associated with increased NO
concentrations, increased VEGF expression and increased cell
aggressiveness. Furthermore, in vivo studies using DDAH1
overexpression models have demonstrated increased tumor
growth and corresponding increased tumor vasculature. Whilst
one of the roles of DDAH1 in tumor vessel development is
likely facilitation of endothelial cell migration and invasion, as
supported by DDAH1 overexpression conditioned media studies
(236), initial reports in breast cancer cell lines suggest that
DDAH1 is also a modulator of VM. Whether the function of
DDAH1 in VM is entirely ADMA/NO-dependent remains to be
determined. In contrast to DDAH1, the importance of DDAH2 in
ADMA metabolism and thus tumor angiogenesis is still unclear.
Collectively, these studies begin to further elucidate the complex
tumor-promoting pathways in multiple cancers.

Importantly, the upregulation of DDAH1 expression and
consequent increased enzymatic activity may suggest a novel role
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for DDAH1 in tumor progression, providing novel diagnostic,
and therapeutic opportunities for DDAH1 as a possible
molecular drug target. Intriguingly, DDAH1 autoantibodies
have been detected in sera of prostate cancer patients and
proposed as a new marker for a novel prostate cancer and
benign hyperplasia diagnostic, improving on the traditional
prostate specific antigen (PSA) test which often yields false-
positive results (254). The exact mechanism responsible for
production of DDAH autoantibody markers is unknown
but may relate to changes in DDAH1 expression levels.
A handful of studies have assessed the impact of DDAH1
inhibition by small molecules in cancer with promising results
for inhibition of tumor growth, vasculature density, and
VM. Taken together, they demonstrate that pharmacological
inhibition of DDAH1 represents a novel, alternative strategy
for the treatment of cancers associated with elevated DDAH1
expression and activity. Studies on breast cancer, prostate
cancer, glioma, and melanoma have identified that these
cancers typically express high levels of DDAH1 and are
dependent on DDAH/ADMA/NO signaling for cell survival,
proliferation, migration, and/or angiogenesis; these cancers
would be prime candidates for treatment by DDAH1 inhibition.
It is currently unknown as to whether DDAH1 inhibitors act
exclusively by blocking enzymatic activity or whether they
may modulate alternative functions of DDAH1 (e.g., potential
protein-protein interactions).

Although studies are limited, the data to date suggests a
basis for the development of DDAH1 inhibitors to be used
as combined anti-angiogenic and anti-VM agents in cancer.
It is important to continue to unravel the mechanisms of
DDAH1-mediated tumor angiogenesis and VM, and to further
explore the potential of selectively inhibiting DDAH1 activity
across different tumor types and stages. Pending the results
of animal studies, the use of DDAH1 inhibitors, alone or
in combination with traditional anti-angiogenic therapies such
as anti-VEGF drugs, might represent a novel strategy to

suppress both angiogenesis and VM, key factors in early
cancer development and dissemination. Based on the current
evidence, which highlights the lack of a clear direct cytotoxic
effect of small molecule DDAH1 inhibitors, it would appear
that the best therapeutic window is within the early stages
of cancer development, typically driven by neovascularization,
in order to timely prevent dissemination and metastasis. This,
however, does not exclude their potential use in the later
stages of the disease, particularly if combined with other
pharmacological strategies. Given the importance of DDAH1
in maintaining homeostasis of the cardiovascular system,
particularly in attenuating cardiovascular disease and heart
failure, potential negative impacts of inhibition of DDAH1
must be considered. As such, further studies are required to
determine whether DDAH1 inhibitors can be safely administered
systemically or whether approaches for a targeted, local, delivery
are preferable.
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