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1  | INTRODUC TION

Biodiversity has been declining under the pressure from non-
stopping human activities coupled with ongoing climate change 

events (Newbold et al., 2015) and needs urgent protective actions. 
However, a thorough understanding of biodiversity with its tem-
poral dynamics (Turner,  2014) is the prerequisite for the effective 
biodiversity conservation. Traditionally, biodiversity monitoring in 
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Abstract
Environmental DNA metabarcoding is becoming a predominant tool in biodiversity 
assessment, as this time- and cost-efficient tactics have the ability to increase moni-
toring accuracy. As a worldwide distributed genus, Rheocricotopus Brundin, 1956 still 
does not possess a complete and comprehensive global DNA barcode reference li-
brary for biodiversity monitoring. In the present study, we compiled a cytochrome c 
oxidase subunit 1 (COI) DNA barcode library of Rheocricotopus with 434 barcodes 
around the world, including 121 newly generated DNA barcodes of 32 morphospe-
cies and 313 public barcodes. Automatic Barcode Gap Discovery (ABGD) was applied 
on the 434 COI barcodes to provide a comparison between the operational taxo-
nomic units (OTU) number calculated from the Barcode Index Number (BIN) with 
the “Barcode Gap Analysis” and neighbor-joining (NJ) tree analysis. Consequently, 
these 434 COI barcodes were clustered into 78 BINs, including 42 new BINs. ABGD 
yielded 51 OTUs with a prior intraspecific divergence of Pmax  =  7.17%, while NJ 
tree revealed 52 well-separated clades. Conservatively, 14 unknown species and one 
potential synonym were uncovered with reference to COI DNA barcodes. Besides, 
based on our ecological analysis, we discovered that annual mean temperature and 
annual precipitation could be considered as key factors associated with distribution 
of certain members from this genus. Our global DNA barcode reference library of 
Rheocricotopus provides one fundamental database for accurate species delimita-
tion in Chironomidae taxonomy and facilitates the biodiversity monitoring of aquatic 
biota.
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freshwater ecosystems is particularly dependent on taxonomic ex-
pertise with classical morphological information (Kelly et al., 2014). 
To overcome this limitation, DNA barcoding (Hebert et  al.,  2003; 
Hebert et al., 2003) has gradually and widely been applied on spe-
cies identification as well as taxonomic assessments with the sup-
port of standardized genetic markers (Hebert et  al.,  2004; Young 
et al., 2019). Thanks to the advances in DNA sequencing technol-
ogies, DNA metabarcoding (Tab erlet et  al.,  2012; Yu et  al.,  2012) 
based on organismal and/or environmental DNA (eDNA) has 
become increasingly popular in facilitating biodiversity assess-
ment and biomonitoring freshwater biota (e.g., Carew et al., 2013; 
Elbrecht et al., 2017; Ficetola et al., 2008; Sun et al., 2019; Tab erlet 
et al., 2018; Valentini et al., 2016). A comparison is invited between 
traditional morphology-based biomonitoring approaches and eDNA 
metabarcoding which is capable of providing increased monitoring 
accuracy together with economical and time efficiency; thus, this 
technique serves as a valuable research tool for biodiversity moni-
toring and environmental policy making (Kelly et al., 2014). However, 
eDNA-based biodiversity assessments of freshwater ecosystem are 
still highly limited with only a narrow assortment of freshwater mac-
roinvertebrate DNA barcode reference libraries currently available, 
such as caddisflies, chironomids, mayflies, and stoneflies (Carew 
et  al.,  2017; Galimberti et  al.,  2021; Leese et  al.,  2018; Morinière 
et al., 2017, 2019). The abovementioned libraries are just a tip of the 
iceberg of freshwater macroinvertebrate species diversity.

Chironomids (Diptera: Chironomidae) have the most abun-
dant species-rich genera among benthic invertebrates (Armitage 
et  al.,  1995), comprising of more than 6,300 accepted species (P. 
Ashe, personnel communication) in all zoogeographical regions, 
even in areas with an extreme environment like Antarctica (Rico 
& Quesada,  2013). As a major component of biodiversity, chiron-
omids are not only valuable sources for phylogenetic and biogeo-
graphical research (Brundin, 1966; Cranston et al., 2012; Krosch & 
Cranston, 2013; Lin et al., 2018c), but also act as important bioin-
dicators for freshwater ecosystems monitoring (Ferrington, 2008). 
The theoretical species number of Chironomidae is likely to exceed 
20,000 (Armitage et  al.,  1995), which introduces the difficulty to 
identify species by traditional morphological approaches. Since 
DNA barcoding is able to provide the chance to perform accurate 
and comprehensive species identifications, this effective strategy is 
urgently needed as a steppingstone to facilitate evolutionary studies 
and biodiversity assessments.

Rheocricotopus Brundin,  1956 (Figure  1) is a species-diverse 
genus of subfamily Orthocladiinae, family Chironomidae with ca. 80 
valid identified species worldwide so far (Ashe & O'Connor, 2012; 
Lin et  al.,  2020; Moubayed-Breil & Ashe,  2019). The larvae of 
Rheocricotopus species (Figure 2) mainly inhabit the lotic water (i.e., 
streams and rivers in alpine mountains), whereas a few species occur 
in freshwater lakes. Hence, the intolerant species of Rheocricotopus 
are regarded as one of the most important bioindicators for fresh-
water ecosystem monitoring. The genus Rheocricotopus was erected 
based on the type species Rheocricotopus effusus (Walker, 1856) by 

Brundin (1956) and since, a wide array of species groups and spe-
cies of Rheocricotopus all around the world have been revised over 
the past decades (Liu et  al.,  2014; Liu et  al.,  2014; Sæther,  1985). 
However, some remaining challenges still worth further consider-
ation in the process of taxonomic disentangling of Rheocricotopus. 
For example, information derived from poorly investigated regions is 
scarce (e.g., Australian and Oriental regions) and data of incomplete 
life stages could be considered as another major obstacle due to the 
fact that investigators always have trouble matching immature indi-
viduals with adults reared in the field. Besides, ambiguous boundar-
ies do exist among those closely related species from a morphological 
perspective. Classically, morphological taxonomy to species level 
strongly relies on the traits of adult males of Rheocricotopus. For in-
stance, some key diagnostic characters, including coloration, wing 
setation and shape of hypopygium, could contribute to morphologi-
cal identification, but far from adequate to successfully distinguish a 
narrow range of intraspecific variations.

DNA barcodes could provide a more precise and effective ap-
proach to disentangle biodiversity in genus Rheocricotopus. Although 
a few public DNA barcodes of Rheocricotopus have been published 
in previous studies (e.g., Lin et al., 2020), the global DNA barcode 
reference library still remains incomplete. In this study, by compil-
ing cytochrome c oxidase subunit 1 (COI) DNA barcodes of 434 
individuals, we aim to uncover unknown life stages and cryptic 
species and clarify species boundaries of closely related species of 
Rheocricotopus. Additionally, a thorough understanding concerning 
ecological characteristics of this globally distributed genus is the 
final goal for providing clues to exploring the potential relationship 
between distribution and environmental factors.

F I G U R E  1   An unknown Rheocricotopus species found in a 
gypsum karst cave in Guizhou Province, China. Photo courtesy: Mr. 
Wei-Wei Zhang in 2020
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2  | MATERIAL S AND METHODS

2.1 | Taxon sampling and identification

Fieldwork was conducted in China and Malaysia during 2008 to 
2020 (Figure  3), and 121 specimens of Rheocricotopus were col-
lected. Adult specimens were collected mainly using sweep net and 
malaise trap and preserved in 85% ethanol. Immature specimens 
were collected using drift net and D-net and preserved in 95% 
ethanol at dark. Specimens were identified using taxonomic revi-
sions and species descriptions (Lin et al., 2020; Liu et al., 2014; Liu 
et al., 2014; Sæther, 1985; Wang, 1995; Wang & Sæther, 2001; Wang 
& Zheng, 1989, 1991). The voucher specimens are deposited at the 
College of Life Sciences, Nankai University.

2.2 | Molecular laboratory work

Genomic DNA of most specimens was extracted from head-thorax 
using Qiagen DNA Blood and Tissue Kit according to the manufac-
ture's instruction. PCR amplifications of COI barcodes with the uni-
versal primers LCO1490 and HCO2198 (Folmer et  al.,  1994) were 
performed following the protocol from Lin et  al.,  (2018a). Sanger 
sequencing of the purified PCR products was carried on the ABI 
3730 at the BGI (Beijing, China). In addition, genomic DNA ex-
traction from three legs, PCR amplification, and high-throughput 

sequencing of the specimens were conducted at the Canadian 
Centre for DNA Barcoding (CCDB, University of Guelph, Canada) 
using standard high-throughput protocols (deWaard et  al.,  2008; 
Hebert et al., 2018). DNA samples are deposited at the College of 
Life Sciences, Nankai University, Tianjin, China, and the CCDB.

2.3 | DNA barcodes analysis

Raw sequences were edited and assembled in Geneious Prime ver-
sion 2021.0.3 and aligned using MUSCLE (Edgar, 2004) implemented 
in MEGA X (Kumar et al., 2018) to check stop codons.

To obtain DNA barcodes, we searched for public COI barcodes 
of Rheocricotopus that were longer than 400 base pairs with a lack 
of stop codons in the Barcode of Life Data System (BOLD, http://
www.bolds​ystems.org/) (Ratnasingham & Hebert,  2007). In total, 
a dataset “Global DNA barcodes of the genus Rheocricotopus (DS-
2020RHEO)” including 434 COI barcodes of Rheocricotopus were 
correspondingly generated on BOLD (3 December 2020), of which 
121 COI barcodes representing 32 species were originated from this 
study, while the remaining 313 sequences of 23 species were pub-
licly acquired from BOLD and GenBank. Three species were overlap-
ping between the new DNA barcodes and the published ones.

Firstly, all 434 COI barcode sequences were applied to the 
Barcode Index Number (BIN) system on BOLD (Ratnasingham & 
Hebert, 2013). The BIN system clusters DNA barcodes to generate 

F I G U R E  2   Rheocricotopus larvae 
in 95% ethanol. (a) Rheocricotopus 
brachypus Wang & Zheng, 1991; (b) 
Rheocricotopus brochus Liu et al., 2014; 
(c) Rheocricotopus chalybeatus (Edwards, 
1929); (d) Rheocricotopus emeimensis 
Wang & Zheng, 1989; (e) Rheocricotopus 
taiwanensis Wang, Yan & Maa, 2004; (f) 
Rheocricotopus tamahumeralis Sasa, 1981; 
g. Rheocricotopus sp. 15XL

http://www.boldsystems.org/
http://www.boldsystems.org/
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OTUs with a threshold of 2.2% for a rough differentiation between 
interspecific and intraspecific genetic distances (Ratnasingham & 
Hebert, 2013). In addition, we used the “Barcode Gap Analysis” tool 
on BOLD to calculate sequence divergences for the present data-
set, for example, the mean and maximum pairwise distances for in-
traspecific divergences, the mean and minimum pairwise distances 
for interspecific divergences, and minimum genetic distances to the 
nearest neighbor.

Moreover, a neighbor-joining (NJ, Saitou & Nei, 1987) tree was 
constructed based on the 434 COI barcodes using the Kimura 
2-Parameter (K2P) model (Kimura, 1980) with 1,000 nonparametric 
bootstrap replicates and pairwise deletion in MEGA X.

Given that Automatic Barcode Gap Discovery (ABGD) provides a 
more reliable approach for species delimitation based on the single-
locus marker (Lin et  al.,  2018b; Pentinsaari et  al.,  2017), our data 
were applied into the ABGD to compare the OTU number resulting 
from the BIN-based “Barcode Gap Analysis” with the constructed 
NJ tree. ABGD analysis was carried out on 17 January 2021 using 
the web interface (https://bioin​fo.mnhn.fr/abi/publi​c/abgd/abgdw​
eb.html). We used the K2P model, Pmin = 0.005 and kept default 
settings for remaining parameters.

Finally, a haplotype network for COI barcodes of a potential 
cryptic species complex was reconstructed with PopART (Leigh & 
Bryant, 2015) using the TCS method (Clement et  al.,  2000, 2002) 
with gaps and missing data excluded.

2.4 | Ecological analysis

To explore the environmental factors that could possibly determine 
the distribution of the genus Rheocricotopus, certain corresponding 

environmental factors were extracted for each sampling loca-
tion These environmental factors included 19 bioclimatic variables 
(Karger et al., 2017), frost days and frequency (Karger et al., 2017), 
aridity index (Trabucco & Zomer,  2010), cloud cover (Wilson & 
Jetz, 2016), the global habitat heterogeneity information (Tuanmu & 
Jetz, 2015), topographic information of elevation and slope (Robinson 
et al., 2014), snow probability (Hall et al., 2006), depth to water table 
(Fan et al., 2013), Hansen tree cover 2010 (Hansen et al., 2013), pop-
ulation density (Center for International Earth Science Information 
Network,  2018), vegetation index (NDVI) (Didan et  al.,  2015), and 
productivity (Running et al., 2011). Afterward, we applied principal 
component analysis on these environmental factors and presented 
the clustering and distribution pattern on the top two principal 
component analysis (PCA) dimensions. Furthermore, to understand 
the niche diversification of the most prominent environmental vari-
ables, we presented the density distribution of different distribution 
groups with temperature and precipitation gradients. Specifically, 
the samples are grouped as following: east and southeast Asia (EA), 
Europe (EU), North America (NAC), and Africa (AF).

3  | RESULTS

3.1 | DNA barcode analysis

The aligned 434 COI sequences ranged from 407 to 658 base pairs, 
including 132 sequences with a full barcode length of 658 base 
pairs. These 434 sequences were assigned to 78 BINs, including 
50 concordant BINs, 26 singleton BINs, and 2 discordant BINs. 42 
new BINs were added to BOLD. The following 13 species were rep-
resented by at least 2 BINs: Rheocricotopus atripes (Kieffer, 1913), 

F I G U R E  3   Distribution map of 434 individuals of the Rheocricotopus. Red dots represent new records from this study

https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
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Rheocricotopus brachypus Wang & Zheng, 1991, Rheocricotopus cha-
lybeatus (Edwards, 1929), Rheocricotopus chapmani (Edwards, 1935), 
Rheocricotopus effusus (Walker, 1856), Rheocricotopus emeimensis 
Wang, 1991, Rheocricotopus fuscipes (Kieffer, 1909), Rheocricotopus 
nigrus, Wang & Zheng, 1989, Rheocricotopus robacki, (Beck & Beck, 
1964), Rheocricotopus sp. 3XL, Rheocricotopus taiwanensis Wang, 
Yan & Maa, 2004, Rheocricotopus tibialis Wang & Zheng, 1991, and 
Rheocricotopus valgus Chaudhuri & Sinharay, 1983. The mean in-
traspecific divergence of all species was 1.51%, while the mean in-
terspecific divergence was 14.78% (Figure 4).

3.2 | Species discrimination

In general, our results showed a consistent matching pattern be-
tween molecular OTU and morphospecies in Rheocricotopus. The 
NJ tree included 52 well-separated clusters representing 25 named, 
19 unnamed and eight unidentified morphospecies. After examina-
tion of accessible unnamed species, we concluded that 14 species 
might be new to science whereas the remaining specimens were 
deemed as unidentified. Rheocricotopus brochus Liu et al., 2014 could 
probably be a junior synonym of Rheocricotopus bifasciatus Wang & 
Zheng, 1991 with the evidence of low interspecific genetic distance 
(File S1).

3.3 | Species without identification

Of the 313 sequences obtained from public COI barcode, only a few 
species are identified at the genus level because we do not have 
access to the vouchers for morphological examination. Besides, a 
number of species could not be morphologically identified to spe-
cies level since the immatures and adult females of Rheocricotopus 
have not been described.

3.4 | Cryptic species diversity

Based on our results, DNA barcodes show great cryptic species 
diversity within the Rheocricotopus chalybeatus species group (File 
S1). For instance, both NJ tree and TCS haplotype network based 
on 13 DNA barcode sequences of the Rheocricotopus tibialis species 
complex revealed six OTUs (Figure 5). Five putative cryptic species 
(Rheocricotopus sp. 5XL, Rheocricotopus sp. 10XL, Rheocricotopus 
sp. 11XL, Rheocricotopus sp. 12XL, and Rheocricotopus sp. 14XL) 
are closely related to Rheocricotopus tibialis Wang & Zheng,  1991 
with highly similar hypopygia and tergite coloration of adult males. 
These cryptic species could be differentiated from others within 
the species complex by multiple nuclear markers (Lin, unpublished) 
and morphological characters. Additionally, similar cases could be 

F I G U R E  4   Barcode Gap Analysis of 434 COI barcode sequences of 52 Rheocricotopus species. Two distance distribution histograms 
show the mean intraspecific divergence and distances to nearest neighbor. Three scatter plots are provided to confirm the existence 
and magnitude of the Barcode Gap. The first two scatter plots show the overlap of the max and mean intraspecific distances versus 
the interspecific (nearest neighbor) distances. The third scatter plot shows the number of individuals in each species against their max 
intraspecific distances, as a test for sampling bias



12166  |     LIN et al.

found in Rheocricotopus atripes, Rheocricotopus chalybeatus, and 
Rheocricotopus robacki species complexes (File S1).

3.5 | Life stage association

Our data provided proof that the larvae of seven species (Figure 2) 
and adult females of nine species from China were associated with 
their adult males with the aid of DNA barcodes (File S1). Among above 
cases, the larvae of Rheocricotopus brachypus Wang & Zheng, 1991, 
R. brochus, R. emeimensis, Rheocricotopus tamahumeralis Sasa, 1981, 
and R. taiwanensis have not been described yet. In addition, adult 
females of Rheocricotopus calviculus, Wang & Sæther, 2001, R. emei-
mensis, Rheocricotopus godavarius Lehmann, 1969, Rheocricotopus 
inaxeyeus Sasa, Kitami & Suzuki, 2001, R. nigrus, and Rheocricotopus 
tibialis, were reported for the first time in this study.

3.6 | OTU delineation based on DNA barcodes 
using ABGD

A small “barcode gap” was observed on pairwise distance (Figure 6). 
ABGD analysis of the present dataset recognized 51 OTUs with a 
prior intraspecific divergence of Pmax = 7.17%.

3.7 | Ecological analysis results

The first two axes of PCA (Figure  7) explained 42.2% and 13.9% 
of the variation, respectively, showing spatial grouping of certain 

environmental variables. Specifically, dimension 1 represented the 
temperature gradient with annual mean temperature and frost days 
etc., while dimension 2 represented the precipitation gradient. The 
Asia group (EA) and North America (NAC) group were separated 
into two independent clusters, while the two groups from Africa 
and Europe nested inside the EA and NAC group, respectively. The 
top 10 important variables were temperature and precipitation, and 
their derivative variables highly correlated (Pearson's correlation 
coefficients varied from 0.62 to 1) with annual mean temperature 
or annual precipitation (File S2, File S3). Furthermore, the density 
plots of temperature and precipitation showed similarities and di-
versification of EU, NAC, EA, and AF groups. EA group has a wider 
niche range on precipitation, while the other three groups have 
narrow range with drier environmental conditions. EA and AF have 
similar temperature niche range and are diversified with EU and NAC 
groups.

4  | DISCUSSION

4.1 | Global DNA barcode reference library of 
intolerant Rheocricotopus species

Since Rheocricotopus nonbiting midges are intolerant to potential 
pollutants, appropriate identifications are crucial for biomonitoring 
implemented in the conservation and management of freshwater 
ecology. In this study, we investigated the taxonomy of Chinese and 
Malaysian Rheocricotopus nonbiting midges and hence made contri-
bution to the global DNA barcode reference library. Currently, the 
formed-library includes 434 records for 78 BINs representing 52 

F I G U R E  5   Genetic analyses of 13 COI 
barcodes of the Rheocricotopus tibialis 
species complex. (a) Neighbor joining tree 
of R. tibialis species complex based on K2P 
distance; numbers on branches represent 
bootstrap based on 1,000 replicates; 
scale represents K2P genetic distances. 
(b) TCS haplotype network based the COI 
barcodes of the R. tibialis species complex. 
Mutations are shown as lines on the 
branches
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putative species. Until now, 25 species have Linnaean names and 
the remaining 27 species do not possess Linnaean names with 14 
species new to science and 13 unidentified specimens. Overall, DNA 
barcodes coverage is more than 50% for known Rheocricotopus spe-
cies. Our results also suggested a rich cryptic species diversity, indi-
cating that the number of species within Rheocricotopus is likely to 

be much higher than previously recognized. Particularly, 13 species 
from China and one species from Malaysia could be new to science. 
As an environmental sensitive genus with narrow distribution range, 
specimens of Rheocricotopus are hard to be sampled in field. With the 
limitation of research funding and close collaborator research focus, 
the main field sampling work was conducted in East Asia. The DNA 

F I G U R E  6   Histogram of pairwise 
K2P distances of 434 COI barcodes of 
Rheocricotopus

F I G U R E  7   Distribution of the four 
species groups from Rheocricotopus in 
the 2-dimension space of the top two 
dimension from PCA analysis. Dimension 
1 and dimension 2 represent the 
variation 42.2% and 13.9%, respectively. 
Top 10 important variables presented 
here are mainly temperature- and 
precipitation-associated variables. 
Specifically, temperature-associated 
variables dominate dimension 1, while 
precipitation-associated variables 
dominate dimension 2. The four groups 
east and southeast Asia (EA), European 
group (EU), North America (NAC), and 
Africa (AF) are displayed based on their 
spatial locations in 2-dimension space of 
dimension 1 and 2
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barcodes of Rheocricotopus from EU, AM, and AF were acquired from 
open database, which is the maximum recordings we can accumulate 
up to now. At last, as a small genus with less attention, data access 
and sharing are facing big challenges. Therefore, wider sampling of 
Rheocricotopus is still needed for building a comprehensive DNA bar-
code reference library. Compared with classical morphological ap-
proaches, biodiversity assessments of freshwater ecosystems based 
on DNA metabarcoding are time-saving and cost-efficient tactics. 
Nevertheless, the establishment of DNA barcode libraries for mac-
roinvertebrates remain scarce, particularly in some developing coun-
ties with relatively rich biodiversity. The present study is a significant 
contribution to build a more comprehensive DNA barcode library for 
macroinvertebrates.

4.2 | OTU and taxonomy

Over the last decades, DNA barcodes have been increasingly uti-
lized in chironomid species discovery and identifications (Anderson 
et al., 2013; Carew et al., 2007; Ekrem et al., 2010; Lin et al., 2015, 
2018a, 2019, 2020; Silva & Wiedenbrug, 2014; Song et al., 2018). 
In this study, we demonstrated that DNA barcoding can serve as 
an efficient tool for species delimitation and life stage association 
within Rheocricotopus. A number of larvae of some species are re-
ported for the first time as putative new species with the assistance 
of DNA barcodes. In general, ABGD and NJ tree based on COI DNA 
barcodes yield concordant OTUs corresponding to morphospecies. 
Undoubtedly, deep intraspecific divergence on COI barcode can lead 
to overestimation of the species diversity. Moreover, insufficient 
taxon sampling (Luo et al., 2015), incomplete lineage sorting (Pollard 
et  al.,  2006; Willyard et  al.,  2009) and horizontal gene flow (Polz 
et  al.,  2013) can lead to incorrect species delimitation. Therefore, 
a further integrative taxonomy with reference to both morphology 
and molecules is required to sort out species boundaries of those 
closely related species.

Since different species have distinct population size and diver-
gence time, a universal and fixed threshold is not appropriate for 
all macroinvertebrates (Yang & Rannala,  2017). Initially, Hebert 
et  al.,  (2004) proposed “10X rule”, meaning interspecific diver-
gence at least 10 times as large as the intraspecific divergence. As 
a result, low threshold of 2%–3% was suggested to offer effective 
identification to the species level for some groups of Coleoptera, 
Diptera, Heteroptera, Lepidoptera, Plecoptera, and Trichoptera 
(Knebelsberger et  al.,  2014; Monaghan et  al.,  2005; Schmidt 
et al., 2015; Zahiri et al., 2014; Zhou et al., ,2010, 2016). However, 
higher thresholds could be found in some macroinvertebrate groups 
along with increased sampling size. For instance, Hydropsychidae 
holds the threshold of 6%–8% (Pauls et  al.,  2010). According to 
recent studies with regard to chironomid DNA barcodes (Carew & 
Hoffmann, 2015; Lin et al., 2015, 2018b; Song et al., 2018), a higher 
threshold of 3%–8% is proper for Chironomidae. Despite of the cryp-
tic species, the maximum intraspecific divergence of Chironomidae 
is even up to 10% found in Tanytarsus thomasi Lin, Stur et Ekrem, 

2018 (Lin et  al.,  2018a). Therefore, there is a challenge for eDNA 
metabarcoding using a threshold of 3% to separate OTUs for some 
taxonomic groups. To overcome this challenge, more diverse geo-
graphic populations per species should be barcoded to strengthen a 
more comprehensive and reliable database for the species annota-
tion for eDNA metabarcodes.

4.3 | Environmental determination of Rheocricotopus 
distribution

The importance of temperature for the distribution of Chironomids 
discovered in this work is consistent with previously published stud-
ies (Medeiros et  al.,  2021; Medeiros & Quinlan,  2011). Notably, 
precipitation is proved to be associated with the distribution of chi-
ronomids, which has not been mentioned before. However, other 
environmental parameters, such as water temperature and pH, are 
necessarily needed for investigators to further disentangle the evo-
lution and adaptation of Rheocricotopus. The clustering pattern (EU 
and NAC; AF and EA) achieved from PCA analysis illustrated a pos-
sible adaptation diversification of the EU and NAC groups to colder 
environmental conditions while that of AF and EA groups to warmer 
habitats. As north America and European continents were heavily af-
fected by the late quaternary climate oscillations with repeating land 
ice sheet advancing and retreating (Batchelor et al., 2019; Svendsen 
et al., 2004), driving the diversification of the Rheocricotopus species 
toward colder habitats. Species from south Africa, East and southeast 
Asia were exempted from these strong impacts. Additionally, phylo-
genetic studies (Ekrem et al., 2018) also argued some potential genetic 
communications among sister genera of Rheocricotopus. However, we 
need further investigations from the field and studies to disentangle 
the evolution and speciation history of Rheocricotopus or chironomids.

5  | CONCLUSION

Our results demonstrated that important role of DNA barcodes in 
the discovery of cryptic species and association of life stages of in-
tolerant Rheocricotopus nonbiting midges. The global DNA barcode 
reference library of Rheocricotopus now includes 434 records for 
78 BINs representing 52 putative species, contributing to accurate 
species delimitation in Chironomidae taxonomy and the monitor-
ing of aquatic biota. Besides, we showed that the distributions of 
Rheocricotopus nonbiting midges are mainly associated with temper-
ature and precipitation. Meanwhile, the similarities of EU and NAC 
groups provided another potential evidence for the possibility that 
historical climate dynamics could probably determine the present 
species distribution and adaptation to environment.
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