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Abstract. The aim of the present study was to investigate 
the expression of keratin 20 (KRT20) and placenta specific 8 
(PLAC8) in gastrointestinal (GI) cancer with various differenti-
ation phenotypes. The present study retrospectively investigated 
archived formalin‑fixed paraffin‑embedded tissue samples from 
12 patients at different stages of GI cancer [four with gastric 
cancer, four with pancreatic cancer and four with colorectal 
cancer (crc)]. The stages were pre-determined, according to 
differentiation phenotypes, by a pathologist of the Department 
of Pathology at Sijhih Cathay General Hospital. KRT20 and 
PLAC8 expression levels were assessed using immunohisto-
chemistry. The crc cell lines SW620 and caco-2 were used 
to assess interactions between KRT20 and PLAC8 via reverse 
transcription-quantitative Pcr. PLAC8 and KRT20 expression 
was observed consistently only in the well‑differentiated CRC 
tissue samples. Low KRT20 expression levels were observed in 
the PLAC8 knockdown SW620 cells. In addition, there was a 
positive association between PLAC8 and KRT20 expression in 
the differentiated caco-2 cells. according to the results of the 
present study, the differentiation status of GI cancer influenced 
KrT20 expression, particularly in crc, which may explain why 

patients with well‑differentiated CRC display better clinical 
outcomes. Therefore, the prognostic significance of KrT20 
and PLAC8 may be particularly crucial for patients with CRC 
displaying a well-differentiated phenotype.

Introduction

Gastrointestinal (GI) cancer develops in the organs of 
the alimentary canal, including the esophagus, liver and bile 
ducts, gallbladder, pancreas, stomach and small and large 
intestines (1). Although some distinct mutations have been 
reported in different GI organs, GI tumors display several key 
molecular alterations (2,3).

Keratins (KRTs) are a family of fibrous structural proteins 
that are present in normal epithelia, however, some are 
upregulated in neoplasms (4). The differential expression of 
KrTs facilitates the diagnosis of several tumors, including 
GI tumors, using molecular techniques and allows KRTs to 
be used as biomarkers to discriminate primary from meta-
static adenocarcinoma (5‑8). In addition, KRTs have long 
been considered epithelial differentiation markers (9) and the 
differentiation of cells within the GI tract is associated with an 
increased susceptibility to GI cancer (10,11).

In addition to being involved in conventional tumorigen-
esis, epithelial-mesenchymal transition (eMT) plays key roles 
in cellular differentiation and cancer progression (12,13). 
KRTs have been reported to be aberrant in cells undergoing 
eMT (14,15). For example, the detection of KrT20-positive 
circulating tumor cells is associated with worse prognosis in 
patients with colorectal cancer (crc) (16). in addition to struc-
tural KRTs, other genes often exhibit dysregulated expression 
during EMT. Previously, placenta specific 8 (PLAC8), a gene 
expressed under physiological conditions, was reported to play 
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a key role in the tumorigenic and EMT pathways in a number 
of types of human cancer, such as crc or pancreatic cancer 
(CaP) (17,18). PLAC8 was expressed at high levels in the GI tract 
and KRT20 expression patterns were highly specific (19‑21). In 
addition, elevated PLAC8 levels are positively associated with 
tumor metastasis and recurrence in CRC (18,22). Understanding 
the interaction between KRT20 and PLAC8 could have clinical 
implications for the treatment of GI cancer. In the present 
study, immunostaining was employed to detect the expression 
of KRT20 and PLAC8 in the tissues of patients with GI cancer 
[gastric cancer (GC), CaP and CRC]. Furthermore, the mRNA 
levels of KRT20 in CRC cells displaying differential PLAC8 
expression were quantified.

Materials and methods

Tissues and cell lines. archived 4 µm formalin-fixed 
paraffin‑embedded (FFPE) tissue sections from four GC, four 
caP and four crc patients who had undergone surgery at the 
Department of Surgery of Cathay General Hospital before 
December, 2000 were obtained and used in the present study. 
All procedures were approved by the Cathay General Hospital 
institutional ethics committee and a waiver of consent was 
approved by the same committee. Patient information was 
anonymized.

For each cancer (GC, CaP and CRC), two patients had 
well‑differentiated cancer [one at American Joint Committee 
on cancer (aJcc) stage ii and one at stage iii] and two had 
poorly differentiated cancer (one at aJcc stage ii and one at 
stage III) (23). Cancer diagnoses were performed by a patholo-
gist. The human CRC cell lines SW620 [cat. no. CRL‑1831; 
AJCC stage III) and Caco‑2 (cat. no. HTB‑37) were obtained 
from the american Type culture collection (aTcc) and the 
medium suggested by the ATCC for each cell line was used 
for culture; Leibovitz's L‑15 medium for SW620 cells and the 
Eagle's Minimum Essential medium for Caco‑2 cells. The two 
CRC cell lines were selected due to their high PLAC8 expres-
sion levels (SW620 cells) (24) and their differentiation capacity 
(Caco‑2 cells) (25). SW620 cells were incubated at 37˚C and 
100% air (with very low co2) in a humidified incubator and 
subcultured 2 to 3 times per week (25). To induce intestinal 
differentiation, Caco‑2 cells were cultured to confluence in 
a humidified incubator at 37˚C with 5% CO2 for 21 days, as 
described in a previous study (25).

PLAC8 knockdown and detection of PLAC8 mRNA level 
in CRC cells. PLAC8 mRNA levels were knocked down 
in SW620 cells using a lentivirus-mediated small hairpin 
(sh) RNA targeting PLAC8 to obtain shPLAC8‑SW620 
cells. Control (shLUC‑SW620) cells were obtained using a 
lentivirus-mediated shrna targeting luciferase (25). The 
lentiviruses and the protocol for lentivirus infection were 
acquired from the national rnai core Facility of academia 
Sinica. Briefly, 1x106 SW620 cells were grown in a 10 cm 
plate for 24 h, and then infected with lentivirus at a multi-
plicity of infection of 3. Stable infected cells were selected 
and maintained in medium containing 2 µg/ml puromycin 
for 48 h (Thermo Fisher Scientific, Inc.). The total RNA of 
the transfected cells was then extracted using rnazol® rT 
(Molecular Research Center) and reverse transcribed into 

cdna using a high-capacity cdna reverse Transcription kit 
(Catalog No. 4368813; Thermo Fisher Scientific, Inc.) in the 
presence of oligo(dT) primers, according to the manufacturer's 
instructions. The level of mrna was considered as the gene 
expression level and was measured by PCR in the presence of 
specific amplification primers (Table I), a TaqMan probe and 
TaqMan master mix (Roche Diagnostics GmbH), according 
to the manufacturer's instructions. Cycling conditions were: 
2 min at 50˚C and 10 min at 95˚C, followed by 50 cycles each 
consisting of 15 sec at 95˚C and 1 min at 60˚C. mRNA levels 
were adjusted relative to the level of GAPDH to estimate the 
relative levels of gene expression with the method of the 2-ΔΔcq 
method (26). LightCycler (version 4.05; Roche Diagnostics 
GmbH) was used to analyze the PCR kinetics.

Immunohistochemical staining of PLAC8 and KRT20 in the 
archived FFPE tissue sections. For the PLAC8 immunohisto-
chemical staining, a VecTaSTain® elite aBc kit (Vector 
Laboratories, Inc.) was used according to the manufacturer's 
instructions. Briefly, cancer tissue sections were incubated in 
oven at 65˚C for 30 min to deparaffinize, and then each tissue 
was rehydrated with 100, 90 and 70% ethanol, sequentially. 
The rehydrated slides were immersed in citrate buffer (10 mM; 
pH 6.0), boiled (95‑99˚C) for 20 min and then cooled to room 
temperature for 20 min. To inactivate endogenous peroxidases 
within the tissues, the slides were incubated for 30 min at room 
temperature in 3% methanolic hydrogen peroxide. The tissue 
sections were then blocked for 30 min at room temperature using 
a blocking solution with 5% rabbit serum (Vector Laboratories, 
Inc.) and incubated overnight at 4˚C with anti‑PLAC8 antibody 
(1:200; cat. no. ab122652; Abcam) or anti‑KRT20 antibody 
(1:200; cat. no. ab76126; Abcam). After washing the tissues 
several times with Tris‑buffered saline, the samples were 
incubated with a secondary biotinylated goat anti‑rabbit IgG 
antibody (1:200; cat. no. BA‑1000; Vector Laboratories) for 1 h 
at room temperature. Subsequently, the slides were stained with 
3‑amino‑9‑ethylcarbazole (DAKO; Agilent Technologies, Inc.) 
for 1 min at room temperature to visualize PLAC8 and KRT20. 
Tissues were stained with hematoxylin for 4 min and then with 
eosin for another 1.5 min at room temperature for identification of 
normal and tumor areas. The stained sections were subsequently 
diagnosed by a pathologist via a light microscope Olympus 
BX41 with magnification at x200 (Olympus Corp.). Then, the GI 
cancer tissue sections were divided into two differentiation states 
(well or moderately differentiated, >50% glandular formation 
and poorly differentiated, 0-49% glandular formation) (27).

Statistical analysis. data were presented as mean ± standard 
deviation. The relative expression levels of PLAC8 and KRT20 
in cells were compared between samples using the Student's 
t-test. all statistical analyses were performed using SPSS 
(version 19; IBM Corp.). P<0.05 was considered to indicate a 
statistically significant difference.

Results

PLAC8 and KRT20 expression in well‑differentiated GI 
stage II and III cancer cells. Cellular KRT20 and PLAC8 
proteins were detected in each of the cancer tissues 
using immunohistochemistry. in the well-differentiated 
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GC cancer tissues, PLAC8 levels were low and tissues 
were KrT20-positive regardless of tumor stage (Fig. 1). 
Conversely, tissues were positive for both PLAC8 and 
KrT20 in the well-differentiated caP tissues at stages ii 
and III, but PLAC8 displayed a luminal staining pattern 
(Fig. 2). in addition to the expression patterns in the 
well‑differentiated GC and CaP cases, the expression 
patterns of PLAC8 and KrT20 were also immunodetected 
in well‑differentiated CRC cases (Fig. 3). PLAC8 signals 
were consistently low in the well-differentiated crc at 
stage II (the left panel of Fig. 3), but the small number of 
PLAC8‑positive CRC cells appeared to also express KRT20. 
Furthermore, a co‑expression of PLAC8 and KRT20 was 
observed in the well‑differentiated CRC cells at stage III 
(the right panel of Fig. 3).

PLAC8 and KRT20 expression in the poorly differentiated 
GI cancer cells at stages II and III. immunohistochemical 

staining revealed that although poorly differentiated GC 
tissues expressed similar levels of PLAC8 at stage II and III (the 
middle panel of Fig. 4), these tissues expressed higher levels of 
KRT20 at stage III compared to stage II (the bottom panel of 
Fig. 4). conversely, the poorly differentiated caP at stage ii 
displayed higher levels of PLAC8 compared with the CaP 
tissues at stage iii, and KrT20 levels were low in the poorly 
differentiated CaP at both stage II and III (Fig. 5). The PLAC8 
and KrT20 expression patterns in poorly differentiated crc 
were different from those in well-differentiated crc (Fig. 6). 
PLAC8 expression was higher in the poorly differentiated CRC 
tissue at stage iii than at stage ii (the middle panel of Fig. 6). 
However, the late tumor stage (stage III) did not appear to 
increase the expression of KrT20 in the poorly differentiated 
crc tissue.

PLAC8 and KRT20 expression levels in transfected and 
differentiated CRC cell lines. PLAC8 expression was knocked 

Figure 1. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in well differentiated stage II and III gastric cancer tissue. Scale bar 
displayed in bottom right corner, magnification, x200. H&E, hematoxylin and 
eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.

Table I. Quantitative PCR primers.

 Primers (5' → 3')
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gene Forward Reverse

PLAC8 CGTCGCAATGAGGACTCTCT CTCTTGATTTGGCAAAGAGTACAA
KRT20 CAGTCCCATCTCAGCATGAA ACAGCGACTGGAGGTTGG
GAPDH CTCTGCTCCTCCTGTTCGAC ACGACCAAATCCGTTGACTC

PLAC8, placenta specific 8; KRT20, keratin 20.

Figure 2. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in well differentiated stage ii and iii pancreatic cancer tissue. Scale 
bar displayed in bottom right corner, magnification, x200. H&E, hematoxylin 
and eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.
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down in SW620 cells, displayed by an 80% decrease in PLAC8 
mRNA levels (shPLAC8‑SW620) compared with the levels in 

the control cells (shLUC‑SW620; Fig. 7A). The KRT20 mRNA 
levels in the shPLAC8‑SW620 cells also decreased by 76% 

Figure 6. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in poorly differentiated stage ii and iii colorectal cancer tissue. Scale 
bar displayed in bottom right corner, magnification, x200. H&E, hematoxylin 
and eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.

Figure 4. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in poorly differentiated stage ii and iii gastric cancer tissue. Scale 
bar displayed in bottom right corner, magnification, x200. H&E, hematoxylin 
and eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.

Figure 3. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in well differentiated stage ii and iii colorectal cancer tissue. Scale 
bar displayed in bottom right corner, magnification, x200. H&E, hematoxylin 
and eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.

Figure 5. Representative immunohistochemical staining for PLAC8 and KRT20 
expression in poorly differentiated stage ii and iii pancreatic cancer tissue. Scale 
bar displayed in bottom right corner, magnification, x200. H&E, hematoxylin 
and eosin staining; PLAC8, placenta specific 8; KRT20, keratin 20.
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compared with the levels in the control cells (Fig. 7a). The 
mRNA levels of both PLAC8 and KRT20 in the differentiated 
Caco‑2 cells (day 21) decreased by 72 and 85%, respectively, 
compared with the levels in the day 1 caco-2 cells (Fig. 7B).

Discussion

In clinical settings, patients with different types of GI 
cancer should be diagnosed using appropriate biomarkers, 
even though gut-derived adenocarcinomas display similar 
genetic alterations (28‑32). Lukyanchuk et al (33) reported 
that KRT20 had clinical significance in GI cancer, including 
GC, CaP and CRC. Thus, the present study focused on inves-
tigating KRT20 and PLAC8 expression in these types of GI 
cancer. In the present study, the aberrant co‑expression of 
the cytoplasmic protein PLAC8 and the cytokeratin KRT20 
were found in the well‑differentiated CRC at stage III, but this 
expression pattern was not observed in poorly differentiated 
CRC. No such co‑expression was observed in the GC and CaP 
tissue sections, regardless of tumor stage and differentiation 
state. CRC tissues at stages II and III have been frequently 
studied to improve prognosis and to avoid the incorrect use of 
chemotherapeutic agents (34,35).

cytoskeletal rearrangement is required for cell migration 
and invasion, which are key steps in cancer metastasis (36,37). 
Highly dynamic biological processes of cytoskeletal orga-
nization in cancer have been extensively explored (38‑42). 
among the different cytoskeletal molecules, KrTs might 
be the most examined based on clinical significance (43,44), 
and several KRTs have been previously studied from a tumor 
progression perspective (45-47). For example, previous studies 
have reported that upregulation of KrT17 and KrT19 may 
be involved in tumor metastasis (5,48) and that KRT18 and 

KrT19 are associated with colorectal malignancy (49-52). in 
addition, aberrant KRT20 expression has been observed in 
generalized GI cancer (16,19,53) and is recognized as a marker 
of circulating CRC cells (54). Therefore, KRT20 could be a 
suitable marker for the evaluation of the primary origin of GI 
cancer, including crc (19,55).

PLAC8, a novel oncogenic marker that mediates tumor 
progression, has also been reported to play a key role in 
the EMT of CRC (18,22). In the present study, an associa-
tion between KRT20 and PLAC8 expression was observed 
in crc cells. The KrT20 mrna levels decreased in 
the PLAC8‑knockdown SW620 CRC cells, which were 
diagnosed as aJcc stage iii. in addition, the intestinal 
differentiation of caco-2 cells was used to evaluate the 
well‑differentiated state of GI cancer (56,57). Such spontane-
ously differentiated caco-2 cells displayed decreasing levels 
of KRT20 and PLAC8 expression upon differentiation. The 
caco-2 cell line, which is applied extensively as an intestinal 
epithelial barrier model, displays favorable differentiation in 
a continuous culture (58,59). In addition, the positive asso-
ciation between KRT20 and PLAC8 expression levels in the 
well‑differentiated CRC was confirmed by immunostaining 
of archived FFPe tissue sections. The FFPe tissue sections of 
other well‑differentiated GI cancer (GC and CaP) at stages II 
and iii did not display patterns similar to those of crc and 
no association between PLAC8 and KRT20 expression levels 
were observed in the three poorly differentiated GI cancer 
tissues (GC, CaP and CRC). The results from the present 
study suggested that understanding the expression of PLAC8 
and KRT20 could be critical for predicting the prognosis of 
patients with crc.

experiments exploring the molecular heterogeneity of crc 
could facilitate the formulation of effective therapies (60,61). 

Figure 7. Expression patterns of PLAC8 and KRT20 in CRC cell lines. (A) Relative gene expression of PLAC8 and KRT20 in transfected SW620 cells. SW620 
cells were cultured in a humidified and CO2‑free incubator. (B) Relative gene expression of PLAC8 and KRT20 in Caco‑2 cells. Caco‑2 cells were differenti-
ated in a humidified incubator with 5% CO2 for 21 days. Data were presented as mean ± standard deviation and compared between samples using the Student's 
t-test, **P<0.01. PLAC8, placenta specific 8; KRT20, keratin 20. CRC, colorectal cancer; sh, short hairpin.
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crc development and progression is a complex process 
involving multiple genetic changes (62-64). The genes involved 
in CRC tumorigenesis should therefore be identified for clinical 
applications (65). chemotherapy, target molecule therapy (with 
vascular endothelial growth factor or epidermal growth factor 
receptor) and immunotherapy (anti-programmed death-1) lead 
to increased survival rates and decreased recurrence rates in 
CRC (66‑68). Imai et al (69) revealed that the KrT20 expres-
sion was closely associated with the invasive histological 
phenotype in poorly differentiated colorectal adenocarcinoma. 
However, in the present study, it was suggested that the differ-
entiation status of GI cancer may influence KRT20 expression, 
particularly in crc.

A recent animal study reported that PLAC8 expres-
sion might be associated with the gut microbiota (70) and 
others detected that aberrant KRT20 expression is induced 
by altering the gut microbiota (71). Taken together, these 
results implied that KRT20 and PLAC8 might work coop-
eratively in different types of GI cancer. The present study 
suggested that PLAC8 expression could influence KRT20 
expression. Therefore, it could be hypothesized that a 
well-differentiated crc may have poor prognosis if KrT20 
is induced via the upregulation of PLAC8. Conversely, the 
downregulation of PLAC8 may reduce the expression levels 
of KrT20. These suggested molecular dynamics imply that 
RNA interference of PLAC8 expression could be used as 
a therapeutic technique for the treatment of GI cancer at 
stages ii and iii. a similar concept that uses small inter-
fering RNA as a cancer therapeutic agent has been explored 
extensively (72‑74). In addition, PLAC8 promotes tumor 
growth, invasion and metastasis in other tumors, which could 
explain why patients with well-differentiated crc display 
different clinical outcomes, in comparison with the patients 
with poorly-differentiated crc (17,22,75,76). Therefore, 
the prognostic significance of KRT20 and PLAC8 could 
be particularly essential for patients with CRC displaying 
well-differentiated phenotypes.
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