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ABSTRACT As determined by a hybrid approach combining Oxford Nanopore
MinION and Illumina MiniSeq sequence data, Campylobacter armoricus strain CA639
harbored a circular chromosome of 1,688,169 bp with a G�C content of 28.47% and
two plasmids named pCA639-1 and pCA639-2, with lengths of 51,123 and 28,139 bp,
and G�C contents of 26.5% and 28.45%, respectively.

Campylobacter armoricus is a novel urease-positive bacterial species phylogenetically
classified within the Campylobacter lari group (1, 2). This group forms a distinct

clade within the epsilon subdivision of the Proteobacteria and its members are among
the thermotolerant Campylobacter spp. (3). We report here the complete sequence of
the river water isolate Campylobacter armoricus CA639 and its native plasmids
pCA639-1 and pCA639-2. This strain was isolated from the river Le Rat (La Fresnaye
catchment, Brittany, France) on 4 March 2014 using the ISO-10272:2016 method (1, 2).
Bacterial DNA was extracted from an overnight culture in trypto-casein-soy agar
(bioMérieux, Marcy-l’Étoile, France) supplemented with 5% (vol/vol) sheep blood (Ox-
oid, Thermo Scientific, Inc.) at 42°C in a microaerobic atmosphere, using the DNA
QIAamp minikit 250 (Qiagen, Venlo, The Netherlands) and used for Illumina and
Nanopore sequencing. Genomic libraries were prepared using the Nextera DNA Flex
library prep kit (Illumina, San Diego, CA, USA), and sequencing was performed on an
Illumina MiniSeq platform with a 2 � 150 paired-end protocol (1). Default parameters
were used for all software except where otherwise noted. Raw reads were quality
filtered and adapter trimmed with Trimmomatic v.0.36 (4). An Oxford Nanopore Tech-
nologies (ONT) sequencing library was prepared using the manufacturer’s 1D genomic
DNA by ligation kit (SQK-LSK 108), and sequencing was carried out on a MinION device
using flow cell type R9.4.1 (FLO-MIN106D). Porechop v.0.2.1 (5) was used for adaptor
trimming, and NanoFilt v.2.2.0 (6) was used to remove reads of �500 bp or with
average quality scores of �10. Thus, we used a robust pipeline relying on a combina-
tion of Oxford Nanopore long-read (681,890; N50 value, 15,543 bp; 9.7 Gb of data) and
Illumina short-read (1,309,028; 2 � 150-bp reads) technologies to scaffold and polish
sequencing data.

Several approaches were used to construct de novo assemblies using default
parameters (Fig. 1). Based on the obtained statistics (Fig. 1A), the Unicycler hybrid
assembly was selected for downstream analyses. This reported one circular chromo-
some of 1,688,169 bp (28.47% G�C content) and two plasmids named pCA639-1 and
pCA639-2 with lengths of 51,123 and 28,139 bp and G�C contents of 26.5 and 28.45%,
respectively (Fig. 1B). BBMap v.38.71 (https://sourceforge.net/projects/bbmap/) was
used to calculate the average coverages for the chromosome (101.7� for short
reads and 1,301.2� for long reads), pCA639-1 (87.9� and 328.9�, respectively), and
pCA639-2 (178.8� and 280.4�, respectively).
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Prokka v.1.14 (7) predicted 1,640 putative coding sequences (CDS), with 862 (52.6%)
having assigned functions, including 3 rRNA operons and 43 tRNAs for the chromo-
some and 59 and 35 CDS for the two respective plasmids. The chromosome contains
one prophage integrase and an ISHp1 transposase (IS1595 family). In addition to the
results that were obtained for virulence (i.e., the cdtABC operon, ciaB, flaC, porA, and
cadF) and antibiotic resistance (i.e., cmeABC, cmeR, cosR, macAB, oxa-184, and oxa-493)
coding gene screening (1) using ABRicate v.0.8.7 (8), we detected a chloramphenicol
acetyltransferase type III gene (cat3), a bicyclomycin resistance gene (bcr), and other
multidrug efflux pump-coding genes that may be involved in antibiotic resistance.
pCA639-1 harbored genes coding for the Tra/Vir type IV secretion system (T4SS) and a
Cag pathogenicity island protein. A blastn search of the sequence of this plasmid
against the NCBI database showed 79% query coverage and 94.56% identity with that
of Campylobacter lari pCL2100 (GenBank accession number CP000933). pCA639-2
carried several conjugative transfer genes and shared 82% query coverage and 95.06%

FIG 1 (A) Visualization of assembly graphs and statistics for each strategy was produced with Bandage v.0.8.1 (9) and QUAST v.5.0.0 (10), respectively. First,
we constructed MiniSeq assemblies (illumina) using SPAdes v.3.12.0 (11) or Unicycler v.0.4.7 (12). Second, MinION assemblies (minion) were achieved using Canu
v.1.5 (13), Flye v.2.4 (14), or Unicycler. These three assemblies were aligned to MinION reads using Minimap2 v.2.17 (15) and SAMtools v.1.9 (16) and then
polished using Nanopolish v.0.11.0 (17). An additional round of Nanopolish did not improve their accuracy. Moreover, the Canu assembly was polished using
Pilon v.1.23 (18) with the flags “–fix bases” and then “–fix all” by aligning MiniSeq reads using Bowtie 2 v.2.3.4.3 (19) and SAMtools. Third, we added MinION
reads to the obtained MiniSeq-based assemblies to resolve ambiguous regions in the sequencing graph, creating SPAdes hybrid and Unicycler hybrid
assemblies (Hyb). (B) Circular maps of the C. armoricus CA639 replicons (a, chromosome; b and c, plasmids) from the hybrid assembly using Unicycler were
drawn using the online CGView server (http://stothard.afns.ualberta.ca/cgview_server/). Counting from the outside toward the center, circle 1 (outermost
circle) shows distances from the putative origin of replication in kilobase pairs. Circle 2 shows annotated CDS (blue) encoded on the forward and reverse strands.
The rrs operons and tRNA genes in the chromosome are indicated in pink and gray, respectively. Circle 3 shows G�C contents higher and lower than the
average G�C content (black). Circle 4 shows G�C skew, with positive values in green and negative values in purple.
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identity with pGMI16-001 (GenBank accession number CP028188) carried by Campylo-
bacter coli strain CFSAN054106, suggesting an intraspecies dissemination.

This study highlights the value of combining short- and long-read sequencing data
for high-quality genome assemblies and annotation of repetitive genomic regions. The
complete genome sequence of C. armoricus CA639 comprises essential data for taxo-
nomic and comparative genomic studies within a One Health approach, a concept
which recognizes that the health of people is connected to the health of animals and
the environment.

Data availability. The sequencing data have been deposited in the DDBJ/EMBL/
GenBank databases under accession numbers CP044262 for the chromosome and
CP044261 and CP044263 for plasmids pCA639-1 and pCA639-2, respectively. The
Illumina paired-end fastq and ONT base-called fastq files are available in the Sequence
Read Archive under accession numbers SRR10390899 and SRR10162491, respectively.
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