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Abstract: The paracrine interaction between tumor cells and adjacent stroma has been associated with
the oncogenic activity of the Hedgehog (Hh) pathway in triple-negative breast tumors. The present
study developed a model of paracrine Hh signaling and examined the impact of mesenchymal cell
sources and culture modalities in the oncogenicity of the Hh pathway in breast tumor cells. Studies
consisted of tumor cell monocultures and co-cultures with cancer-associated and normal fibroblasts,
tumor cells that undergo epithelial–mesenchymal transition (EMT), or adipose-derived mesenchymal
stem cells (ADMSCs). Hh ligand and pathway inhibitors, GANT61 and NVP-LDE225 (NVP), were
evaluated in both cell cultures and a mouse xenograft model. Results in monocultures show that
tumor cell viability and Hh transcriptional activity were not affected by Hh inhibitors. In co-cultures,
down-regulation of GLI1, SMO, and PTCH1 in the stroma correlated with reduced tumor growth rates
in xenografted tumors and cell cultures, confirming a paracrine interaction. Fibroblasts and EMT
cells supported Hh transcriptional activity and enhanced tumor cell growth. Mixed and adjacent
culture modalities indicate that tumor growth is supported via fibroblast-secreted soluble factors,
whereas enriched tumor stemness requires close proximity between tumor and fibroblasts. Overall
this study provides a tumor–mesenchymal model of Hh signaling and highlights the therapeutic
value of mesenchymal cells in the oncogenic activity of the Hh pathway.
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1. Introduction

Hedgehog (Hh) signaling regulates epithelial–stromal interactions during tissue development [1],
and is reactivated in adult tissues in response to injury [1–3]. Canonical Hh signaling consists of the
Sonic hedgehog (SHH)-ligand binding to the transmembrane receptor Patched1 (PTCH1), an action that
relieves repression of another transmembrane protein, Smoothened (SMO). SMO triggers downstream
signal transduction that includes the activation of transcription factors glioma associated oncogene
family zinc finger 1(GLI1) and glioma associated oncogene family zinc finger 2 (GLI2) through the
dissociation of suppressor of fused homolog (SUFU) and down-regulation of the transcriptional
repressor glioma-associated oncogene family zinc finger 3(GLI3). Sustained and uncontrolled Hh
activation has been associated with tumor initiation and progression in several cancers of pancreas [4],
colon [5], prostate [6], lung [7,8], and breast tissues [9,10].

High levels of expression of several of the Hh pathway components have been identified in
30% to 40% of diagnosed cases [11,12] and correlated with reduced survival rates in patients of the
triple-negative breast cancer (TNBC) subtype [9,12–16]. Several studies indicate that the tumor-adjacent
stroma is a primary therapeutic target of Hh inhibitors in TNBC [17,18]. This paracrine mechanism
is characterized by binding of tumor-secreted Hh ligands (SHH, Indian Hedgehog (IHH), or Desert
Hedgehog (DHH)) to PTCH1 receptors, and elevated levels of GLI1, GLI2, PTCH1, and SMO genes
in the tumor-adjacent stroma. A study by Valenti et al. showed that treatment of tumors with a
Hh inhibitor promoted the delay of tumor formation, which correlated with a reduced amount of
mouse fibroblasts and limited expansion of cancer stem cells in basal-like mammary gland tumors [19].
In another TNBC mouse model, genomic profiling of cell populations further confirmed that this
paracrine interaction is restricted to cancer-associated fibroblasts (CAFs) and excluded immune and
endothelial cells [14]. This paracrine modality is not unique to TNBC and has been reported in other
tissues including pancreas and prostate tumor, in which activation of Hh signaling in the tumor-adjacent
mesenchyme—not in the epithelium—leads to accelerated tumor growth [20–22].

Despite the importance of the tumor-adjacent stroma in the oncogenicity of Hh signaling, no in vitro
models have been developed that support robust Hh signaling and associated tumorigenicity. Animal
studies have provided valuable information confirming the interaction between the tumor–stroma and
disease progression [19,23,24], but are not amenable to precise monitoring and spatial manipulation
of tumor–stroma interactions. Moreover, murine models of Hh signaling may not fully recapitulate
the disease in patients; further strengthening the need for a human-based model for the preclinical
evaluation of drug-sensitivity in a fast manner. The absence of in vitro models limits multi-endpoint
assessment of therapeutic targets and identification of tumor–stromal interactions driving the
oncogenicity of the Hh pathway in TNBC.

The studies performed seek to develop a paracrine model of Hh signaling using human
breast-derived cells in which both the transcriptional activity in the tumor-adjacent stroma and
tumorigenicity of the pathway are recapitulated to assess the impact of tumor–stroma proximity and
mesenchymal cell subtypes in the oncogenic activity of the Hh pathway. In this study, we further
confirmed a lack of sensitivity to Hh inhibition in TNBC cells and a paracrine interplay between the
tumor and stroma in both in vitro and in vivo models. We adapted a previously developed microscale
co-culture platform [25,26] to develop a paracrine model of Hh signaling in TNBC and examined the
impact of mixed and adjacent culture modalities in the tumorigenicity and transcriptional activity
of the Hh pathway. The culture model was composed of TNBC human cell lines and a subset of
mesenchymal cells consisting of human mammary fibroblasts (HMFs), CAFs, tumor cells that undergo
epithelial–mesenchymal transition (EMT), and adipose mesenchymal stem cells (ADMSCs). Our
studies provide a human model of paracrine Hh signaling and show that the paracrine modality of the
Hh pathway is supported by fibroblasts and tumor cells that undergo EMT via both soluble secreted
factors and cell–cell interactions.
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2. Methods

2.1. Cell Culture

Triple-negative (estrogen (ER), progesterone (PR), human epidermal growth factor receptor
2 (HER2), (ER−PR−HER2−)) breast cancer cell lines, MDA-MB-231, MDA-MB-468, and Hs578t;
Luminal A (ER+PR+HER2−) MCF-7 and T-47D cells; and non-tumorigenic triple-negative 184B5
and MCF10A cell lines were purchased from ATCC. MDA-MB-231 expressing Green fluorescent
protein (GFP) (GFP-MDA-MB-231) cells were obtained from Dr. Suranganie Dharmawardhane’s lab
and were described in [27]. NIH3T3 were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The immortalized human mammary fibroblasts, RMF-621-tert cells (HMFs), derived from the stromal
vascular fraction of a reduction mammoplasty [28], were obtained from Dr. Lisa Arndt’s lab (University
of Wisconsin-Madison, WI, USA). Breast CAFs were gifted to us from Dr. Andreas Friedl’s lab
(University of Wisconsin-Madison, WI, USA). MDA-MB-468, MDA-MB-231, MCF-7, HMFs, and
NIH3T3 were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) high-glucose media with
L-Glutamine (D5796, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (F6765, Sigma-Aldrich, St. Louis, MO, USA), and 1% penicillin/streptomycin
(P/S) (P4333, Sigma-Aldrich, St. Louis, MO, USA). Hs578t were cultured in DMEM high-glucose media
with L-Glutamine supplemented with 10% heat-inactivated FBS, 0.01 mg/mL human insulin (I9278,
Sigma-Aldrich, St. Louis, MO, USA), and 1% P/S. T-47D were cultured in Roswell Park Memorial
Institute (RPMI) medium 1640 with L-Glutamine (11875-093, Thermo Fisher Scientific, Grand Island,
NY, USA) supplemented with 10% heat-inactivated FBS, 0.01 mg/mL human insulin, and 1% P/S. 184B5
were cultured in Mammary Epithelial Cell Growth Media (MEGM) culture medium Kit (CC-3150,
Lonza, Walkersville, MD, USA) and supplemented with 1 ng/mL cholera toxin (C8052, Sigma-Aldrich,
St. Louis, MO, USA) as recommended by ATCC. MCF10A cells were cultured in DMEM/Ham’s F-12
(11330032, Thermo Fisher Scientific, Grand Island, NY, USA) and supplemented with 0.01 mg/mL
insulin, 500 ng/mL hydrocortisone, and 10% FBS. Adipose mesenchymal stem cells (ADMSC) were
purchased from Lonza and sustained and supplemented by ADMSC Growth Medium Bullet kit
(PT-4505, Lonza, Walkersville, MD, USA). All cells were mycoplasma-free and maintained at 37 ◦C in
a 5% CO2 incubator. Passages were performed at 75%–80% confluence using 0.5% trypsin (59418C,
Sigma-Aldrich, St. Louis, MO, USA). Primary cells and cell lines were used within 8 and 25 passages
total, respectively. Viable cells were counted using CBA Vision Image Cytometer (Nexcelom Bioscience
LLC, Lawrence, MA, USA) using the Trypan Blue (T8154, Sigma-Aldrich, St. Louis, MO, USA)
exclusion method.

2.2. Co-Culture and Hh Drug Inhibition Studies

Fabrication of polystyrene-based microwells has been described in detail in several
publications [25,26]. Tumor cells (5000 cells/microwell) and mesenchymal cell subtypes were seeded
in adjacent compartments simultaneously. A total of 2000 cells (ADMSC) or 4000 fibroblasts were
seeded per microwell to achieve confluence. Cells were incubated overnight for attachment before
overlaying to initiate co-culture. For co-cultures with TGFβ-Hs578t, Hs578t was pre-treated with
10 µg/mL of transforming growth factor beta (TGF-β) (100-21, PeproTech, Rocky Hill, NJ, USA) for 72 h
(replenished at 48 h) before seeding tumor cells. EMT in Hs578t was confirmed by immunostaining.
Culture compartments were washed three times with phosphate-buffered saline (PBS) 1× (D8537,
Sigma-Aldrich, St. Louis, MO, USA) to remove any remaining Transforming growth factor beta
(TGF-β). A volume of 75 uL of low-serum culture medium (DMEM + 0.5% FBS + 1% P/S) containing
PBS 1× (Vehicle) or 5 nM SHH (100-45, PeproTech, Rocky Hill, NJ, USA) +/− pharmacological Hh
inhibitors was overlaid to interconnect the compartments for co-culture. The following concentrations
of Hh inhibitors were used and selected based on suppression of the pathway: 5 µM NVP-LDE225
(NVP) (S2151, Selleckchem, Houston, TX, USA), 5 µM GANT61 (S8075, Selleckchem, Houston, TX,
USA), and 3 µM cyclopamine (S1146, Selleckchem, Houston, TX, USA). A low serum medium is
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required for strong SHH signaling in the stroma as shown in a previous publication [29]. For co-culture
with non-tumorigenic cell lines (184B5 and MCF10A) their basal culture media was used at a 0.5%
FBS serum concentration. Half of the total cell culture volume was replaced after the first 48 h of
co-culture for metabolic waste removal and nutrient/SHH/Hh inhibitors replenishment. Tumor cell
growth was monitored at 96 h of co-culture using the Click-iT EdU Alexa fluor 594 imaging kit (C10339,
Thermo Fisher Scientific, Grand Island, NY, USA) according to the manufacturer’s recommendations.
Following 5-ethynyl-2’-deoxyuridine (EdU) incubation, the compartment containing MDA-MB-468
cells was imaged for cell proliferation analysis using the ZOE Fluorescent Cell Imager and an Olympus
IX71 fluorescence microscope at a magnification of 20× and 4×, respectively. Nuclear and EdU stains
were quantified by ImageJ to obtain total and EdU + tumor cell counts.

2.3. Gene Expression Analysis

The gene expression level was analyzed using RT-qPCR. For in vitro cell culture, after 48 h of
SHH treatment, cells were lysed independently in each compartment as facilitated by the use of
adjacent culture regions and open device design. mRNA was isolated directly from cell lysates using
Dynabeads mRNA DIRECT Micro Kit (61021, Invitrogen, Carlsbad, CA, USA). Meanwhile, tumors
from the xenograft mice model were preserved in RNAlater (R0901, Sigma-Aldrich, St. Louis, MO,
USA) and stored in −20 ◦C for genomic analysis. Approximately 10 mg of the tumors were cut with
a blade and homogenized with a conventional rotor. Total RNA was collected and purified using
the RNeasy Mini Kit Part 1 and Part 2 for on-column DNase digestion (Qiagen, GermanTown, MD,
USA). The total RNA concentration was quantified using a Nanodrop spectrophotometer. For both,
in vitro and in vivo experiments, total mRNA (20–30 ng) was reverse transcribed to generate cDNA
and quantified using TaqMan™ RNA-to-CTTM 1-Step kit (4392938, ThermoFisher Scientific, Grand
Island, NY, USA) with the StepOne Real-time PCR System (Thermo Fisher Scientific, Grand Island, NY,
USA). Mouse and Human GLI1 (Mm00494654_m1 and Hs00171790_m1), PTCH1 (Mm00436026_m1
and Hs00970976_m1), and SMO (Hs01090242_m1) TaqMan™ primers (Thermo Fisher Scientific, Grand
Island, NY, USA) were used to determine the relative expression of Hh genes. Expression levels were
quantified relative to Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) (Mm99999915_g1 and
Hs02758991_g1) (Thermo Fisher Scientific, Grand Island, NY, USA).

2.4. Tumor Xenograft Studies

As MDA-MB-468 cells secrete small amounts of SHH-ligand in vitro, tumor cells were co-injected
with beads saturated with the active form of the SHH-ligand. Affi-Gel Blue beads have been used
in vivo for sustained diffusion of SHH-ligand [30,31]. The preparation of Affi-Gel Blue beads (1537302;
Bio-Rad Laboratories, Hercules, CA, USA) consisted in the incubation with 400 ug/mL of human
recombinant SHH-ligand (78065, STEMCELL Technologies, Inc., Vancouver, Canada) with 0.1% bovine
serum albumin (BSA) (A7906, Sigma Aldrich, St. Louis, MO, USA) carrier protein (SHH+) or 0.1% BSA
(Vehicle) for ≥1 h at 37 ◦C. Affi-Gel Blue beads were rinsed 4 times in PBS 1× and manually selected for
uniform size. Protein-soaked beads were stored at 4 ◦C for a maximum of 1 week. Severe combined
immunodeficient (SCID) Hairless Outbred (SHO) female mice that were 3 weeks old (Charles River
Laboratories, Wilmington, MA, USA) were segregated into eight groups (n = 9 mice/group). Half
of the groups were injected with MDA-MB-468 (1 × 106) alone, while the other half were injected
with MDA-MB-468 (1 × 106) + ADMSC (2.5 × 105). Cells were mixed with 1:1 Matrigel (CB40230A,
Fisher Scientific, Pittsburgh, PA, USA) in starvation media [32,33] and co-injected with an average of
100 beads in the mammary fat pad of mice. NVP drug was dissolved in dimethyl sulfoxide (DMSO)
(D2650, Sigma-Aldrich, St. Louis, MO, USA) and corn oil (1.5%) (sc-214761, Santa Cruz Biotechnology,
Dallas, TX, USA) and then diluted in the carrier 0.5% sodium carboxymethyl cellulose (419273-100G,
Sigma-Aldrich, St. Louis, MO, USA). After 2 weeks post-injection, mice were orally gavaged daily
with Vehicle or 20 mg/kg/day NVP-LDE225 for 4 weeks. Tumor formation was measured with calipers
and monitored weekly for 6 weeks. Tumor volumes were calculated as the volume of an ellipsoid
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using the formula: V = (π/6) × L ×W × H as in [32,33]. Animal experiments were reviewed by the
Institutional Animal Care and Use Committee at Universidad Central del Caribe (UCC) at Bayamón
and approved under protocol number #051-2017-08-IBC-PHA on 11th April 2016.

2.5. Patient Sample Analysis

The RNA-samples used were derived from de-identified breast tumor tissues and studies were
approved by the Ponce Health Science University IRB Committee under project number 160212-PC on
3rd March 2016. Expression levels of Hh target genes were evaluated in a total of 20 tumors and 10
paired “normal-adjacent tissue” from fresh-frozen tumor samples from Hispanic breast cancer patients
from Puerto Rico (PR). The genomic material was provided for analysis through a collaboration with
the PR BioBank. Patient consent was obtained for all samples by the PR Biobank at Ponce Health
Sciences University. Receptor status and PanCancer subtype were confirmed by a pathologist and
150 µg of total RNA per sample were evaluated using the PanCancer Pathways Panel (Nanostring
Technologies, Inc, Seattle, WA, USA) in all tumor samples. Tumor xenografts collected at 2 weeks
post-inoculation were used to monitor Hh signaling and other pathways in response to the active form
of SHH-ligand. Differentially expressed genes (DEGs), gene set analysis (GSA), and pathway scoring
were performed using nCounter (R) Advanced Analysis Plugin for nSolverTM software. DEGs are
extracted by modeling the log2 expression of each gene in response to multiple conditions using a linear
regression approach. Since multiple hypothesis tests are performed to state the statistical significance
of each gene, the p-values are corrected using the Benjamini–Yekutieli (BY) method to control the false
discovery rate. GSA calculates global significance scores for each gene in a particular pathway and
KEGG annotation is used to generate these gene sets. Finally, pathway or deregulation scores are
generated using principal component analysis once genes are mapped to particular pathways and
their expression is scaled across samples. Adjusted ** p-value < 0.005.

2.6. Adjacent versus Mixed Culture Studies

The microscale open co-culture device design consists of two microwells (9 mm2) within a larger
parent well (28.3 mm2). For the macro-scale device, the culture region of microwells was increased
by a factor of 9 as compared to the microscale device. The volume-to-cell ratio was kept constant at
0.01 µL/cell for both macro and microscale devices. NIH3T3 were seeded forty-eight (48) hours before
beginning co-culture to ensure growth arrest and a uniform monolayer. For the CAF-like phenotype,
NIH3T3 were pre-treated with 0.8 nM TGF-β in culture flasks for 72 h (replenished at the 48 h) before
cell seeding in microwells. For microscale, 5000 MDA-MB-231 GFP+ cells and 2500 fibroblasts (NIH3T3
or TGF-β-NIH-3T3) were seeded per device, either in the same compartment (mixed) or adjacent
compartments. For macroscale, 45,000 and 22,500 of MDA-MB-231 GFP+ and fibroblasts were seeded,
respectively, per device. Cultures were treated with 5 µM NVP-LDE225 (S2151, Selleckchem, Houston,
TX, USA) diluted in DMEM HG supplemented with 0.5 g/L L-glutamine, 0.5% FBS, and 1% (P/S).
Adjacent cultures were supplemented with 5 nM SHH (100-45, PeproTech, Rocky Hill, NJ, USA) to
ensure pathway activation. Cells were co-cultured for 96 h. The tumor cell growth was quantified
based on total fluorescent cell counts relative to the tumor monoculture at 96 h using the CBA Vision
Image Cytometer (Nexcelom Bioscience LLC, Lawrence, MA, USA).

2.7. ALDH1 Detection Assay

Expression of ALDH1 was examined after 96 h of culture. Each well was washed once with PBS
1× and incubated for seven minutes at 5% CO2 37 ◦C with Accutase 1× solution (A6964, Sigma-Aldrich,
St. Louis, MO, USA) for cell detachment. Cells were resuspended in warm cell culture media (DMEM
HG + L-glutamine + 10% FBS + 1% P/S) and adjusted to 105 cells per sample. ALDH1+ expression
was detected in cell samples using the AldeRed ALDH Detection Assay (SCR150, Millipore, St. Louis,
MO, USA) according to the manufacturer’s recommendation. Briefly, cells were centrifuged and
resuspended in 100 µL of AldeRed assay buffer supplemented with Verapamil and AldeRed reagent.
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Diethylaminobenzaldehyde reagent, an ALDH1 inhibitor was used in some samples as a negative
control to identify the ALDH1-positive (ALDH1+) population. Samples were analyzed by performing
a dual fluorescence assay measuring the intensity of green and red fluorescence using a CBA Vision
Image Cytometer.

2.8. Immunofluorescent Staining

The staining process was carried out at room temperature (25 ◦C). Cells were fixed with 4%
paraformaldehyde for 20 to 30 min. Cell permeabilization was performed using 0.5% Triton (T8787,
Sigma-Aldrich, St. Louis, MO, USA) for 10 min. Devices were washed twice with PBS 1× and
placed on an orbital shaker with 3% BSA + 0.1% Tween 20 (P9416, Sigma-Aldrich, St. Louis, MO,
USA) ) in PBS 1× solution at 300 rpm for 1 h. Cells were incubated with the following primary
antibodies: anti-alpha smooth muscle actin (ab7817, Abcam, Cambridge, MA, USA), anti-alpha tubulin
(acetyl K40) (ab24610, Abcam, Cambridge, MA, USA), anti-fibroblast activation protein (ab53066,
Abcam, Cambridge, MA, USA), anti-SHH (ab53281, Abcam, Cambridge, MA, USA), and anti-vimentin
(ab92547, Abcam, Cambridge, MA, USA) at a ratio of 1:200, 250, 250, 250, and 250, respectively, in 3%
BSA + 0.1% Tween 20 in PBS 1× solution. Devices were placed on an orbital shaker at 300 rpm for
1 h and then washed three times with 0.1% Tween 20 in PBS 1× solution, waiting 10 min between
each wash. Cells were then incubated with the following secondary antibodies: Alexa 488 (ab150117,
Abcam, Cambridge, MA, USA) and Alexa 594 (ab150084, Abcam, Cambridge, MA, USA) at a ratio of
1:500 in 3% BSA + 0.1% tween 20 in PBS 1× solution for 1 h. Devices were placed on an orbital shaker
and washed three times with PBS 1× prior to staining with Hoechst 33342 nuclear dye (1:500) for
30 min. Fluorescent images were obtained with an Olympus IX71 laser scanning confocal microscope
using 10×, 20×, 40×, and 60×magnification objectives.

2.9. Immunohistochemistry (IHC)

Tissues from tumor xenografts in mice were fixed in buffered formalin (HT501128, Sigma-Aldrich,
St. Louis, MO, USA) and transported to an independent private laboratory (Southern Pathology, Ponce,
PR, USA) for IHC and tissue pathology. Briefly, tissues were formalin-paraffin embedded, sliced,
and stained with hematoxylin/eosin (H&E), Ki67 (Ki67-MIB-1, Dako Omnis-Agilent Technologies,
Carpinteria, CA) and SMA (SMA-14A, Dako Omnis-Agilent Technologies, Carpinteria, CA) primary
antibodies, followed by incubation with HRP secondary antibodies. SMA protein stain was used to
confirm the infiltration of the mouse stroma in each tumor biospecimen. Two tumors were examined
per each experimental condition. Tumor tissue sections were imaged at 50× magnification using a
Dako Omnis instrument. An experienced tumor pathologist, who was blinded to the experimental
treatment groups, scored each tissue staining.

2.10. Western Blot

Cells were lysed using sample buffer (62.5 mM Tris-Cl, pH 6.8, 10% glycerol, 2% SDS, 5%
b-mercaptoethanol) and bromophenol blue to yield whole-cell extracts. Whole-cell extracts were
boiled, and protein concentration was determined using an RC DC Protein Assay kit (5000121, Bio-Rad
Laboratories, Inc., Richmond, CA, USA) following the manufacturer’s instructions and were measured
on a Genesys 5 spectrophotometer (Spectronic Instruments, Inc., Fitchburg, WI USA). Samples were
resolved in a 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel. Proteins
were transferred to a 0.45 µm PVDF membrane (10600023, Sigma-Aldrich, St. Louis, MO, USA) in
a tris-glycine transfer buffer with 20% methanol using a Trans-Blot Cell (Bio-Rad Laboratories, Inc.,
Richmond, CA, USA). The membranes were pre-blocked in a solution of 5% dry-cow milk, 0.02%
sodium azide, and 0.2% Tween 20 in PBS 1× (PBST). Membranes were then incubated overnight
in the same solution containing primary antibody for anti-SHH (ab53281, Abcam, Cambridge, MA,
USA), anti-PTCH1 AV44249 (Sigma-Aldrich, St. Louis, MO, USA), and anti-Su (fu) (sc-137014, Santa
Cruz Biotechnology, Dallas, TX, USA). Blots were washed with PBST solution before incubation with
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secondary antibodies conjugated to horseradish peroxidase (ab6789 and ab6721, Abcam, Cambridge,
MA, USA) diluted in the identical solution without sodium azide for 2 h. Expression levels of beta-actin
(A5441, Sigma-Aldrich, St. Louis, MO, USA) were used as a loading control to ensure equivalent
loading of samples. Protein bands were visualized by enhanced chemiluminescence (sc-2048, Santa
Cruz Biotechnology, Dallas, TX, USA). Band intensities were quantified by optical density analysis
(LabWorks 4.0 Image Acquisition and Analysis Software; UVP BioImaging Systems, UVP Inc., Upland,
CA, USA). Full western blots can be found in Supplementary Figures S1 and S2.

2.11. Statistical Analysis

For animal studies, evaluation of normality precept was done using the Shapiro–Wilk estimator.
Presence of outliers was verified via Grubbs’ test. Bivariate analyses consist of ordinary one-way
ANOVA and paired samples t-test to detect mean changes between treatments and cell combinations.
To evaluate mean changes across time, a general linear model repeated-measures ANOVA approach
was used. Mauchly’s test of sphericity was used to assess compound symmetry in our model; if
non-significant (p > 0.05), we report the Greenhouse–Geisser epsilon correction; if significant (p < 0.05),
Pillai’s trace estimator was reported. Dunnett’s adjustment was used to perceive statistical differences
between and within the groups via experimental concentration as a fixed factor. The significance level
(α) was set to ≤0.05, except for the normality diagnostic test (p > 0.05). IBM SPSS, (Chicago, IL, USA)
V.23.0 for Windows and GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) were used.
For in vitro studies, multifactorial analysis using one-way and two-way ANOVA was performed to
detect significant changes. Two-sample t-tests were done to compare changes concerning baseline
values or treatment controls. Wilcoxon–Mann–Whitney tests were performed only if the data did not
follow a normal distribution. p-values less than 0.05 were considered significant as follows: * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results

3.1. Hh Inhibitors and SHH-Ligand Had Limited Growth Effects in Tumor Monocultures

To determine the sensitivity of breast tumor cells to Hh inhibitors, expression levels of Hh pathway
components and cell growth were evaluated in response to exogenous addition of SHH-ligand, SMO,
and GLI1 inhibitors, NVP-LDE225 (NVP) and GANT61, respectively. Expression of the full-length of
SHH-ligand (51 kDa), SUFU (54 kDa), and PTCH1 receptor (75 kDa) were confirmed in all breast cell
lines except for SHH-ligand in MCF-7 cells (Figure 1A,B, Figure S3A,B). MDA-MB-231 expressed the
highest endogenous levels of SHH-ligand as compared to MDA-MB-468, MCF-7, and T-47D. In contrast
to previous research [34], where changes in PTCH1, GLI1, and SMO transcripts were detected in TNBC
cell lines, we did not observe an increase in these transcripts in response to SHH-ligand treatment
(Figure 1C,E). Similarly, an increase in the levels of these transcripts was not detected in 184B5, MCF-7,
and T-47D cells in response to SHH-ligand treatment (Figure S3D. Evaluation of pharmacological
Hh inhibitors at increasing concentrations within the micromolar range did not affect the viability of
TNBC cells (Figure 1C). The expression levels of PTCH1, SMO, and GLI1 transcripts were not affected
by GANT61 and NVP treatments, thus confirming the absence of Hh signaling suppression in TNBC
cells (Figure 1F–H). Contrary to TNBC cells, significant changes in cell viability were detected in
non-tumorigenic breast cells and breast cancer cells of the luminal A subtype. Non-tumorigenic breast
cell lines, 184B5 and MCF10A, showed reduced cell viability in response to the exogenous addition of
SHH-ligand (Figure 1D). T-47D cells showed a significant decrease in cell viability when treated at
concentrations above 2.5 µM for both GANT61 and NVP. An opposite behavior to T47D was observed
in MCF-7 cells in which increasing concentrations of NVP stimulated cell growth (Figure S3C). Changes
in cell viability in both cell lines did not correlate with suppression of GLI1, PTCH1, or SMO levels
(Figure S3E–G). Henceforth, changes observed in the behavior of Luminal A cell lines treated with
Hh inhibitors did not correlate with suppression of GLI1, PTCH1, and SMO transcripts, thus changes
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observed in tumor cell behavior are likely the result of off-target effects or non-canonical Hh signaling
mechanisms [35].Cancers 2019, 11, x FOR PEER REVIEW 8 of 24 
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Figure 1. Hedgehog (Hh) inhibitors do not suppress canonical Hh signaling and growth of triple
negative breast cancer (TNBC) cells. (A) Expression of Sonic hedgehog (SHH)-ligand (51 kDa), patched1
(PTCH1) receptor (75 kDa), and suppressor of fused homolog (SUFU) (54 kDa) in tumor cells relative
to β-actin (42 kDa). Data represents the relative mean intensity +/− standard error of mean (SEM) of
three to four independent experiments. Representative protein bands are shown in the image below
the bar graph. (B) Immunofluorescent staining of SHH expression in MDA-MB-231 and MDA-MB-468
cells. SHH (red) and Hoechst (blue). Scale bar = 100 µm. (C) Tumor cell viability was evaluated in
response to 5 nM SHH-ligand and 2.5, 5, and 10 µM concentrations of NVP-LDE225 (NVP) and GANT61
(GANT) for 96 h using the XTT assay. Data represent mean +/− SEM of three independent experiments
with n = 4. (D) Viability of non-tumorigenic breast cell lines treated with 5 nM SHH-ligand at 96 h.
Data represent mean +/− SEM of three independent experiments with n = 4. Significance determined
by Student t-test ** p-value < 0.01. (E–H) Expression levels of glioma associated oncogene family
zinc finger 1 (GLI1), PTCH1, and Smoothened (SMO) genes relative to Glyceraldehyde-3-Phosphate
Dehydrogenase (GAPDH) exposed to exogenous SHH-ligand for 24 h (E) and Hh inhibitors, GANT
(5 µM) and NVP (5 µM) for 48 h (F–H). Data represent mean +/− SEM of three to four experiments
with n = 3–4.

3.2. Non-Tumorigenic Cells Are a Main Therapeutic Target of Hh Inhibitors in TNBC Tissues

To determine whether Hh signaling activity is present in the tumor-adjacent tissue of breast
cancer patients, the expression levels of Hh transcripts were evaluated in a panel of 20 tumors and
10 paired “normal-adjacent tissue” specimens from breast cancer patients. Scoring of Hh pathway
genes collectively shows elevated levels of Hh target genes in the tumor-adjacent stroma but not in
the bulk tumor tissue, particularly of the TNBC subtype (Figure 2A). Examination of main Hh target
genes individually shows higher levels of GLI2, PTCH1, SMO, BOC, and HHIP transcripts in the
tumor-adjacent tissue as compared to the bulk tumor (Figure 2B), further supporting the importance of
the tumor-adjacent tissue in the activity of Hh signaling.

To confirm that NVP (also known as Erismodegib and Sonidegib) is suppressing canonical Hh
signaling in non-tumorigenic cells, tumor volume and Hh target genes were examined in a mouse
xenograft model composed of Matrigel-embedded MDA-MB-468 cells. Hh transcripts of human
and murine specificity were used to distinguish MDA-MB-468 from cells of mouse tissue origin.
Tumor volume significantly decreased at four weeks post-treatment with both NVP and SHH-ligand
(Figure 2C). NVP had no added benefit when combined with SHH-ligand (Figure 2D). Examination
of Hh transcripts indicate that tumor growth suppression correlates with down-regulation of GLI1,
PTCH1, and SMO transcripts in cells of mouse but not of human origin (Figure 2E). In agreement with
the reduced tumor growth rates observed (Figure 2C), the immunohistochemical analysis of Ki67, a
proliferation marker and prognosis factor used in the examination of the pathology of tumors, indicate
a 20% reduction in the Ki67 levels in tumors treated with SHH-ligand (Figure 2F–G). The levels of Ki67
were not affected by NVP treatment. SMA staining was positive in non-tumor cells, confirming the
tumor infiltration of the mouse stroma (Figure 2F–G).

This data confirms a lack of suppression of the canonical modality of Hh signaling in MDA-MB-468
cells treated with NVP, and supports that other non-tumorigenic cells are targets of the therapeutic
response to Hh inhibitors.
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Figure 2. Hedgehog (Hh) signaling in breast tumor tissues and a mouse xenograft model of triple
negative breast cancer (TNBC). (A) Hh pathway scores for a total of 20 tumors and 10 paired
“normal-adjacent tissue” from fresh tumor samples from breast cancer patients in Puerto Rico (PR) were
evaluated using the PanCancer pathways array from Nanostring. MDA-MB-468 xenograft tumors +/−

Sonic hedgehog (SHH)-ligand collected at two weeks post-injection were used as negative and positive
controls for SHH-signaling. TNBC samples are highlighted in red. Adjusted ** p-value < 0.005. (B) The
normalized log2 expression for Hedgehog-pathway genes across tumor and normal adjacent breast
tissue samples are shown in (A). Significance determined by Student t-test * p-value < 0.05. (C,D) Tumor
growth curves in xenograft tumors composed by MDA-MB-468 +/− SHH-ligand. NVP or Vehicle
was administered daily during the last four weeks. Data shows mean +/− standard error of mean
(SEM) of nine mice per group. Significance was determined via ANOVA analysis. * p-value < 0.05,
**** p-value < 0.0001. (E) Expression levels of glioma associated oncogene family zinc finger 1 (GLI1)
and patched1 (PTCH1) transcripts relative to Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)
in xenografts tumors and NIH3T3 cells using human and mouse-specific primers. Data shows mean
+/− SEM of six mice per condition. Significance was determined via ANOVA analysis, Adjusted
*** p-value < 0.001 and **** p-value < 0.0001. (F) Representative immunohistochemistry staining from
mouse tumor xenografts treated with Vehicle, NVP, and SHH-ligand. Scale bar = 20 µm. (G) Average
values of Ki67 and SMA staining for two tumors of each experimental treatment were summarized
based on the reported values in the pathology report.
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3.3. Fibroblasts are Therapeutic Targets of Hh Inhibitors

Fibroblasts are the main component of the adjacent tumor stroma [36] and several studies support
their role in paracrine Hh signaling [37,38]. However, whether this oncogenic role is unique to CAFs
or involves other fibroblasts as well is unknown, as fibroblast subtypes are indistinguishable in tissues
based on the examination of main pathological markers such as alpha-smooth muscle actin (SMA),
vimentin (VIM), and fibroblast-activated protein (FAP), yet they are important for proper modeling
of this interaction in vitro. In this study, Hh signaling activity and tumorigenicity were examined
in fibroblasts from diverse sources. The NIH3T3 cell line and primary breast fibroblasts (HMFs and
CAFs) were selected for evaluation. NIH3T3 fibroblasts were used as a positive control because it is a
well-known established cell line that consistently gives a robust signal in response to SHH-ligand [39].
NIH3T3 were treated with TGF-β as a positive control of a CAF-like phenotype. Expression of the
main fibroblast markers SMA, VIM, and FAP was confirmed in both NIH3T3 and primary fibroblasts
(Figure S4A). PTCH1 receptor was expressed in HMFs and NIH3T3, a very weak protein band was
observed in CAFs (Figure S4B,C). A full-length SHH-ligand was found in all fibroblasts, but very
low levels were observed in NIH3T3 cells (Figure S4B). Primary cilium and SUFU was found in
all fibroblasts examined (Figure S5). As expected, GLI1 levels were overexpressed in response to
SHH-ligand in NIH3T3, confirming Hh signaling activity (Supplementary Figure S4C). HMFs had
increased levels of SMO and GLI1 in response to exogenous SHH-ligand but were only significant
for SMO (Figure S4C). SMO is a positive regulator of the pathway and will counteract the negative
feedback loop driven by the PTCH1 receptor in the canonical response to SHH-ligand. The increase in
SMO levels observed in HMFs should be investigated further as these may lead to significant growth
regulatory mechanisms associated with the pathology and hyperactivity of the pathway in adult breast
tissues through SMO-dependent non-canonical [40] and canonical Hh signaling mechanisms [17].

The proliferation of MDA-MB-231 and MDA-MB-468 cells was evaluated in tumor-adjacent
fibroblast cultures treated with SHH-ligand and pharmacological Hh inhibitors (NVP, cyclopamine, and
GANT61) to examine the tumorigenic effect of the selected fibroblasts. A custom open-multi-culture
platform was used for co-culture to maintain a 1:1 tumor and stromal ratio, while keeping local
confluence of the stroma needed for growth arrest and strong signal response to SHH-ligand [41].
The microwell platform consisted of adjacent microwells contained within a parent well, as described
before [25]. Results show that the tumor cell growth was driven in response to active Hh signaling
in all fibroblasts examined (Figure 3A,B). Tumor growth stimuli were stronger in MDA-MB-231 cells
co-cultured with NIH3T3 or CAFs (Figure 3B). GLI1 levels were upregulated in response to exogenous
SHH-ligand in both HMFs and NIH3T3 (Figure 3D,F). PTCH1 levels were significantly upregulated in
NIH3T3 but not HMFs. Tumor growth was suppressed by treatment with Hh inhibitors (Figure 3C),
and this inhibitory effect correlated with the downregulation of GLI1 and PTCH1 levels in fibroblasts
(Figure 3D–F). Tumor cell growth was not significantly enhanced in T-47D and MCF-7 co-cultured
with HMFs (Figure S6). Overall, the data here confirms fibroblasts as targets of Hh inhibitors in TNBC.
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Figure 3. Fibroblasts are a therapeutic target of Hedgehog (Hh) inhibitors in triple negative breast cancer
(TNBC). (A) Proliferation of MDA-MB-468 in presence and absence of Sonic hedgehog (SHH)-ligand
(5 nM) in mono and co-culture with NIH3T3 and human mammary fibroblasts (HMF) cells during
96 h. Data represents mean +/− SEM of one to four experiments with n = 7–12. (B) Proliferation of
MDA-MB-231 in presence and absence of SHH-ligand (5 nM) in mono and co-culture with NIH3T3,
CAF, and HMF cells during 96 h. Data represents mean +/− standard error of mean (SEM) of one
to four experiments with n = 7–14. (C) Proliferation of MDA-MB-468 in co-culture with NIH3T3
and HMFs treated with 5 nM SHH-ligand and Hh inhibitors, NVP, GANT61, and cyclopamine for
96 h. Data represents mean +/− SEM of two to three experiments with n = 3–8. (D,E) Expression
levels of glioma associated oncogene family zinc finger 1 (GLI1) and patched1 (PTCH1) relative to
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in NIH3T3 cells treated with 5 nM SHH-ligand
and Hh inhibitors for 24 h. Data represent mean +/− SEM of three experiments with n = 2–3.
(F) Expression levels of GLI1, PTCH1, and Smoothened (SMO) relative to GAPDH in HMF cells treated
with 5 nM SHH-ligand and Hh inhibitors for 24 h. Data represent mean +/− SEM of three experiments
with n = 2–4. Significance was determined via ANOVA analysis * p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001, **** p-value < 0.0001.
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3.4. Impact of Mixed vs Adjacent Culture Modalities

Paracrine signaling plays an essential role in TNBC, where studies have prioritized this behavior
primarily mediated by tumor-adjacent CAFs [24]. This paracrine interaction can be modeled via both
adjacent and mixed tumor-CAF cultures, yet no studies have been done to determine the impact of
culture modalities and fibroblast subtype in the observed tumor behavior. Here we explore the impact of
both culture modalities, and fibroblast vs. CAF-like cells on the growth and expression of CSC markers
in MDA-MB-231 cells. We used GFP-tagged (GFP) MDA-MB-231 for fast-tracking and identification of
tumor cells, particularly in mixed cultures. NIH3T3 wild-type (WT) and NIH3T3 pre-treated with TGF-β
were evaluated as models of fibroblasts and CAF-like cells. ALDH1, a well-established marker of breast
cancer stem cells (CSCs) [24], was used to monitor changes in the CSCs proportion. The two-adjacent
microwell culture device [25] (Figure 4A.1) was scaled-up by a factor of nine (Figure 4B.1) to obtain
sufficient tumor cells for quantification of ALDH1 expression using image-based cytometry. Prior to
tumor growth studies, Hh signaling activity was examined across culture modalities and compared
to monocultures supplemented with SHH-ligand to determine whether GFP-tagged MDA-MB-231
secreted enough SHH-ligand to induce a robust Hh signaling activity in NIH3T3. Results indicate that
Gli1, Ptch1, and Smo murine transcripts reached the highest levels in NIH3T3 monocultures treated with
SHH-ligand, followed by a medium response in mixed co-cultures (Figure S7). Hh transcripts were
low in adjacent co-cultures, suggesting that the diffusivity and local concentration of tumor-secreted
SHH-ligand are limited, and indicating that supplementation with exogenous SHH-ligand is needed
for robust Hh signaling in the tumor-adjacent NIH3T3 compartment. Tumor and fibroblasts cells were
co-cultured for 96 h, and the NVP compound was used to suppress Hh signaling. Tumor growth
was evaluated based on total cell counts in both microscale and macroscale devices to rule-out any
platform-related artifact. Results show that tumor cell growth was significantly enhanced in both
adjacent and mixed cultures as compared to the tumor monoculture condition (Figure 4A.2,B.2). This
paracrine growth effect was similar across both macroscale and microscale culture platforms, indicating
that the observed results are associated with tumor–fibroblast interactions and not culture platform
artifacts. Although a slight increase of marginal significance in the total number of tumor GFP+ cells
was detected for co-cultures with TGF-β treated NIH3T3 in the microscale platform (Figure 4A.2),
the overall effect on tumor growth was of similar magnitude regardless of the culture modality for both
WT and TGF-β co-cultures. Tumor growth was reduced in all co-cultures treated with NVP, but this
effect was most potent for TGF-β cultures (Figure 4C). The proportion of GFP+ALDH1+ tumor cells
was significantly enhanced in the mixed culture modality only for WT and TGF-β NIH3T3 co-cultures
(Figure 4D). The population of ALDH1+ cells was suppressed only in WT co-cultures treated with
NVP (Figure 4D), confirming the dependence on Hh pathway activity. This suppressive effect was
not observed in co-cultures with TGF-β treated NIH3T3, which suggests that other non-Hh signaling
mechanisms are supporting the increase in the ALDH1+ population.
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Figure 4. Impact of fibroblast subtypes and proximity among co-cultures. (A.1,B.1) Image and
schematic of microscale and macroscale microwell culture platforms used for co-culture studies.
(A.2,B.2) MDA-MB-231 Green fluorescent protein (GFP)+ were cultured alone or in mixed or adjacent
cultured modalities with wild-type (WT) or transforming growth factor beta (TGF-β) pre-treated
NIH3T3 fibroblasts. Tumor cell growth was quantified by counting the total tumor cells based by
selecting for GFP+ expression relative to the tumor cell monoculture. (C) Cultures were treated with
NVP for 96 h. Data shows the average mean of total GFP+ cell counts relative to Vehicle. (D) ALDH1
expression was quantified in tumor cells after 96 h in culture using the AldeRed ALDH detection
assay. Dual expression quantification method was used to obtain the fraction of GFP+ALDH1+

cells. Data is presented with the mean +/− SEM of three independent experiments with n = 3–6.
The data was analyzed using Student’s t-test. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001,
**** p-value < 0.0001.

3.5. Cells that Undergo EMT Support the Tumorigenicity of Paracrine Hh Signaling

Recently, Hh signaling has been associated as a promoter of EMT [42,43], but its participation in
tumor–stroma mediated growth was not examined. Tumor cells that undergo EMT are indistinguishable
from fibroblasts in tissues due to their similarities in phenotypic markers, including SMA and VIM.
We developed a co-culture model composed by MDA-MB-468 and Hs578t to examine the effect
of EMT. Hs578t is a human TNBC cell line that undergoes EMT in response to TGF-β treatment
(TGFβ-Hs578t). Main Hh signaling components and EMT markers were confirmed by positive
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immunostaining of SMA, VIM, primary cilium and PTCH1 receptor in Hs578t cells (Figure 5A,B).
As expected, FAP protein, which is specific to fibroblasts, was not expressed in TGFβ-Hs578t cells. All
Hh signaling transcripts were found in high levels relative to GAPDH. Only SMO was significantly
overexpressed in response to exogenous addition of SHH-ligand, further confirming Hh signaling
activity in TGFβ-Hs578t (Figure 5C). Co-culture studies show that TGFβ-Hs578t significantly enhanced
the growth of MDA-MB-468 cells and the non-tumorigenic 184B5 cell line in response to SHH-ligand.
However, this effect was not observed in cultures with Hs578t (Figure 5D), suggesting that phenotypic
changes, associated to TGF-β treatment, impact the response to SHH-ligand at the secretome level.
Similar behavior was observed in MDA-MB-231 co-cultures, but this growth effect was independent
of exogenous addition of SHH-ligand, potentially due to the high levels of endogenous SHH-ligand
expressed in this cell line. Exogenous addition of SHH-ligand did not stimulate the growth of
TGFβ-Hs578t cells (Figure S8). All Hh inhibitors examined decrease tumor cell growth in co-cultures,
but only the combination of cyclopamine and GANT61 was significant (Figure 5E). The results here
confirm the participation of cells that undergo EMT as a therapeutic target of Hh inhibitors.
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Figure 5. TGF-β-Hs578t supports paracrine Hedgehog (Hh) signaling. (A) Staining of mesenchymal
markers acetylated-alpha tubulin (primary cilium), vimentin (VIM), alpha-smooth muscle actin (SMA),
and fibroblast-activated protein (FAP). White arrows indicate sample primary cilium staining. The color
blue in all the images represents nuclear staining using Hoechst. Images were digitally enhanced using
Fiji for better visualization of mesenchymal markers. Scale bar = 10 µm. (B) Expression of patched1
(PTCH1) receptor (75 kDa), suppressor of fused homolog (SUFU) (54 kDa), and Sonic hedgehog
(SHH)-ligand, full length (51 kDa) and c-product subunit (27 kDa) quantified relative to β-actin. Data
represents the mean +/− standard error of mean (SEM) of four independent experiments, n = 2–3.
Representative western blot bands were included. (C) Expression levels of Hh target genes glioma
associated oncogene family zinc finger 1 (GLI1), patched1 (PTCH1), Smoothened (SMO), and GLI3 in
Hs578t treated with SHH-ligand and transforming growth factor (TGF)-β. Data represent mean +/−

SEM of three to six independent experiments with n = 3. Significance was determined via ANOVA
analysis * p-value < 0.05, *** p-value < 0.001, **** p < 0.0001. (D) Triple-negative breast cell lines were
co-cultured adjacent to Hs578t or TGFβ-Hs578t for EMT. Co-cultures were treated with SHH-ligand
(5 nM) and Hh inhibitors. Cell proliferation and expression of CD44/CD24 receptors were evaluated at
72 h. Significance was determined via Student’s t-test * p-value < 0.05, ** p-value < 0.01. (E) Proliferation
of MDA-MB-468 in co-culture with TGFβ-Hs578t treated with SHH-ligand, cyclopamine (3 uM), and
GANT61 (5 uM). Data represent mean +/− SEM of three to experiments with n = 4. Significance was
determined via ANOVA analysis ** p-value < 0.01.

3.6. Adipose Mesenchymal Stem Cells Modulate Response to Hh Inhibitors

Adipose-derived mesenchymal stem cells (ADMSCs) are an abundant mesenchymal cell subtype
in breast tissues [44] that express similar phenotypic markers as fibroblasts, but little is known about
their contribution to paracrine Hh signaling. We examined Hh signaling in tumor-ADMSCs co-cultures.
Normal ADMSCs derived from the abdominal cavity were selected due to shared similarities with
ADMSCs derived from breast tissues [45], documented studies supporting their sensitivity to Hh
signaling to block differentiation, and their clonogenic properties [46,47]. Expression of the primary
cilium, PTCH1, and fibroblasts markers, FAP, SMA, and VIM, was examined before conducting
co-culture studies (Figure S9). ADMSCs stained positive for all phenotypic markers examined,
confirming the heterogeneous expression of these pathological markers among mesenchymal cell
subtypes. In vitro co-cultures, independent of the addition of SHH-ligand or Hh inhibitors, showed
that ADMSCs did not affect proliferation rates of MDA-MB-468 (Figure 6A). However, ADMSCs
significantly stimulated the proliferation of the growth-arrested cell monolayer of non-tumorigenic
184B5 cells. This enhanced growth effect was further exacerbated in animals treated with NVP
(Figure 6B). GLI1, PTCH1, and SMO transcripts were all detected in ADMSCs. The expression of these
transcripts was reduced by the exogenous addition of SHH-ligand, but this effect was of marginal
significance (Figure 6C). To determine whether the presence of ADMSC will alter therapeutic response
to Hh inhibition in vivo, the proliferative effect of SHH-ligand and sensitivity to SMO antagonist NVP
were examined in xenografted tumors composed by MDA-MB-468 + ADMSC. In agreement with
in vitro observations, treatment with NVP resulted in significantly-enhanced tumor growth rates in
the MDA-MB-468 + ADMSC group (Figure 6D,E). Hh target genes were not suppressed in the mouse
stroma (Figure 6E), suggesting that ADMSCs decrease the sensitivity to NVP treatment. Although
SHH-ligand appeared to inhibit tumor growth rates (Figure 6D), the number of visible metastases
was significantly increased as compared to parallel studies in MDA-MB-468 xenografts (Figure 6G,H).
Thus, SHH and NVP were tumor suppressors in the MDA-MB-468 group but tumor promoters in the
MDA-MB-468 + ADMSC group. The enhanced growth effect caused by the presence of ADMSCs
is probably associated to a remodeling of the tissue, yet it shows that therapeutic benefit of SMO
inhibition can be perturbed by the composition of the tumor stroma, further highlighting the relevance
of the tumor microenvironment in the therapeutic outcome.
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Figure 6. Mesenchymal cells modulate the effect of Hedgehog (Hh) signaling. (A,B) Proliferation
analysis of 5-ethynyl-2’-deoxyuridine (EdU)+ MDA-MB-468 and 184B5 cells co-cultured with adipose
mesenchymal stem cells (ADMSC) treated with Sonic hedgehog (SHH)-ligand and Hh inhibitors for
96 h. Significance was determined via Student’s t-test, * p < 0.05. (C) Expression levels of glioma
associated oncogene family zinc finger 1 (GLI1), patched1 (PTCH1) and Smoothened (SMO) genes
relative to GAPDH at 24 h post-treatment. (D,E) Tumor growth curves in xenografted tumors composed
by MDA-MB-468 + ADMSC +/− SHH-ligand. Daily dosage with NVP or Vehicle during the last
four weeks. Data show the average mean +/− SEM of nine mice per treatment. Significance was
determined via ANOVA analysis comparing Vehicle (D) or SHH (E) with NVP, * p < 0.05, ** p < 0.01,
**** p < 0.0001. F) Expression levels of GLI1, PTCH1, and SMO relative to GAPDH in xenografted tumors
using human and mouse-specific primers. Data represent mean +/− SEM of six mice per condition.
No significant differences were observed by Student’s t-test. (G,H) Percentage of mice with visible
metastases. Significance was determined by Fisher’s exact test, * p < 0.05.
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4. Discussion

Despite increasing evidence indicating that the stroma is the main target of Hh inhibitors, most
studies still rely on single tumor cell models to assess the pre-clinical potential of Hh therapies. Our
work confirms the absence of a correlation between tumor cell viability and the suppression of the
canonical modality of the Hh pathway in TNBC cells. Other studies have reported that pharmacological
inhibition of SMO at doses of 10 µM or higher [10,48] inhibit the growth of a subset of breast cancer
cell lines in vitro; however, the high doses required to affect tumor cell growth, as compared to those
needed for the inhibition of the pathway in the stroma, suggests that the observed growth inhibition is
due to off-target effects or inhibition of non-canonical Hh signaling. Such non-canonical Hh signaling
mechanisms might be mediated through GLI2 transcriptional activity and the suppression of growth
and survival mechanisms predominant in TNBC cells such as epidermal growth factor receptor
(EGFR) [49] and phosphatidylinositol 3-kinase(PI3K-AKT)- mammalian target of rapamycin(mTOR)
signaling [35,50].

Our studies support previous studies of TNBC [19,24] pointing to the tumor stroma as a mediator
of the oncogenicity of the Hh signaling pathway and the target of Hh inhibitors. Both human
breast fibroblasts and mouse fibroblasts (NIH3T3) showed a robust response to SHH-ligand that
correlated with enhanced tumor cell growth. Pharmacological inhibition of the Hh pathway in the
tumor-adjacent stroma correlated with reduced tumor growth rates and tumor stemness in both culture
and xenograft models, recapitulating some of the main pathological features reported, which supports
the physiological relevance of the in vitro model. Thus, the evaluation of the therapeutic sensitivity to
Hh inhibitors should include the examination of a tumor–fibroblast model, given that single tumor cell
models can be misleading and less predictive of a physiological response.

The evaluation of culture parameters is important for the generation of in vitro models. Oftentimes,
basic culture parameters such as cell number ratio or tumor–stroma proximity can seem trivial or
unimportant in comparison to other experimental variables; however, they can have a significant
influence on the interpretation of results. In this work, tumor growth rates were enhanced in both
mixed and adjacent culture modalities, but tumor stemness was only enhanced in mixed cultures.
This finding suggests that diffusible secreted factors stimulate bulk tumor growth, whereas cancer cell
stemness is supported by cell–cell interactions likely driven by the extracellular matrix at tissue regions
confined to the tumor–stroma interface. This idea is supported by studies from Cazet et al., in which
active Hh signaling correlated with enhanced tumor growth and stemness in regions of abundant
collagen I matrix found near areas of proximity between tumor and CAFs in both PDX models and
patient samples of TNBC [24]. Such a localized effect of the Hh pathway in tumor stemness resembles
the process observed during developmental stages of tissues. During embryonic development, a stable
long-range gradient of SHH-ligand is established to specify neural progenitors and individual cell
identities, resulting in the final neural pattern [51]. SHH-ligand is restricted by a negative feedback
loop and is dependent on ligand lipidation. The lipidation probably restricts the location of the
SHH-ligand to the extracellular membrane, minimizing its free-soluble form. In fact, our staining of
SHH-ligand confirmed its presence and abundance in the extracellular membrane of TNBC cell lines,
probably restricting its diffusivity in the examined adjacent culture modalities, as noted by the lack of
transcriptional activity of the Hh pathway.

One interesting observation that resulted from our xenograft studies was the possibility that
SHH-ligand may have a growth-suppressive role. Tumor growth volume was significantly reduced
and Ki67 levels were decreased to levels below those achieved with NVP treatment in tumor xenografts
composed by MDA-MB-468 single cells. A similar growth-suppressive effect was observed in single
cultures of non-tumorigenic breast cell lines supplemented with SHH-ligand. We believe that this
growth-suppressive effect is mediated by an excess in the soluble form of SHH-ligand that stimulates
the secretion of growth-suppressive factors and/or intracellular apoptotic mechanisms. In our tumor
xenograft model, the free-soluble form of SHH-ligand was released from beads co-injected with tumor
cells. The abundance of the soluble form of SHH-ligand likely reached tissue regions beyond the
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tumor–stroma interface, leading to the activation of growth suppression mechanisms in the native
epithelium or stroma of the mouse mammary gland. Further studies that evaluate the impact of
the concentration and distribution of SHH-ligand on cell growth will be needed to determine its
potential to counteract tumor growth, as the current role of SHH-ligand in adult breast tissues remains
largely speculative.

Beyond tumor growth and CSC expansion, the Hh pathway is associated with induction of EMT
in tumor models of breast cancer as well as other tissues [23,52]. Our data show that tumor cells that
undergo EMT are responsive to Hh signaling and support enhanced tumor growth rates at similar
levels to those observed with fibroblasts. This could have important implications in the pathology
of Hh signaling and the selection of a therapeutic regimen. For example, in tissues in which Hh
signaling is driven primarily by cells that undergo EMT, matrix-driven tumor stemness is likely to
be absent as fibroblasts are known to actively remodel the collagen I matrix at the tumor interface,
whereas cells that undergo EMT have limited activity [53]. Given the importance of GLI1 in the Hh
pathway on promoting EMT, inhibition of GLI1 rather than SMO is likely a better therapeutic option
for suppressing Hh signaling in TNBC. In our in vitro models, both fibroblasts and EMT co-cultures
were sensitive to the GLI1 antagonist GANT61, and this therapeutic response was more robust than
SMO inhibitors alone. This sensitivity to GLI1 antagonist is in agreement with previous reports
indicating that targeting of GLI1/2 function through GANT58 and GANT61 decreased tumor growth
of prostate [54] and breast cells [52,55]. Another benefit of abolishing the function of GLI proteins is
dual targeting of oncogenic signals in other pathways shown to cross-talk with Hh including TGF-β
and wingless–related integration site (WNT) [55,56].

The inclusion and selection of the stroma are important for the tissue-mimetic predictive capability
of an in vitro model and optimization of therapeutic strategies. The source of the Hh-responsive stroma
is presumed to be CAFs only, yet molecular markers used to identify these cells in tissues (e.g., smooth
muscle actin) are shared among other mesenchymal cell subtypes abundant in breast tissues, such as
the cells shown herein, EMT, normal fibroblasts, and ADMSCs. Our studies demonstrated that normal
fibroblasts and tumor cells that undergo EMT can support tumor cell growth in a Hh-dependent manner
at similar levels to those observed in CAFs. Yet, the precise mechanisms downstream of Hh signaling
in each tumor–mesenchymal model were not part of the scope of this study and remain undetermined.
Further mechanistic studies will be needed to determine whether such downstream mechanisms are
similar or differ among mesenchymal cell subtypes supportive of the oncogenicity of the Hh pathway.
The identification of such mechanisms will be of importance for targeting mesenchymal subtypes in
tissues and the optimization of therapeutic regimens in a patient-specific manner.

5. Conclusions

Overall, the studies presented provide a tumor–mesenchymal in vitro model that supports the
tumorigenicity of the Hh pathway reported in tumors of the TNBC subtype. Our studies show that
cells of a mesenchymal phenotype can support Hh-driven tumor growth and stemness but can also
perturb therapeutic sensitivity to Hh inhibitors in TNBC. Thus, tumor–mesenchymal models, such
as those developed in this work, will be of great value for the identification of the mechanisms and
oncogenic targets associated with a mesenchymal cell subtype. In future studies, we will build on
this tumor–stroma model to transition from a 2D and 3D model and incorporate organotypic models
for boosted biomimetic capabilities. The examination of the paracrine modality of the Hh signaling
pathway in pre-clinical models will provide enhanced biological complexity for improved assessment
of the efficacy of therapeutic targets and the identification of new strategies targeted to the stroma.
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