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Abstract

Introduction: Structural MRI has long been used to characterize local morpho-

logical features of the human brain. Coordination patterns of the local morpho-

logical features among regions, however, are not well understood. Here, we

constructed individual-level morphological brain networks and systematically

examined their topological organization and long-term test–retest reliability

under different analytical schemes of spatial smoothing, brain parcellation, and

network type. Methods: This study included 57 healthy participants and all par-

ticipants completed two MRI scan sessions. Individual morphological brain net-

works were constructed by estimating interregional similarity in the distribution

of regional gray matter volume in terms of the Kullback–Leibler divergence

measure. Graph-based global and nodal network measures were then calculated,

followed by the statistical comparison and intra-class correlation analysis.

Results: The morphological brain networks were highly reproducible between

sessions with significantly larger similarities for interhemispheric connections

linking bilaterally homotopic regions. Further graph-based analyses revealed

that the morphological brain networks exhibited nonrandom topological orga-

nization of small-worldness, high parallel efficiency and modular architecture

regardless of the analytical choices of spatial smoothing, brain parcellation and

network type. Moreover, several paralimbic and association regions were consis-

tently revealed to be potential hubs. Nonetheless, the three studied factors par-

ticularly spatial smoothing significantly affected quantitative characterization of

morphological brain networks. Further examination of long-term reliability

revealed that all the examined network topological properties showed fair to

excellent reliability irrespective of the analytical strategies, but performing spa-

tial smoothing significantly improved reliability. Interestingly, nodal centralities

were positively correlated with their reliabilities, and nodal degree and efficiency

outperformed nodal betweenness with respect to reliability. Conclusions: Our

findings support single-subject morphological network analysis as a meaningful

and reliable method to characterize structural organization of the human brain;

this method thus opens a new avenue toward understanding the substrate of

intersubject variability in behavior and function and establishing morphological

network biomarkers in brain disorders.

Introduction

The human brain is universally appreciated as a highly

integrative system wherein ongoing signaling, information

exchange and processing occur in response to a wide

variety of endogenous neurophysiological processes and

external cognitive demands. There is a growing body of

evidence supporting that the brain function is not solely

attributable to the dynamics of individual regions but

rather integrative processes and dynamic interactions

across multiple distributed systems (Bullmore and Sporns

2009; Barch 2013; Sporns 2013, 2014; Cole et al. 2014;
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Stam 2014; Vertes and Bullmore 2015). This nature makes

the brain particularly amenable to study with complex

brain network analysis, a powerful tool to investigate how

the entire assemblage of brain regions adaptively reorga-

nizes in the face of various cognitive demands and brain

disorders (Bullmore and Bassett 2011; Kelly et al. 2012;

Borsboom and Cramer 2013; Craddock et al. 2013; For-

nito and Bullmore 2015).

Human brain networks (i.e., the connectome) (Sporns

et al. 2005; Biswal et al. 2010) can be constructed using

multimodal neuroimaging techniques in vivo. Currently,

functional MRI (fMRI) and diffusion tensor imaging

(DTI) are the two most commonly used approaches to

construct individual brain networks by estimating interre-

gional functional connectivity (Biswal et al. 1995; Sal-

vador et al. 2005) or axonal pathways (Hagmann et al.

2007; Iturria-Medina et al. 2007), respectively. Besides

fMRI and DTI, structural MRI (sMRI) has attracted

increasing attention recently in delineating whole-brain

morphological connectivity patterns by calculating inter-

regional morphological correlations across a cohort of

participants (He et al. 2007; Bassett et al. 2008). Com-

pared with fMRI/DTI, sMRI has distinct advantages in its

easy access, high signal-to-noise ratio, and relative insen-

sitivity to artifacts (e.g., head motion). Thus, an sMRI-

based network approach is promising to serve as another

canonical tool in characterizing network-level brain orga-

nization under both healthy and pathological conditions

(Alexander-Bloch et al. 2013a; Evans 2013). Nevertheless,

it should be noted that this methodology can obtain only

one network for a group of participants, thereby ignoring

interindividual variability and making the examination of

brain–behavior relationships and health-disease classifica-

tion impossible.

Accordingly, several new methods have been developed

to construct individual brain networks based on sMRI

data (Raj et al. 2010; Zhou et al. 2011; Tijms et al. 2012).

Specifically, in terms of an axon tension theory where

axon-connectivity of cortical areas is believed to have an

influence on morphology (Van Essen 1997; Hilgetag and

Barbas 2005), Tijms and colleagues proposed an intuitive,

test–retest (TRT) reliable method to construct individual

morphological networks at a cube (i.e., 3 9 3 9 3 voxels)

resolution. Although this cube-based method keeps the

3D structure of the cortex intact, it ignores remarkable

variability of geometry (e.g., shape and size) among dif-

ferent brain regions. Moreover, the rigid extraction of the

cubes might not match well with the convolutions of the

brain (Tijms et al. 2012). To overcome these limitations,

Kong and colleagues introduce a new method to estimate

interregional morphological connectivity in terms of the

Kullback–Leibler (KL) divergence (Kullback and Leibler

1951) and demonstrate the success of this method in

revealing longitudinal changes in morphological connec-

tivity profiles of the thalamus after long-term sleep depri-

vation.

Here, we extended the work of Kong et al. (2014) to

construct whole-brain morphological networks at individ-

ual-level and further characterized their topological organi-

zations at both global and nodal levels. Moreover, we

systematically evaluated the influences of several analytical

factors on the network topology including spatial smooth-

ing, brain parcellation and network type. Finally, we exam-

ined the long-term TRT reliability of this method in

mapping morphological connectivity patterns and captur-

ing their underlying topological architecture. Figure 1

illustrates the schematic representation of the main analyti-

cal process used in the current study. Our results showed

that the derived morphological brain networks were specif-

ically organized, analytical scheme-dependent and long-

term TRT reliable, which suggest the current method as a

potentially promising framework to associate morphologi-

cal network organization with interindividual behavior dif-

ferences in both typical and atypical populations. Notably,

a similar study (Kong et al. 2015) was published recently

while this work was under peer review. In comparison with

what was done by Kong and colleagues, this work has sev-

eral distinct features, such as the systematic evaluation of

effects of different analytical strategies on morphological

brain networks (we provide a more detailed comparison of

these two studies and results in the discussion).

Methods

Participants

A publicly available TRT dataset (1000 Functional Connec-

tomes, RRID: SCR_005361, http://fcon_1000.projects.ni-

trc.org/indi/CoRR/html/bnu_1.html) was used in the

current study, which is a subset of the Connectivity-based

Brain Imaging Research Database at Beijing Normal

University. The dataset contained a total of 57 right-handed

participants (male/female: 30/27; age: 19–30 years,

mean = 23.09 � 2.36 years) with no history of neurologi-

cal and psychiatric disorders. All participants completed

two MRI scan sessions (session 1 and session 2) within an

interval of approximate 6-weeks (40.94 � 4.51 days).

MRI data acquisition

All MRI scans were performed on a 3T Siemens Tim Trio

MRI scanner at the Imaging Center for Brain Research, Bei-

jing Normal University. The T1-weighted images were

acquired using a magnetization prepared rapid gradient

echo sequence with the following imaging parameters: rep-

etition time = 2530 ms; echo time = 3.39 ms; inversion
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time = 1100 ms; slice thickness = 1.33 mm; flip

angle = 7°; no interslice gap; 144 sagittal slices covering the

whole brain; matrix size = 256 9 256; field of

view = 256 9 256 mm2. Other modalities were not used

in the current study and therefore were not described here.

Gray matter volume calculation

All data preprocessing (session 1 and session 2) were car-

ried out with the VBM8 toolbox (http://dbm.neuro.uni-

jena.de/vbm8) based on Statistical Parametric Mapping 8

(SPM8, RRID: SCR_007037, http://www.fil.ion.ucl.ac.uk/

spm/). First, the raw MRI data were checked manually to

ensure no obvious artifacts. Then, individual structural

MRI images were segmented into gray matter (GM), white

matter and cerebrospinal fluid using an adaptive Maxi-

mum A Posterior technique. The resultant GM images

were subsequently normalized to the MNI space using a

high-dimensional “Diffeomorphic Anatomical Registration

Through Exponential Lie Algebra” approach (Ashburner

2007) and further nonlinearly modulated to compensate

for spatial normalization effects. The nonlinear modulation

essentially corrected for individual differences in brain size.

After these steps, a GM volume map was obtained for each

participant (1.5 mm isotropic voxels).

Spatial smoothing

Spatial smoothing is a typically used step for voxel-based

morphology analysis that increases the signal-to-noise

ratio and improves intersubject anatomical correspon-

dence of sulci and gyri in the brain. However, on the

other hand, this step may introduce spurious local

anatomical connectivity (see below for the definition of

anatomical connectivity in the current study) due to the

fusion of signals for spatially adjacent regions. Consider-

ing that little is known about the effects of spatial

smoothing on the subsequent connectivity mapping and

topological characterization, we performed all the follow-

ing analyses separately for GM volume maps with or

without spatial smoothing (Gaussian kernel with 6-mm

full width at half maximum).

Construction of individual morphological
brain networks

In the current study, we constructed large-scale morpho-

logical brain networks for each participant based on their

GM volume images. A brain network is comprised of a

collection of nodes and edges interconnecting the nodes,

wherein nodes represent brain regions and edges repre-

sent interregional similarity in the distributions of regio-

nal GM volume here.

Definition of network nodes

To define network nodes or brain regions, we parcellated

the brain into different regions of interest (ROIs) in terms

of prior brain atlases. A convergent finding from different

neuroimaging modalities has shown that different brain

parcellation schemes are associated with different topolog-

ical organizations for the resultant brain networks (Wang

(A) (B) (C) (D)

(E)

(E)

(F) (G)

Figure 1. A flowchart illustrating the main analytical process in the current study. Briefly, individual structural images were first segmented into

gray matter, white matter and cerebrospinal fluid (A). The gray matter maps (smoothed and nonsmoothed) were then divided into different

numbers of regions according to prior brain atlases (AAL and HOA) (B). For each region, the gray matter volume values within it were extracted

and used to estimate the probability distribution function (C). Subsequently, the KL divergence-based similarity was calculated between any pair

of regions in their probability distribution functions, resulting in a similarity matrix (D). The resultant similarity matrix was further thresholded into

both binary and weighted networks (E), which could be visualized as graphs (F). Finally, several graph-based network measures were employed to

topologically characterize the graphs at both global and nodal levels (G). AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas;

PCUN, precuneus; TPOmid, temporal pole: middle temporal gyrus; L, left; R, right.
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et al. 2009; Sanabria-Diaz et al. 2010; Zalesky et al. 2010).

Thus, we employed two widely used structural brain tem-

plates of the Anatomical Automatic Labeling atlas (AAL,

RRID: SCR_003550) (Tzourio-Mazoyer et al. 2002) and

the Harvard-Oxford atlas (HOA, RRID: SCR_001476)

(Kennedy et al. 1998; Makris et al. 1999) to divide the

brain into different numbers of ROIs (90 for the AAL in

Table S1 and 112 for the HOA in Table S2). This allows

us to estimate the robustness of our findings against dif-

ferent parcellation schemes.

Definition of network edges

To estimate internodal or interregional network edges, we

utilized a KL divergence-based similarity (KLS) measure

to quantify morphological connectivity between two

regions (Kong et al. 2014). For each participant, we first

extracted GM volume values for all the voxels within each

ROI under each brain parcellation scheme. The probabil-

ity density function of these values was then estimated

using the kernel density estimation (KDE) (Rosenblatt

1956; Parzen 1962) with bandwidths chosen automatically

(Botev et al. 2010). This analysis was performed using

public Matlab code posed by Botev (function: kde, http://

www.mathworks.com/matlabcentral/fileexchange/14034-

kernel-density-estimator). Further, the probability distri-

bution function (PDF) was calculated for the obtained

probability density function. Subsequently, the KL diver-

gence was calculated between any pair of ROIs in their

PDFs. KL divergence is an index from probability theory

to measure the difference between two probability distri-

butions or the information lost when a probability distri-

bution is used to approximate another from the

perspective of information theory (Burnham and Ander-

son 2002). Formally, the KL divergence from distribution

Q to P is defined as:

DKLðPjjQÞ ¼
Xn
i¼1

PðiÞ log PðiÞ
QðiÞ;

where P and Q are two PDFs, n is the number of sample

points (see “Results” for the selection of n in the current

study). It is worth noting that DKLðPjjQÞ is not equal to

DKLðQjjPÞ. To derive a symmetric measure, we calculated

a variation of the KL divergence as follows:

DKLðP;QÞ ¼
Xn
i¼1

PðiÞ log PðiÞ
QðiÞ þ Q ið Þ logQðiÞ

PðiÞ
� �

:

Finally, the KLS is computed as:

KLS ðP;QÞ ¼ e�DKLðP;QÞ;

where e is nature exponential. Through this transforma-

tion, the KLS ranges from 0 to 1, where 1 is for two

identical distributions. After all these analyses, four

KLS-based morphological connectivity matrices were

generated for each participant (self-connections were set

to 0): one for AAL-based parcellation on smoothed GM

maps, one for AAL-based parcellation on unsmoothed

GM maps, one for HOA-based parcellation on smoothed

GM maps and the other for HOA-based parcellation on

unsmoothed GM maps.

Determination of the number of sampling points
during KDE

Before application of KDE to human brain data, it is

important to investigate how many sampling points are

needed to generate stable estimation. Therefore, we first

examined the effects of different numbers of sampling

points on the estimation of regional probability density

function. Specifically, we estimated the probability density

function for each region of each participant under each

combination between spatial smoothing and brain parcel-

lation atlas when different numbers of sampling points

were used (24, 25, 26, 27, 28, 29 and 210). Then, the

Fr�echet distance (Alt and Godau 1995) was calculated for

each region between any pair of probability density func-

tions that were estimated using adjacent numbers of sam-

pling points (i.e., 24 and 25, 25 and 26, 26 and 27, 27 and

28, 28 and 29, and 29 and 210). The Fr�echet distance pro-

vides a measure to quantify the similarity/dissimilarity

between two curves that not only takes into account the

location and ordering of the points along the curves but

also can deal with curves with different lengths. After this

procedure, two 57 (participants) 9 90 (regions) 9 6

(adjacent pairs in sampling number) Fr�echet distance

matrices were obtained when the AAL-based parcellation

was used: one for smoothed data, the other for nons-

moothed data. Similarly, two 57 (participants) 9 112

(regions) 9 6 (adjacent pairs in sampling number)

Fr�echet distance matrices were obtained when the HOA-

based parcellation was used. Subsequently, the four matri-

ces were separately averaged along the first dimension

(i.e., participants) to derive four group-level, regional

mean Fr�echet distance matrices (two 90 9 6, the other

two 112 9 6). Finally, any pair of nearby columns of

each the resultant matrix was compared by using a non-

parametric permutation test (10,000 iterations). We found

that the differences in the regional mean Fr�echet distances

between nearby columns became nonsignificant from the

comparison between column 3 and column 4 for all the

combinations between spatial smoothing and brain par-

cellation (Table 1). This means that the similarities/dis-

similarities between regional probability density functions

estimated with 26 and 27 sampling points (i.e., column 3)
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were comparable with those derived from 27 and 28 sam-

pling points (i.e., column 4), and so on. Accordingly, 27

sampling points was conservatively chosen in the current

study to provide a trade-off between stable estimation of

regional probability density functions and computational

complexity.

Threshold selection

Prior to topological characterization of the derived mor-

phological connectivity matrices, a thresholding procedure

is typically used to exclude noisy elements. Here, we

employed a sparsity threshold, S (defined as the ratio of

the number of actual edges divided by the maximum pos-

sible number of edges in a network) to convert each

matrix Cij = [cij] into a binary and a weighted network by

applying a subject-specific KLS threshold:

Aij ¼ ½aij� ¼ 1; if cij [KLSthr;
0; others

�

and a weighted network

Wij ¼ ½wij� ¼ cij; if cij [KLSthr;
0; others

�

This thresholding method ensures the same number of

nodes and edges for the resultant networks across partici-

pants. Due to the lack of a conclusive method to select a

single threshold, a consecutive sparsity range of

0.05 < S < 0.4 (interval = 0.02) was chosen, where the

resultant networks have sparse properties (Achard et al.

2006; He et al. 2007; Wang et al. 2009) and are estimable

for the small-world attributes (Watts and Strogatz 1998).

All the following network analyses were performed at

each of the threshold level in this range, therefore result-

ing in functions or curves of sparsity for the topological

measures listed below.

Network analysis

Based on the analyses above, we obtained 8 = 2 (spatial

smoothing: yes vs. no) 9 2 (brain parcellation: AAL vs.

HOA) 9 2 (network type: binary vs. weighted) morpho-

logical brain networks at each sparsity level for each par-

ticipant. For each of these networks, we calculated both

global (clustering coefficient, Cp, characteristic path

length, Lp, local efficiency, Eloc, global efficiency, Eglob and

modularity, Q) and nodal (nodal degree, ki, nodal effi-

ciency, ei and nodal betweenness, bi) metrics with the

GRETNA toolbox (Wang et al. 2015a). Detailed formulas,

usages and explanations of these metrics in the brain net-

works can be found in our previous study (Wang et al.

2011) and in an excellent methodological review (Rubi-

nov and Sporns 2010).

To determine whether the morphological brain net-

works were nonrandomly organized, all the global net-

work measures were separately normalized by the

corresponding mean of 100 matched random networks.

The random networks were generated using a topological

rewiring algorithm (Maslov and Sneppen 2002) which

preserved the same number of nodes and edges and the

same degree distribution as real brain networks. Typi-

cally, an efficient, small-world and modular network

should fulfill the following conditions: normalized

Eloc > 1 and normalized Eglob ~ 1, normalized Cp > 1

and normalized Lp ~ 1 and normalized Q > 1. Notably,

to simplify subsequent TRT reliability and statistical

analyses, we also calculated the area under curve (AUC,

i.e., the integral over sparsity range) to provide a thresh-

old-independent summary scalar for each global and

nodal network metric of each participant under each

analytical combination

TRT reliability

We utilized a common index of intra-class correlation

(ICC) (Shrout and Fleiss 1979) to investigate the TRT

reliability of the current single-subject method in map-

ping morphological connectivity patterns and characteriz-

ing their topological organization. Specifically, for each

connectivity element (i.e., KLS value) or network metric

(global or nodal) derived from each appropriate combina-

tion of the three factors mentioned above, individual val-

ues were first merged into a 57 9 2 matrix with rows

corresponding to participants and columns corresponding

to sessions. Using a one-way analysis of variance

(ANOVA), we then split the total sum of the squares into

between-subject (MSb) and within-subject (MSw, i.e.,

Table 1. The P values of pairwise comparisons of the Fr�echet dis-

tances between curves estimated with nearby sample points.

Categories

A versus

B

B versus

C

C versus

D

D versus

E

E versus

F

Nonsmo-AAL 0.016 0.051 0.215 0.451 0.071

Nonsmo-HOA 0.477 0.432 0.439 0.390 0.272

Smo-AAL 0.011 0.133 0.135 0.155 0.174

Smo-HOA 0.005 0.012 0.093 0.135 0.211

Nonsmo, no spatial smoothing; Smo, spatial smoothing; AAL,

Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas. A –

the Fr�echet distances between curves estimated with 24 and 25 sam-

ple points; B – the Fr�echet distances between curves estimated with

25 and 26 sample points; C – the Fr�echet distances between curves

estimated with 26 and 27 sample points; D – the Fr�echet distances

between curves estimated with 27 and 28 sample points; E – the

Fr�echet distances between curves estimated with 28 and 29 sample

points; F – the Fr�echet distances between curves estimated with 29

and 210 sample points.
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residual error) sum of squares. The ICC was then

calculated as:

ICC ¼ MSb �MSw
MSb þ ðk� 1ÞMSw

;

where k is the number of repeated observations per par-

ticipant (2 here). ICC is close to 1 for reliable measures

that show low within-subject variance relative to between-

subject variance and 0 (negative) otherwise. Consistent

with our previous study (Wang et al. 2011), the reliability

was categorized into poor (0 < ICC < 0.25), low

(0.25 < ICC < 0.4), fair (0.4 < ICC < 0.6), good

(0.6 < ICC < 0.75) and excellent (0.75 < ICC < 1.0).

Statistical analysis

To determine whether different analytical factors of spa-

tial smoothing, brain parcellation and network type sig-

nificantly affect topological descriptions of the

morphological networks, a three-way repeated measures

ANOVA was performed for each global network parame-

ter (clustering coefficient, characteristic path length, local

efficiency, global efficiency and modularity and their cor-

responding normalization versions). For nodal centralities

(nodal degree, efficiency and betweenness), a two-way

repeated measures ANOVA was performed for each nodal

metric under the AAL and HOA schemes, respectively,

due to the different numbers of nodes. Analogously, the

three-way and two-way repeated measures ANOVA were

separately conducted to examine the effects of different

analytical strategies on the TRT reliability (ICC values) of

global and nodal network measures.

Results

KLS-based morphological brain networks

Patterns of morphological similarity matrices

Figure 2A and B show the mean morphological similarity

matrices under all combinations between spatial smooth-

ing and brain parcellation scheme for data session 1 and

session 2, respectively. Visual inspection found that the

connectivity patterns were complex but specifically orga-

nized with strong interhemispheric morphological similar-

ity between bilaterally homologous regions. This was

further validated by statistical analyses showing that the

similarity values between homotopic regions were signifi-

cantly greater than the others in the matrix, a robust find-

ing against the analytical choices of spatial smoothing,

brain parcellation scheme and data session (t-test, all

P < 10�3). Moreover, quantitative spatial correlation

analyses showed that the overall patterns of morphologi-

cal similarity matrices were highly similar between session

1 and session 2 at both group (r > 0.99) (Fig. 2C) and

individual levels (mean r > 0.91) regardless of the analyti-

cal strategies used.

TRT reliability of morphological similarity matrices

Intra-class correlation-based TRT reliability analysis on

individual elements in the morphological similarity

matrices demonstrated high reliability for interregional

KLS values (Nosmo-AAL: 0.816 � 0.098; Nosmo-HOA:

0.816 � 0.140; Smo-AAL: 0.905 � 0.050; Smo-HOA:

0.899 � 0.056) (Fig. 2D). Specifically, under each brain

parcellation scheme, more than 85% elements derived

from nonsmoothed data and more than 97% elements

derived from smoothed data exhibited excellent reliabil-

ity. However, in contrast to the abovementioned

finding of higher similarities for interhemispheric con-

nections between bilaterally homologous regions, lower

TRT reliability were found for these connections than

the others in the matrices regardless of the analytical

choices of spatial smoothing and brain parcellation

scheme (t-test, all P < 10�3). This implies that the sim-

ilarities between bilaterally homologous regions are

related to higher within-subject or lower between-sub-

ject variance.

Global organization of morphological brain
networks

Small-worldness, efficiency and modularity

Compared with random networks, the morphological

brain networks exhibited larger values in the clustering

coefficient, local efficiency and modularity but approxi-

mately equal values in the characteristic path length and

global efficiency under each analytical combination of

spatial smoothing, network type and brain parcellation.

This resulted in a pattern of normalized clustering coeffi-

cient, local efficiency and modularity > 1 and normalized

characteristic path length and global efficiency ~ 1

(Fig. 3). These findings suggest conserved global network

organization of high-efficient, small-world and modular

architectures for morphological brain networks. In addi-

tion, we also presented the modular structure derived

from the group-level mean morphological brain network

based on spatially smoothed data under the AAL parcella-

tion scheme (Fig. 4). Seven modules were found

(Q = 0.628, z-score = 27.030) that corresponded well

with known neuroanatomical systems, and the modules

were similar to those derived from diffusion and func-

tional MRI data, such as the visual module of (medial)

occipital system and subcortical module (Chen et al.
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2008; Hagmann et al. 2008; He et al. 2009b; Meunier

et al. 2009).

Effects of spatial smoothing, brain parcellation
and network type on global network measures

Generally, the results showed that the three factors sig-

nificantly influenced numerical values of all the global

network measures in a complex interactive pattern

(Fig. 5). This suggests that quantitative characterization

of morphological brain networks depends on the ana-

lytical strategies. No further post hoc analyses were

done because of the complex patterns and more

importantly comparisons of numerical values make no

sense regarding the selection of optimal analytical

strategy.

TRT reliability of global network measures

Figure 6 shows the TRT reliability for all the global net-

work measures as a function of sparsity threshold. All the

global measures exhibited fair to good reliability (i.e., ICC

ranged from 0.40 to 0.75) over most of the sparsity range

studied (mean ICC over sparsity threshold and across

network measures ranged from 0.523 to 0.648). Further

analysis based on the AUCs revealed even higher reliabil-

Figure 2. Spatial pattern, intersession similarity and TRT reliability of KLS-based morphological connectivity matrices. The mean KLS matrices

(across participants) derived from session 1 (A) and session 2 (B) were highly correlated with each other, a robust finding against different choices

of spatial smoothing and brain parcellation (C). TRT reliability analysis revealed high reliability for most elements in the matrices (D). KLS, KL

divergence-based similarity; ICC, intra-class correlation; Nosmo, no smoothing; Smo, smoothing; AAL, Anatomical Automatic Labeling atlas; HOA,

Harvard-Oxford atlas.
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ity for the global network measures (mean ICC across

network measures ranged from 0.613 to 0.781) (Fig. 7).

In addition, we compared the reliability between original

or first-order global network measures (clustering coeffi-

cient, characteristic path length, local efficiency, global

efficiency and modularity) and their normalized or sec-

ond-order versions and found no significant difference

(P > 0.05).

Effects of spatial smoothing, brain parcellation
and network type on TRT reliability of global
network topology

To examine whether the ICC of global network topology

depends on different analytical strategies, a three-way

repeated ANOVA measures was conducted across different

network measures. The results showed that only spatial

Figure 3. The normalized global network measures as a function of sparsity for morphological brain networks from nonsmoothed (A) and

smoothed (B) data. All the normalized global network measures significantly deviated from 1 (dotted lines) regardless of different

analytical strategies, indicating obviously different organizations of morphological brain networks from matched random networks. The

results were from data session 1. Bin, binary network; Wei, weighted network; AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-

Oxford atlas.

Figure 4. Matrix and brain surface presentations of modular structure for morphological brain networks. A group-level backbone matrix (left)

was derived from the mean morphological brain network across all participants based on spatially smoothed data under the AAL parcellation

scheme. The backbone matrix was further reordered according to the optimal modular partition as shown in the brain surface (right). Seven

modules were identified that corresponded well with known neuroanatomical systems, such as the medial occipital module and subcortical

module. KLS, Kullback–Leibler divergence-based similarity. AAL, Anatomical Automatic Labeling atlas.
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Figure 6. The test–retest (TRT) reliability of global network measures as a function of sparsity for morphological brain networks from

nonsmoothed (A) and smoothed (B) data. Generally, despite of different analytical strategies, the global network measures showed fair to

excellent reliabilities (i.e., 0.4 < ICC < 1) over almost the whole sparsity range studied. Bin, binary network; Wei, weighted network; AAL,

Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas; ICC, intra-class correlation.

Figure 5. Effects of spatial smoothing, brain parcellation and network type on global network measures. The statistical analysis was done for

each global network measure based on their areas under curve. Generally, the three factors significantly influenced quantitative descriptions of all

the studied global network measures in a complex pattern. These results were from data session 1. The results were from data session 1. AUC,

the area under curve; Bin, binary network; Wei, weighted network; AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas. a,

significant main effect of spatial smoothing; b, significant main effect of brain parcellation; c, significant main effect of network type. Of note, all

the interactive effects were also significant.

Figure 7. The test–retest (TRT) reliability of global network measures based on the area under curve. Fair to excellent reliabilities (i.e., 0.4 < ICC < 1)

were found for all global network measures irrespective of different choices of spatial smoothing, brain parcellation and network type. ICC, intra-class

correlation; Bin, binary network; Wei, weighted network; AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas.
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smoothing significantly affected the reliability of global net-

work measures (F1,9 = 17.543, P = 0.002). No effects were

observed for brain parcellation, network type or any interac-

tion (P > 0.05). Post hoc comparisons showed that perform-

ing spatial smoothing significantly improved the reliability of

global network measures (t78 = 3.848, P < 10�3).

Local nodal characteristics of morphological
brain networks

Hubs

All nodal results were based on the AUCs. Therefore, a

total of 12 = 2 (spatial smoothing: yes and no) 9 2 (net-

work type: binary and weighted) 9 3 (nodal centrality

metrics: degree, efficiency and betweenness) nodal central-

ity maps were obtained for each participant under each

brain parcellation scheme (AAL and HOA). We first cal-

culated the Pearson correlations between any pair of these

nodal centrality maps after averaging them across partici-

pants. This resulted in a 12 9 12 correlation matrix

under the AAL and HOA parcellation scheme, respec-

tively (Figs. 8A, 9A). We found that the correlation

coefficients were significantly larger for nonsmoothed

(AAL: 0.786 � 0.179; HOA: 0.791 � 0.170) and

smoothed (AAL: 0.742 � 0.213; HOA: 0.748 � 0.208)

data than those between nonsmoothed and smoothed

data (AAL: 0.299 � 0.206; HOA: 0.473 � 0.188) (permu-

Figure 8. Nodal centralities under the AAL parcellation scheme. Pairwise correlation analyses revealed that spatial smoothing significantly

modulated spatial patterns of nodal centralities (A). Therefore, (B) and (C) were used to illustrate specific patterns of nodal centralities (weighted

network analysis) for nonsmoothed and smoothed data, respectively. Regions with the highest centralities (top 10%) were highlighted in orange.

A hub score was further calculated to identify regions that consistently showed high centralities over different network types and centrality

metrics (D; left for no n-smoothed data and right for smoothed data; also see Table 2). The results were from data session 1. All regional

abbreviations can be found in Table S1. AAL, Anatomical Automatic Labeling atlas.
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tation test, 10,000 iterations, P < 0.001 for all compar-

isons). These findings indicate that spatial smoothing sig-

nificantly affects the distribution of nodal centralities in

the brain for morphological brain networks. Therefore,

we separately presented nodal centralities for nons-

moothed (Fig. 8B for AAL and Fig. 9B for HOA) and

smoothed (Fig. 8C for AAL and Fig. 9C for HOA) data

and highlighted the top 10% regions (9 for AAL and 11

for HOA) with the highest centrality values, which may

serve as potential hub regions.

To further locate brain regions that were consistently

identified as hubs, we assigned each node a hub-score (ran-

ged from 0 to 6) indicating the times that the node fell

within the top 10% nodes across nodal centrality metrics

and network types. For example, if a region was identified as

a hub by all the nodal centrality metrics (degree, efficiency

and betweenness) of both binary and weighted networks, its

hub-score was 6. Figures 8D, 9D show the spatial distribu-

tions of nodal hub-scores in the brain under the brain par-

cellation schemes of AAL and HOA, respectively. The most

consistent hubs (scored > 3), as summarized in Table 2,

were mainly limbic/paralimbic and association cortices but

with a slight overlap between nonsmoothed and smoothed

data irrespective of the brain parcellation schemes.

Effects of spatial smoothing and network type on
nodal centralities

A two-way repeated ANOVA was separately performed to

test the effects of spatial smoothing and network type on

the mean (across participants) values of nodal degree,

efficiency and betweenness. The results showed that no

Figure 9. Nodal centralities under the HOA parcellation scheme. The results were presented in a similar manner to that in Fig. 8. All regional

abbreviations can be found in Table S2. HOA, Harvard-Oxford atlas.
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matter which parcellation scheme was used, network type

significantly affected nodal degree and efficiency

(P < 0.05, corrected by false discovery rate procedure

across centrality metrics) but not nodal betweenness, and

the effects were further modulated by the other factor of

spatial smoothing. Again, no further post hoc analyses

were needed here.

TRT reliability of nodal centralities

The mean ICC values of nodal centralities under different

analytical categories were visualized in Fig. 10. Generally,

high TRT reliability was found regardless of nodal central-

ity metrics and analytical schemes employed

(0.741 � 0.076 overall all factors). To understand nodal

reliability more deeply, we also calculated their pairwise

spatial correlations across regions and obtained a 12 9 12

correlation matrix under each brain parcellation scheme

(Fig. 11A for AAL and Fig. 12A for HOA). Again, we

found that the correlation values among nodal reliability

maps derived from nonsmoothed data (AAL:

0.688 � 0.268; HOA: 0.517 � 0.394) and from smoothed

data (AAL: 0.703 � 0.234; HOA: 0.670 � 0.271) were sig-

nificantly larger than those calculated between nons-

Table 2. Regions consistently showing high centralities (i.e., hubs).

Name Score Category Name Score Category

Nonsmo-AAL Smo-AAL

Superior frontal gyrus, medial orbital (R) 6 Paralimbic Superior frontal gyrus, orbital part (R) 6 Paralimbic

Anterior cingulate and paracingulate gyri (L) 6 Paralimbic Inferior temporal gyrus (R) 5 Association

Anterior cingulate and paracingulate gyri (R) 6 Paralimbic Inferior frontal gyrus, orbital part (R) 4 Paralimbic

Cuneus (L) 6 Association Median cingulate and paracingulate gyri (L) 4 Paralimbic

Cuneus (R) 6 Association Parahippocampal gyrus (L) 4 Paralimbic

Calcarine fissure and surrounding cortex (R) 5 Primary Parahippocampal gyrus (R) 4 Paralimbic

Inferior occipital gyrus (R) 4 Association Lingual gyrus (R) 4 Association

Angular gyrus (L) 4 Association Supramarginal gyrus (L) 4 Association

Precuneus (R) 4 Association

Nonsmo-HOA Smo-HOA

Cingulate gyrus, posterior division (R) 6 Paralimbic Inferior temporal gyrus, anterior division (L) 6 Association

Frontal orbital cortex (R) 6 Paralimbic Parahippocampal gyrus, posterior division (L) 6 Paralimbic

Intracalcarine cortex (R) 6 Primary Cingulate gyrus, posterior division (R) 5 Paralimbic

Inferior temporal gyrus, anterior division (L) 4 Association Parahippocampal gyrus, anterior division (R) 5 Paralimbic

Temporal fusiform cortex, posterior division (R) 4 Association Temporal fusiform cortex, posterior division (R) 5 Association

Frontal medial cortex (R) 4 Paralimbic Temporal fusiform cortex, posterior division (L) 4 Association

Subcallosal cortex (L) 4 Limbic Amygdala (L) 4 Subcortical

Subcallosal cortex (R) 4 Limbic Paracingulate gyrus (L) 4 Paralimbic

Paracingulate gyrus (L) 4 Paralimbic Precuneous cortex (R) 4 Association

Paracingulate gyrus (R) 4 Paralimbic Parahippocampal gyrus, anterior division (L) 4 Paralimbic

Cingulate gyrus, anterior division (R) 4 Paralimbic

Nonsmo, no smoothing; Smo, smoothing; AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas; L, left; R, right.

Figure 10. The test–retest (TRT) reliability of nodal centrality metrics under the Anatomical Automatic Labeling atlas (AAL) (A) and Harvard-

Oxford atlas (HOA) (B) parcellation schemes. Fair to excellent reliability (i.e., 0.4 < ICC < 1) was observed for almost all nodal centrality metrics

under all analytical combinations of spatial smoothing, brain parcellation and network type. Notably, nodal degree and efficiency exhibited

obviously higher reliability than nodal betwenness regardless of the parcellation schemes. ICC, intra-class correlation; Bin, binary network; Wei,

weighted network; Nosmo, no smoothing; Smo, smoothing.
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moothed and smoothed data (AAL: 0.235 � 0.113; HOA:

0.157 � 0.138) (permutation test, 10,000 iterations,

P < 0.001 for all comparisons). These findings indicate

that, in addition to nodal centralities, spatial smoothing

remarkably affects spatial distribution of nodal reliability

for morphological brain networks (Fig. 11B vs. Fig. 11C

for AAL and Fig. 12B vs. Fig. 12C for HOA). Thus, we used

a similar procedure to hub detection to identify regions

that consistently exhibited high reliability (top 10%) over

nodal centrality metrics and network types but for nons-

moothed and smoothed data (Fig. 11D for AAL and

Fig. 12D for HOA). Overall, regions with high reliability

were mainly association cortices of temporal, occipital and

parietal regions depending on the spatial smoothing and

brain parcellation scheme. Table 3 further summarizes the

most consistent regions showing high reliability

(scored > 3). Notably, the right superior occipital gyrus

and middle occipital gyrus under the AAL parcellation and

the left posterior division of inferior temporal gyrus and

right superior division of lateral occipital cortex under the

HOA parcellation were identified for both nonsmoothed

and smoothed data. In addition, we compared nodal ICC

values among the three centrality metrics (one-way

ANOVA) and found significant main effects (all P < 0.001)

driven by higher reliability of nodal degree and efficiency

than nodal betweenness. This was independent on choices

of spatial smoothing, brain parcellation and network type.

Finally, we also compared nodal ICC values between corti-

Figure 11. The test–retest (TRT) reliability of nodal centralities under the Anatomical Automatic Labeling atlas (AAL) parcellation scheme. Pairwise

correlation analyses revealed that spatial smoothing significantly modulated spatial patterns of nodal reliabilities (A). Therefore, (B) and (C) were

used to illustrate specific patterns of nodal reliabilities (weighted network analysis) for nonsmoothed and smoothed data, respectively. Regions

with the highest reliabilities (top 10%) were highlighted in orange. A reliability-based hub score was further calculated to identify regions that

consistently showed high reliability over different network types and centrality metrics (D; left for nonsmoothed data and right for smoothed

data; also see Table 3). The results were from data session 1. All regional abbreviations can be found in Table S1.
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cal and subcortical regions and consistently found no sig-

nificant differences regardless of nodal centrality metrics

and analytical strategies (all P > 0.05).

Effects of spatial smoothing and network type on
TRT reliability of nodal centralities

A two-way repeated ANOVA was performed for each

nodal centrality metric (degree, efficiency and between-

ness) under each parcellation scheme (AAL and HOA).

The results showed that spatial smoothing and network

type significantly modulated nodal reliability in an inter-

active manner regardless of the brain parcellation schemes

and nodal centrality metrics used (all P < 0.05). Post-hoc

comparisons revealed that performing spatial smoothing

significantly improved nodal reliability of all the three

centrality metrics for both binary and weighted networks

but to different extents (all P < 0.001). In addition, bin-

ary network analysis outperformed weighted network

analysis with respect to reliability of nodal betweenness

for both smoothed (P = 0.037 for AAL and <0.001 for

HOA) and nonsmoothed data (P < 0.001 for AAL and

HOA).

Relationship between nodal centrality and ICC

To determine whether nodal ICCs were related to their

centralities in morphological brain networks, we calcu-

lated the Pearson correlation coefficients across regions

between each nodal centrality metric (averaged across

Figure 12. The test–retest (TRT) reliability of nodal centralities under the Harvard-Oxford atlas (HOA) parcellation scheme. The results were

presented in a similar manner to that in Fig. 11. All regional abbreviations can be found in Table S2.
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participants and data sessions) and their corresponding

ICC values under each analytical strategy. Generally, sig-

nificantly positive correlations were observed that were

largely reproducible regardless of the analytical strategies

and nodal centrality metrics used (Fig. 13). These results

indicate higher reliability for more central nodes in mor-

phological brain networks.

Discussion

In this study, we constructed KLS-based, individual-level,

whole-brain morphological brain networks using structural

MRI data and systematically investigated their topological

organization under different analytical strategies. We

found that the morphological brain networks were specifi-

cally organized in a high-efficient, small-world and modu-

lar manner with several highly connected hubs. Moreover,

we demonstrated that these configurations of morphologi-

cal brain networks were dependent on different choices of

spatial smoothing, brain parcellation and network type.

Further examination of long-term TRT reliability showed

that all the topological properties had fair to excellent reli-

ability but spatial smoothing significantly improved relia-

bility and nodal degree and efficiency outperformed nodal

betweenness. Interestingly, nodal centralities were posi-

tively correlated with their ICC values, suggesting higher

reliability for more central nodes. Taken together, these

findings suggest that KLS-based, single-subject morpholog-

ical brain network is a meaningful and reliable method in

characterizing the brain organization and thus opens a

new avenue toward understanding structural substrate of

intersubject variability in behavior and function.

Table 3. Regions consistently showing high reliabilities.

Name Score Category Name Score Category

Nonsmo-AAL Smo-AAL

Precentral gyrus (L) 4 Primary Superior occipital gyrus (R) 6 Association

Middle frontal gyrus (R) 4 Association Inferior parietal, but supramarginal

and angular gyri (R)

5 Association

Superior occipital gyrus (R) 4 Association Cuneus (R) 4 Association

Middle occipital gyrus (R) 4 Association Middle occipital gyrus (R) 4 Association

Angular gyrus (R) 4 Association Inferior parietal, but supramarginal

and angular gyri (L)

4 Association

Middle temporal gyrus (R) 4 Association Precuneus (R) 4 Association

Superior temporal gyrus (R) 4 Association

Nonsmo-HOA Smo-HOA

Angular gyrus (L) 5 Association Middle temporal gyrus, posterior division (L) 4 Association

Frontal orbital cortex (L) 5 Paralimbic Middle temporal gyrus, temporooccipital part (L) 4 Association

Lingual gyrus (R) 5 Association Inferior temporal gyrus, posterior division (L) 4 Association

Parietal operculum cortex (R) 4 Association Lateral occipital cortex, superior division (R) 4 Association

Precentral gyrus (R) 4 Primary Parahippocampal gyrus, posterior division (R) 4 Paralimbic

Inferior temporal gyrus, posterior division (L) 4 Association

Inferior temporal gyrus, temporooccipital part (L) 4 Association

Lateral occipital cortex, superior division (R) 4 Association

Lateral occipital cortex, inferior division (L) 4 Association

Nonsmo, no smoothing; Smo, smoothing; AAL, Anatomical Automatic Labeling atlas; HOA, Harvard-Oxford atlas; L, left; R, right.

Figure 13. Relationship between nodal

centralities and their reliabilities. In most

cases, significantly positive correlations

(solid circles) were observed between nodal

centralities and their corresponding ICC

values for each nodal centrality metric in

particular for nodal efficiency. ICC, intra-

class correlation; Bin, binary network; Wei,

weighted network.
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KLS-based morphological brain networks

Currently, morphological brain networks are mainly

derived by estimating interregional correlations in mor-

phological features (e.g., cortical thickness or GM volume)

at either group (He et al. 2007; Bassett et al. 2008) or indi-

vidual (Tijms et al. 2012; Batalle et al. 2013) level. These

correlation-based methods require the normal distribution

of morphological features across subjects or spatial loca-

tions or voxels. In contrast, the KLS-based method used

here has no such restriction, therefore may be more suit-

able for studying the human brain particularly given its

complex folding structure. Moreover, based on empirical

data, several recent studies have demonstrated the effec-

tiveness of the KL/KLS method in studying the human

brain in different populations (Velazquez and Galan 2013;

Kong et al. 2014, 2015). Additionally, compared with a

recently proposed single-subject morphological network

method (Tijms et al. 2012), the KLS-based method has

distinct advantages in network node definition which

allows flexible choices of brain parcellation without any

restriction on regional size and shape. This allows research-

ers to freely generate study-specific, customized brain atlas

according to their study objectives. All these features sug-

gest that KLS-based morphological network analysis could

serve as a promising method to study morphological orga-

nization of the human brain at an individual level.

Specifically organized, analytical strategy-
dependent and long-term reliable
morphological brain networks

We showed that the KLS-based, single-subject morphologi-

cal brain networks globally exhibited high-efficient, small-

world and modular architecture. These findings are consis-

tent with previous morphological brain network studies

(He et al. 2007; Bassett et al. 2008; Chen et al. 2008; Tijms

et al. 2012). Currently, the human brain is universally

believed to have evolved to support both specialized or

modular processing in local regions and distributed or inte-

grated processing over the entire brain (Sporns et al. 2004;

Bullmore and Sporns 2009, 2012; Meunier et al. 2009; He

and Evans 2010). Here, our findings provide further empir-

ical evidence to support the theory that the human cortical

morphology has evolved into a complex but efficient neu-

ronal architecture which confers an optimal balance

between local specialization and global integration to maxi-

mize the power of parallel information processing. Locally,

nodal centrality analysis of morphological brain networks

revealed a heterogeneous distribution over the brain with

several association and paralimbic regions (e.g., the pre-

cuneus, angular gyrus, cingulate gyrus, and parahippocam-

pal gyrus) topologically holding central positions. These

regions are largely comparable with the putative hubs

reported in previous morphological, structural and func-

tional brain networks (Achard et al. 2006; He et al. 2007,

2009b; Hagmann et al. 2008; Buckner et al. 2009; Gong

et al. 2009; Tomasi and Volkow 2010). Recently, identify-

ing brain hubs and further studying their vulnerability in

various brain disorders are becoming a hot research topic

(van den Heuvel and Sporns 2013; Crossley et al. 2014).

Therefore, the current work provides an alternative method

for researchers to explore hubs of the brain under both

healthy and pathological conditions. Overall, these findings

suggest that KLS-based, single-subject morphological brain

networks are wired in an organized manner rather than

randomly connected. Particularly, our global and local

findings are largely consistent with those reported in a

recent study which also investigated the topological organi-

zation of individual-level morphological brain networks

based on the KLS-based method (Kong et al. 2015). These

findings suggest a stable intrinsic architecture of KLS-based

morphological brain networks.

Nonetheless, compared with what was done by Kong

and colleagues, the current work addressed several key

questions which are important before the practical appli-

cation of the KLS-based approach. We first examined

long-term TRT reliability of KLS-based morphological

brain networks based on datasets collected with an inter-

val of approximate 6 weeks. This is in contrast with what

was done by Kong et al. (2015) who used datasets

acquired on the same day to examine short-term reliabil-

ity. Long-term reliability analysis is particularly important

for newly developed methods before their clinical applica-

tions to identify stable biomarkers. We showed that most

global and nodal network measures exhibited fair to excel-

lent long-term TRT reliability. Together with the high

short-term TRT reliability as reported in Kong et al.

(2015), we propose the KLS-based single-subject morpho-

logical brain network analysis as a stable approach for

future research to study effects of interest, such as topo-

logical reorganization in various brain disorders. Further-

more, we evaluated the effects of several factors on

topological organization of KLS-based morphological

brain networks, including network type, brain parcellation

and spatial smoothing. Insights into these issues are vital

for researchers to determine their analytical strategies

when using this approach. We showed that quantitative

characterization of KLS-based morphological brain net-

works was significantly affected by different analytical

strategies. For example, spatial smoothing remarkably

modulated spatial distribution of nodal centrality. The

dependence of morphological brain networks on choices

of preprocessing and network construction methods is

consistent with previous brain network studies based on

other neuroimaging modalities (Wang et al. 2009; Cole
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et al. 2010; Zalesky et al. 2010; Liang et al. 2012). Thus,

the current results together with previous findings collec-

tively highlight that for imaging connectomics studies,

researchers should carefully choose their analytical pipeli-

nes and explain the findings when results are compared

across studies with different processing methods. Apart

from numerical values, the TRT reliability analysis further

showed that different analytical strategies also affected the

stability of KLS-based morphological brain networks, con-

sistent with previous brain network studies (Bassett et al.

2011; Wang et al. 2011; Liang et al. 2012; Buchanan et al.

2014; Zhao et al. 2015). Particularly, performing spatial

smoothing significantly improved the reliability of both

global and nodal network properties. This could be due to

the elevated correspondence of brain structures among

participants. To test this interpretation, we computed

Pearson correlations in the KLS matrices across matrix

elements for any pair of participants before and after spa-

tial smoothing and found significantly higher intersubject

similarities when spatial smoothing was conducted

(P < 0.001 for both AAL and HOA brain parcellations).

In addition, we found that nodal degree and efficiency

outperformed nodal betweenness with respect to reliabil-

ity. The higher reliability of nodal degree is consistent

with our previous functional brain network study (Wang

et al. 2011), possibly due to its conciseness and directness

in definition. These findings provide important guidance

on how to choose reliable analytical strategies and net-

work metrics for KLS-based, single-subject morphological

brain networks. Finally, we noted that several association

and paralimbic regions were consistently identified as

hubs (e.g., the precuneus, angular gyrus, parahippocampal

gyrus, temporal and lateral occipital cortex) and consis-

tently exhibited high reliability. Further correlation analy-

sis revealed positive correlations between nodal centralities

and their ICC values, suggesting higher reliability for more

central regions of morphological brain networks. This is

consistent with our previous finding of functional brain

networks (Wang et al. 2011). These findings collectively

imply that hub architecture is a stable organizational prin-

ciple for the human brain networks (Buckner et al. 2009).

Given the fact that brain hubs are generally implicated in

various brain disorders (Crossley et al. 2014; Stam 2014),

the high reliability of hubs makes them potential candi-

dates to serve as reliable markers for disease diagnosis and

prognosis, an interesting research topic in the future.

Taken together, the KLS-based, single-subject morpho-

logical brain networks are specifically organized, analytical

strategy sensitive and TRT reliable, therefore opening a

new avenue in linking morphological network variability

and interindividual differences in behavior and cognition,

although more studies are needed to elucidate the under-

lying biological significance.

Possible biological interpretation of KLS-
based morphological brain networks

In the current study, we calculated interregional similarity

(as quantified by the KLS) in their distributions of GM

volume to define morphological connectivity. However,

the biological meaning underlying the similarity is not

clear (Kong et al. 2014). Nevertheless, it should be noted

that interregional covariance in morphological features

has been observed as early as 1997 for several components

of the human visual system (Andrews et al. 1997). Not

limited to the visual system, the morphological coordina-

tion is demonstrated to expand to the whole brain, form-

ing a morphological covariance network (He et al. 2007;

Bassett et al. 2008). Moreover, an increasing number of

studies have shown that the morphological covariance

networks exhibit adaptive reorganization during normal

development (Zielinski et al. 2010; Fan et al. 2011;

Alexander-Bloch et al. 2013b) and aging (Chen et al.

2011; Wu et al. 2012; Zhu et al. 2012) and in various

brain disorders (He et al. 2008, 2009a; Seeley et al. 2009;

Zhang et al. 2012). These studies jointly suggest that mor-

phological covariance networks are biological meaningful

in capturing potential mechanisms involved in these pro-

cesses. Although the biological significance of morpholog-

ical covariance is still not fully understood, accumulating

evidence indicates that heredity, experience-related plas-

ticity, mutually trophic influences or coordinated neu-

rodevelopment and aging trajectories play important roles

in the formation morphological brain networks [for

recent reviews, see (Alexander-Bloch et al. 2013a; Evans

2013)]. In addition, there is another possible explanation

coming from the axonal extension theory (Van Essen

1997), which suggests that connected areas tend to be

pulled together by a tension from the axons between

them. Therefore, it is plausible to speculate that these fac-

tors may also contribute to KLS-based, individual-level

morphological brain networks studied here. Insights into

this speculation could benefit from future studies by link-

ing morphological brain organization with behavior per-

formances or cognitive abilities for the same cohort of

participants, or examining genetic, developmental, train-

ing-induced, or brain disorder-related changes of KLS-

based single-subject morphological brain networks. Of

note, the KLS-based approach has been demonstrated to

be capable of capturing age-related changes in morpho-

logical brain networks (Kong et al. 2015).

Limitations and Future Directions

First, this study only examined several most prevalent

topological attributes for single-subject morphological

brain networks. Besides these features, there are many
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other topological properties that are consistently observed

in human brain networks, such as the “rich-club” organi-

zation (van den Heuvel and Sporns 2011), hierarchy (Bas-

sett et al. 2008) and heavy-tailed degree distribution

(Newman 2003; Avena-Koenigsberger et al. 2015; Roberts

et al. 2015). Future studies are needed to determine

whether these configurations hold in KLS-based, single-

subject morphological brain networks. Second, in the cur-

rent study, we employed the AAL and HOA, two widely

used atlases in previous brain network studies, to examine

the effects of different brain parcellation schemes on topo-

logical organization of KLS-based individual-level mor-

phological brain networks. Nevertheless, it should be

noted that how to divide the brain into different ROIs to

define network nodes is still an open question (de Reus

and van den Heuvel 2013). Apart from the two atlases

studied here, there are many other brain atlases available,

such as the Automated Non-linear Image Matching and

Anatomical Labeling algorithm (Collins et al. 1995) and

the LONI Probabilistic Brain Atlas (LPBA40) (Shattuck

et al. 2008). Particularly, the Freesurfer provides a classifi-

cation technique for automatically labeling individual

brains into different regions that is robust to intersubject

anatomical variability (Fischl et al. 2004; Desikan et al.

2006). In the future, it is important to compare these

atlases to provide more comprehensive insights into how

different parcellation schemes affect topological organiza-

tion of individual-level morphological brain networks. In

addition, most of the current brain atlases are comparable

with respect to the number of brain regions (i.e., similar

spatial scale). Future studies are also needed to investigate

how individual-level morphological brain networks topo-

logically organize at different scales by employing atlases

that span several orders of magnitude in the number of

regions or using an iterative random parcellation method

(Fornito et al. 2010; Zalesky et al. 2010). Third, based on

data from healthy participants we demonstrated that the

KLS-based method was reproducible and reliable in char-

acterizing single-subject morphological brain networks.

The next step is to examine whether this method could

reveal sensitive and reliable biomarkers associated with dif-

ferent states and various brain disorders. Third, single-sub-

ject morphological brain networks were constructed by

calculating interregional similarities in regional GM vol-

ume in the current study. Straightforwardly, this method

could be extended to other morphological features (e.g.,

cortical thickness) or even images of other modalities (e.g.,

positron emission tomography). Furthermore, in addition

to the KLS measure used here, there are also other mea-

sures to quantify the similarity of two curves, such as the

Bhattacharyya distance (Zhou and Chellappa 2006) or

related measures (De Maesschalck et al. 2000; Comaniciu

et al. 2003). Future studies are required to examine unique

insights into morphological brain networks from different

choices of these factors. Finally, an increasing number of

studies have examined the relationship between anatomical

and functional brain networks and find that functional

connectivity profiles are largely shaped but not fully deter-

mined by structural pathways (Wang et al. 2015b). In this

regard, it is an interesting topic for future research to

determine the similarities and differences between single-

subject morphological brain networks and those derived

from other neuroimaging modalities in mapping and char-

acterizing the human connectome.

Conclusion

This study demonstrates that KLS-based, single-subject

morphological brain networks are specifically organized

with several nontrivial topological features, which are

TRT reliable but depend on choices of analytical strate-

gies. This method therefore could complement the cur-

rent methodology of neuroimaging connectomics and

open a new avenue toward understanding structural sub-

strate of intersubject variability in behavior and function

from a network perspective.
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