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SUMMARY

TheNational Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium
(CPTAC) established a harmonized method for large-scale clinical proteomic
studies. SWATH-MS, an instance of data-independent acquisition (DIA) proteomic
methods, is an alternate proteomic approach. In this study, we used SWATH-MS
to analyze remnant peptides from the original retrospective TCGA samples
generated for the CPTAC ovarian cancer proteogenomic study. The SWATH-MS
results recapitulated the confident identification of differentially expressed pro-
teins in enriched pathways associated with the robust Mesenchymal high-grade
serous ovarian cancer subtype and the homologous recombination deficient tu-
mors. Hence, SWATH/DIA-MS presents a promising complementary or orthog-
onal alternative to the CPTAC proteomic workflow, with the advantages of
simpler and faster workflows and lower sample consumption, albeit with shal-
lower proteome coverage. In summary, both analytical methods are suitable to
characterize clinical samples, providing proteomic workflow alternatives for can-
cer researchers depending on the context-specific goals of the studies.

INTRODUCTION

Advances in sample preparation workflows, mass spectrometry instrumentation, and data processing soft-

ware have positioned proteomics to provide comprehensive insights into complex biological processes at

a level close to the underlying biochemical mechanisms. Indeed, it is currently possible to routinely quantify

>10,000 proteins in human cell proteomes (Beck et al., 2011; Nagaraj et al., 2011) and human tissue pro-

teomes (Kim et al., 2014; Mertins et al., 2018; Wilhelm et al., 2014) using mass spectrometry-based plat-

forms. The workflows for many of these large-scale proteomic studies entail extensive offline fractionation

of the peptides generated from enzymatically digested proteins, followed by liquid chromatography-tan-

dem mass spectrometry (LC-MS/MS). Consequently, proteomic analysis of large cohorts of clinical speci-

mens (>100) requires several months for data acquisition using the aforementioned workflows. Further-

more, because each fraction analyzed typically requires 1–5 mg of total peptides, the required quantity

of the original tissue sample is in the milligram level. Although more rapid proteomic workflows have

been developed (Anagnostopoulos et al., 2017; Hebert et al., 2014; Kulak et al., 2014; Richards et al.,

2015), they have not yet been deployed for large-scale clinical proteomic studies.

Examples of large-scale clinical proteomic studies using the 2DLC-MS/MS workflow described above include

the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) studies. CPTAC

was formed to accelerate the understanding of the molecular basis of cancer through the application of

large-scale proteogenomic analyses. Several hundred tumor tissue specimens from breast, ovarian, and colo-

rectal cancer tissues previously analyzed by NCI’s The Cancer Genome Atlas (TCGA) have also been character-

ized using proteomics, informed by genomics, resulting in the identification and quantification of proteins and

phosphoproteins in cancer-associated cell signaling pathways and networks (Clark et al., 2020; Dou et al., 2020;

Mertins et al., 2016; Zhang et al., 2014a, 2016a). These studies employed data-dependent acquisition (DDA)

mass spectrometry, a mode of MS/MS data collection wherein a fixed number of precursor ions whose m/z

values were recorded in a survey scan are selected for fragmentation using a pre-determined set of rules

(Mann et al., 2001). DDA-based proteomic workflows have undergone considerable optimization to improve

the reliability and reproducibility of the generated data in an effort to minimize the limitations due to the
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stochastic nature of precursor ion selection and low sampling efficiency resulting in missing values across data-

sets (Mertins et al., 2018; Revesz et al., 2018; Tabb et al., 2016; Zhou et al., 2017).

A relatively newer method termed data-independent acquisition (DIA) mass spectrometry has been

gaining traction in large-scale proteomic studies (Vidova and Spacil, 2017). DIA mass spectrometry is an

alternative to DDA that allows all ions within a selected mass range to be concurrently fragmented and

analyzed by tandem mass spectrometry. Sequential Window Acquisition of All Theoretical Mass Spectra

(SWATH-MS) is an example of a DIA acquisition method whose use in proteomic studies has increased

considerably within the past 5 years. The SWATH-MS method acquires a complete and permanent digital

fragment ion record for all detectable precursor ions of a sample (Collins et al., 2013; Gillet et al., 2012; Liu

et al., 2013) and provides an iterative, targeted search strategy that determines the presence and quantity

of tens of thousands of query peptides using reference fragment ion spectra for the query peptides as

prior information (Rost et al., 2014). To support SWATH/DIA data analysis, several software tools have

been developed and benchmarked (Navarro et al., 2016). As with any analytical methodology that has

potential widespread use, several studies have been conducted to optimize and evaluate the performance

of SWATH-MS (Li et al., 2017b; Rardin et al., 2015). In a multi-laboratory study including 11 sites worldwide,

SWATH-MS was shown to have a linear dynamic range exceeding four orders of magnitude with an inter-

laboratory coefficient of variation (CV) of 22.0G 17.4% (Collins et al., 2017), demonstrating that SWATH-MS

is a reproducible method for large-scale protein quantification.

To assess the potential of SWATH-MS in addressing some of the common limitations of DDA proteomic

workflows, comparative analyses of SWATH-MS and DDA using isobaric tags for relative and

absolute quantitation (iTRAQ) have been conducted (Basak et al., 2015; Bourassa et al., 2015; Zhang

et al., 2014b). Basak et al. concluded that SWATH-MS and iTRAQ DDA are complementary techniques

with a 60% overlap of the high-confidence quantifiable proteins identified by both methods using

Saccharomyces cerevisiae as a model system when incorporating offline peptide fractionation into the

LC-MS workflow (Basak et al., 2015). In their study, Basak et al. incorporated first dimension separation us-

ing strong cation exchange chromatography wherein the peptides were fractionated into six

fractions followed by second dimension separation using reversed-phase chromatography prior to

LC-MS analysis.

In the current study, we utilized SWATH-MS to analyze peptides from 103 HGSOC tumors that were

previously analyzed by iTRAQ DDA as part of the NCI CPTAC study (Zhang et al., 2016a). The iTRAQ

DDA proteomic workflow resulted in the identification of 8,597 proteins from these tumors using a 24-frac-

tion peptide separation method, whereas 2,914 proteins were quantified by SWATH-MS without peptide

fractionation. We compared the two proteomic workflows on the basis of cost, robustness, complexity,

ability to detect differential protein expression, and the elucidated biological information. Our analysis

demonstrated that despite the greater than 2-fold difference in the analytical depth of iTRAQ DDA

compared with SWATH-MS common differentially expressed proteins in enriched pathways associated

with the HGSOC Mesenchymal subtype were identified by both workflows with 96% of the proteins quan-

tified by SWATH-MS also quantified by iTRAQ DDA. We also showed that tumor subtype classification sta-

bility is sensitive to the number of samples that are analyzed. Lastly, our results indicated a conservation of

the homologous recombination deficiency (HRD)-associated enriched DNA repair and chromosome orga-

nization pathways in the iTRAQ DDA and SWATH-MS datasets, thus indicating that some biological infor-

mation for HGSOC could be consistently extracted from either dataset.

Taken together, compared with the DDA analysis of HGSOC using iTRAQ labeling and 2D fractionation,

SWATH-MS is a robust proteomic method that can be used to re-capitulate common differentially ex-

pressed proteins in enriched pathways associated with the HGSOC Mesenchymal subtype (Zhang

et al., 2016a). The SWATH-MS proteomic workflow is simpler, cheaper, and consumes less sample, but

it results in shallower proteome coverage. The significantly lower number of proteins detected by

SWATH-MS compared with the iTRAQ DDA workflow is mitigated by the streamlined and less complex

workflow, the increased sample throughput (requiring ~80% less time), ~10-fold reduced sample require-

ments, and lower technical variability and attenuated signal compression. The SWATH-MS workflow

therefore presents novel opportunities to enhance the efficiency of clinical proteomic studies with

continuous method improvements.
2 iScience 23, 101079, June 26, 2020
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Ludwig et al. provide an in-depth overview of the advantages and limitations of SWATH-MS in comparison

with DDA (Ludwig et al., 2018). There are analytical challenges common to both workflows that should

be taken into account when deciding on an optimal approach for a given biological or clinical problem.

These challenges include sample complexity, dynamic range of the measured proteins, accuracy of the

protein measurements, use of incomplete databases, and the selection of peptides for protein quantifica-

tion. The strengths and weaknesses of SWATH-MS and iTRAQ DDA must be considered in the context of

the afore-mentioned analytical challenges.
RESULTS

Study Design and Evaluation of Technical Performance of Analytical Platforms

Proteomic measurements of clinically annotated HGSOC previously characterized by TCGA (Cancer

Genome Atlas Research, 2011) were conducted using an iTRAQ DDA workflow entailing stable isotope la-

beling, offline fractionation, and LC-MS/MS analysis of each fraction (Zhang et al., 2016a). A total of 103 of

these tumors were used for the current SWATH-MS analysis. An overview of the experimental design of our

study is shown in Figure 1.

Protein was extracted from each tumor specimen followed by enzymatic digestion with trypsin. For the

iTRAQ DDA workflow, the resulting peptides were labeled with 4-plex iTRAQ reagents followed by com-

bination into analysis sets comprising the peptides from three tumors, each labeled with a distinct iTRAQ

tag, and an iTRAQ-labeled reference pool comprising the peptides frommost of the tumors. Each analysis

set was subjected to offline fractionation into 24 concatenated fractions, and the fractions from each analyt-

ical set were sequentially analyzed using a DDA method on an LTQ-Orbitrap Velos mass spectrometer. An

unfractionated aliquot of each analytical set was also analyzed by DDA-MS without fractionation. In com-

parison, the SWATH-MS workflow did not require stable isotope labeling. However, for the purpose of

generating a spectral library to facilitate the targeted protein identification, each sample from 103 tumors

was pooled, fractionated to 48 fractions and subjected to DDA analysis, which is an optional step for this

workflow. We note that, although we chose in this study to create a sample-specific reference library,

several publicly available reference libraries exist (Ludwig et al., 2018). The implications of using a generic

human library on the false discovery rate (FDR) due to multiple hypothesis testing correction have been ad-

dressed (Rosenberger et al., 2017a). Another option is to avoid acquiring DDA runs to generate the spectral

library by utilizing spectrum-centric scoring of DIA data based on the use of algorithms such as DIA-Umpire

(Li et al., 2015; Tsou et al., 2015).

The CV of SWATH-MS data was assessed using two QC approaches (Figure S1). For the first method,

peptides from HEK293 cells were analyzed in triplicate on three days for a total of nine runs between

the DDA data acquisition runs for spectral library generation and the SWATH acquisition of the ovarian

tumor data. The median CV for 3,855 quantified proteins was 8%, and the mean total CV (reflecting the

intra- and inter-day CV) was 15% for the nine technical repeat analyses (Collins et al., 2013, 2017) (Fig-

ure S1A). For the second QC method, peptides from a control ovarian tumor were analyzed using a

DDA method on the same 5600+ TripleTOF mass spectrometer that was used to acquire the SWATH

data. These QC samples were run in duplicate immediately prior to the SWATH acquisition of the ovarian

tumor samples, and again in duplicate 10 days later when half of the ovarian tumor sample data acqui-

sition runs were completed. These measurements resulted in a total CV of 7% for 781 quantified proteins

(Figure S1B). For both QC strategies, the duration of the LC gradient was identical to the gradient used

for the SWATH analysis of the HGSOC samples. Hence, the results from these QC strategies evaluated

the analytical measurement/technical variability of the SWATH-MS platform that was used to acquire the

data from the ovarian tumor proteins.

We used the 1,599 proteins quantified by iTRAQ DDA and SWATH-MS to compare the analytical

differences between the two workflows with respect to relative protein abundances (Figure 2A), correla-

tion of the normalized relative abundance of the quantified proteins (Figure 2B), and variability of the

constituent peptides from the quantified proteins (Figure 2C; y axis indicates the peptide variability

calculated by the standard deviation of the quantified peptides for each protein divided by the mean

peptide intensity per protein). Relative protein abundances were determined based on the normalized

log2 intensity ratios compared with the reference iTRAQ channel of each iTRAQ set for the iTRAQ

data, and relative protein abundances in the SWATH-MS dataset were determined based on the log2

intensity of each protein as represented by the mean intensity of the constituent peptide ratios (peptide
iScience 23, 101079, June 26, 2020 3



Figure 1. Experimental Design of Proteomic Analysis of High-Grade Serous Ovarian Tumors Using DIA Mass

Spectrometry Instrument Platforms

A total of 103 clinically annotated ovarian high-grade serous carcinomas previously characterized by The Cancer Genome

Atlas (TCGA) were processed for proteomic analysis using an iTRAQDDAmethod wherein the samples were subjected to

fractionation prior to data acquisition and also using a SWATH-MS method without fractionation prior to analysis. The

data processing and bioinformatics pipeline enabled differential expression analysis and tumor subtype classification

comparison.
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Figure 2. Comparison of iTRAQ DDA and SWATH-MS Proteomic Data Based on Completeness and Variability

The 1,599 proteins quantified by iTRAQ DDA and SWATH-MS were used for the following comparisons: (A) Distribution of relative protein abundance in the

iTRAQ DDA and SWATH-MS datasets. (B) Spearman’s rank correlation of proteins quantified by iTRAQ DDA and SWATH-MS. (C) Peptide variability

calculated by the standard deviation of peptides per protein divided by mean peptide intensity per protein.
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intensity divided by the mean peptide intensity) (Figure 2A). The median relative log2 relative protein

abundance of the iTRAQ data was 0.01 compared with �0.23 in the SWATH-MS data. The compressed

distribution of the quantified relative protein abundances of the iTRAQ DDA data reflects the well-docu-

mented phenomenon of ratio compression in iTRAQ-based relative quantification (Ow et al., 2011; Sa-

vitski et al., 2013) (Figure 2A).

Spearman’s rank correlation was used to assess the strength of the association of the proteins quantified by

iTRAQ DDA and SWATH-MS. The median r of 0.61 indicates a moderately positive correlation (Figure 2B).

Among the factors that likely preclude the median r from being higher are the fundamental differences in

protein quantification (log2 ratio of reporter ion intensities in the iTRAQ DDA data compared with the

summed fragment ion intensities and normalized to the respective mean peptide intensities for the

SWATH-MS data) and the differences in protein quantification wherein multiple peptides from the same

protein were used to quantify each protein in the dataset. Additionally, for the majority of the quantified

proteins, different constituent peptides and different numbers of unique peptides were identified in the

iTRAQ DDA workflow compared with SWATH-MS. A direct comparison of the CV of each method was

not possible because replicate analyses of the samples were not conducted; therefore, a CV-like score

was calculated, which represents the biological variability of the sibling peptides from the quantified

proteins. Because aliquots of identical samples were used for this analysis, the displayed variation reflects

technical differences in the measurements and data handling of both methods. The median variability of

the SWATH-MS data was higher than the iTRAQ DDA data (0.25 versus 0.18, respectively). As shown in

the violin plots, the variability of the iTRAQ DDA data has a wider distribution than that of the SWATH-

MS data (Figure 2C).

Both assessed proteomic methods yielded different numbers of quantified proteins: a cumulative total of

8,597 quantified proteins resulting from the iTRAQ DDA analysis and a cumulative total of 2,914 quantified

proteins resulting from the SWATH-MS analysis. A total of 1 mg of each of the 24 fractionated peptide sam-

ples was used for the iTRAQ DDA analysis, and 1 mg of peptide samples from each tumor was injected for

the SWATH-MS analysis. In iTRAQ DDA, we used the original quantified proteomic data from Zhang et al.

(2016a), and we only used values obtained from unshared peptides with other proteins (proteotypic pep-

tides). The SWATH-MS data were filtered on a peptide-query level FDR of 1% and a protein-level global

FDR cutoff of 1% based on the method described by Rosenberger et al. for the statistical control of peptide

and protein error rates in large-scale DIA analyses (Rosenberger et al., 2017a). In addition, only proteotypic

peptides were used for quantification for this dataset.

For any proteomic dataset consisting of multiple analyses of biologically distinct samples, not every protein

will be detected in every sample, and the resulting data matrix will have missing values. This can either be

due to technical reasons, i.e., not every protein present in a sample will be identified owing to the stochastic

nature of the sampling of ions by the mass spectrometer or reasons related to biological variability. We
iScience 23, 101079, June 26, 2020 5
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therefore assessed the occurrence and distribution of missing values in the two datasets. Figure S2 shows

the distribution of the proteins with missing values in the iTRAQ and SWATH data. Here, we show the num-

ber of proteins with various percentages of missing values in the iTRAQ DDA (Figure S2A) and SWATH-MS

datasets (Figure S2B), starting with proteins without any missing values across all 103 samples up to

proteins with more than 91% missing values. In the iTRAQ dataset, approximately 50% of the proteins

did not have any missing values, whereas in the SWATH-MS dataset, 11% of the proteins did not have

any missing values and 50% of the proteins had ~30%missing values. The iTRAQ DDA dataset was directly

filtered for the proteins without missing values (4,363). The same approach was not applicable in SWATH-

MS owing to the sparsity of the matrix. Only working with complete measurements in SWATH-MS would

also result in neglecting potential biological effects, where proteins might not be detected owing to down-

regulation or absence in a subset of the samples. Owing to the instrument duty cycle and the stochastic

nature of data acquisition, more missing values are expected to occur in low-abundance proteins than in

high-abundance ones (Wang et al., 2007). We assessed this as well in the current dataset and could indeed

observe this inverse correlation (Figure S2C). Hence, to distinguish technical and biological reasons for

‘‘missingness’’ we applied a filtering strategy following this assumption by allowing more missing values

in high-abundance proteins and less missing values among the low-abundance proteins, yielding 1,659

proteins, instead of taking the 4,363 proteins without missing value from our previous iTRAQ based

DDA approach. To enable the use of a complete matrix, an imputation approach was adopted based on

that used in the Perseus software program (Tyanova et al., 2016). Imputation has been demonstrated to

be an effective approach to address the challenge of missing values in SWATH-MS and related DIA ap-

proaches (Collins et al., 2017; Karpievitch et al., 2012; Rost et al., 2016).

The robust filtering approach used for the SWATH-MS data resulted in 1,659 proteins that were quantified

with high confidence across all 103 tumors. Among these proteins, 1,599 were also quantified using iTRAQ-

DDA, and these are the proteins that were used for all subsequent analyses, including the elucidation of the

molecular subtype classification of the tumors based on their proteomic signatures.
High-Grade SerousOvarian Carcinoma Subtype Classification Based on Proteomic Signatures

The rationale for the molecular subtyping of HGSOC is related to efforts to develop more specific and

effective therapeutic strategies given the heterogeneity of this type of ovarian cancer. To assess the ability

to classify the iTRAQ-DDA and SWATH-MS data into subtypes based on proteomic signatures, we used the

same approach as reported by Zhang et al. wherein an unbiased molecular taxonomy of HGSOC was es-

tablished using relative protein abundance data to identify subtypes that exhibit biological differences

(Zhang et al., 2016b). The 1,599 proteins that were quantified in the iTRAQ-DDA and SWATH-MS datasets

were used to classify the two datasets separately using mclust (Fraley and Raftery, 2002) based on the

z-score-transformed relative protein abundances, and the emergent protein modules were characterized

using weighted gene-correlation network analysis (WGCNA) (Langfelder and Horvath, 2008) and Reactome

pathway enrichment. The heatmap resulting from the clustering analysis is shown in Figure S3A with the

proteins listed in horizontal rows and the tumors listed in vertical columns. The colored vertical bars repre-

sent the transcriptome-based HGSOC subtypes (Verhaak et al., 2013) (‘‘Original TCGA’’), the proposed

proteomic iTRAQ DDA subtypes (‘‘Original CPTAC’’ (Zhang et al., 2016a); ‘‘iTRAQ DDA’’), and the pro-

posed proteomic SWATH-MS subtypes (‘‘SWATH-MS’’).

The correlation of the WGCNA-derived protein modules with the proteomic subtypes derived from the

iTRAQ DDA and SWATH-MS datasets is shown in Figure S4. The enriched Reactome pathways in the

WGCNA-derivedmodules in the SWATH-MS data include ECMorganization, immune response, metabolism,

complement cascade and fibrin clot formation, and gene expression and translation. In the SWATH-MS

dataset, the tumors with proteins exhibiting a significantly positive correlation (Pearson correlation coefficient

r= 0.52; p value= 23 10�8) with the ECMorganization Reactomepathwaywere assigned to theMesenchymal

subtype. A significantly positive correlation (Pearson correlation coefficient r = 0.54; p = 5 3 10�9) was also

observed among the proteins assigned to the gene expression and translation ontology.

Based on the observation highlighted by the dashed box in Figure 3 indicating a large degree of similarity

among the genomic and proteomic profiles of the Mesenchymal subtype tumors, we conducted a down-

sampling analysis in an effort to evaluate the stability of theMesenchymal subtype. In this analysis, the num-

ber of tumors used for the cluster analysis was systematically decreased to determine the sample number

cutoff below which the enrichment of the Reactome pathways was no longer significant. The Mesenchymal
6 iScience 23, 101079, June 26, 2020
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Figure 3. Protein (iTRAQ DDA, SWATH-MS) and mRNA-Based High-Grade Serous Ovarian Cancer Subtype

Classification

(A) Tumor subtype classification comparison based on gene expression (TCGA study) and relative protein abundance

(original CPTAC study [Zhang et al., 2016a], and the iTRAQ DDA and SWATH-MS data from the current analysis). Subtype

classification: blue, Mesenchymal; red, Differentiated; purple, Proliferative; green, Immunoreactive; yellow, Stromal.

(B) Subtype classification agreement among the genomic and proteomic data assessed by the Adjusted Rand Index (ARI).
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cluster was the only cluster for which the enrichment of specific Reactome pathways remained significant

(p < 0.01, Fisher’s exact test) when the sample number was reduced to 60% (Figure S3B). These results sug-

gest that the SWATH-MS and iTRAQ DDA proteomic signatures of the Mesenchymal subtype tumors are

consistent and robust.

Because the protein and mRNA components of the same ovarian tumors were analyzed, we were able to

compare the robustness of the Mesenchymal subtype across different analytical methods. Figure 3A com-

pares the subtyping of the tumors based on the five protein-based subtypes (Differentiated ‘‘D,’’ Immuno-

reactive ‘‘I,’’ Proliferative ‘‘P,’’ Mesenchymal ‘‘M,’’ and Stromal ‘‘S’’) that emerged from the original iTRAQ

DDA-based analysis of these tumors (Zhang et al., 2016a), the four mRNA-based subtypes (Differentiated,

Proliferative, Mesenchymal, and Immunoreactive) that emerged from the genomic analysis (Cancer

Genome Atlas Research, 2011), and the three protein-based subtypes that resulted from the clustering

analysis of the iTRAQ DDA and SWATH-MS data using the 1,599 proteins that were quantified using these

two analytical approaches. Based on visual analysis, the Mesenchymal subtype tumors (represented by

shades of blue) exhibit the highest degree of classification agreement among the four analytical ap-

proaches. Although the accurate characterization of the molecular subtypes of HGSOC is challenging, it

is widely accepted that the Mesenchymal subtype is defined by the increased expression of extracellular

matrix proteins and desmoplasia (Chen et al., 2018). Compared with the other data types, the SWATH-

MS data facilitates the discrete partitioning of one of the five proteomic subtypes, the Mesenchymal

subtype tumors, from our previous five proteomic subtypes (Figure 3A).
Influence of Sample Size and Analytical Depth on Tumor Molecular Subtype Classification

Stability

We used the Adjusted Rand Index (ARI) to quantitatively assess the agreement among the classification of

the tumors based on the proteomic analyses (iTRAQ DDA and SWATH-MS) (Figure 3B). ARI values range

from 0 to 1, with 1 indicating clustering results that are identical and 0 indicating clusters that are devoid of

similarity. Although we did not anticipate an ARI of 1 when comparing the iTRAQ DDA and SWATH-MS data-

sets using the commonly quantified 1,599 proteins owing to the inherent noise in biological data, we did not
iScience 23, 101079, June 26, 2020 7



Figure 4. Proteomic Cluster Stability as a Function of Sample Number and Protein Number in the iTRAQ DDA and

SWATH-MS Datasets

Cluster stability measured by the Adjusted Rand Index (ARI) as a function of the percentage of tumors analyzed in the

iTRAQDDA (A) and SWATH-MS (B) datasets. (C and D) Cluster stability assessed by ARI as a function of the percentage of

quantified proteins in the iTRAQ DDA (C) and SWATH-MS (D) datasets. *p < 0.05, **p < 0.01, ****p < 0.0001. n.s. non-

significant
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expect the relatively low ARI of 0.21. To further explore the similarity among the various proteomic datasets

mentioned in Figure 3A, we calculated the ARI values that resulted from changing the numbers of proteins

included in the analysis. The highest ARI was 0.58, which was obtained by comparing the complete iTRAQ

DDA dataset without any missing values (4,363) with the 1,599 proteins in the iTRAQ DDA dataset that

were also quantified by SWATH-MS. This ARI was unexpectedly low given the expected level of similarity

when comparing a subset to the full set of exactly the same data. Conversely, the lowest ARI, 0.14, was

obtained when comparing the full iTRAQ DDA dataset of 8,597 proteins with the 1,599 proteins that were

quantified in common using SWATH-MS. This low ARI value of 0.14 is likely reflective of the fundamental

differences in protein quantification between iTRAQ DDA and SWATH-MS.

We further examined the unexpected lack of similarity when comparing the subset of the iTRAQ data to the full

dataset by adopting a systematic bootstrapping approach. Bootstrapping was used to randomly select a

fraction of either the 103 samples analyzed by iTRAQDDA and SWATH-MS (Figures 4A and 4B) or the proteins

that were quantified by iTRAQ DDA (4,363) and SWATH-MS (1,659) (Figures 4C and 4D). ARI values based on

mclust classification were used to determine the robustness of the clusters. This bootstrapping was repeated

100 times for each subset of the proteins or samples. The resulting classifications were compared with the result
8 iScience 23, 101079, June 26, 2020



Figure 5. Comparison of Proteins Comprising the Mesenchymal Subtype Tumors in the iTRAQ DDA and SWATH-

MS Data

(A) High overlap of proteins characterizing the Mesenchymal subtype in the SWATH MS data and the iTRAQ DDA data.

(B) Strong positive correlation of 84 proteins commonly comprising the Mesenchymal subtype in the iTRAQ DDA and

SWATH-MS data (median r = 0.79).
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from the complete initial dataset, and the distribution of ARI values is shown in Figure 4 for the iTRAQDDA (left

column, A, C) and SWATH-MS datasets (right column, B, D). A lack of statistical significance among the ARI

values (n.s.) indicates cluster stability, whereas cluster instability is indicated by statistically significant changes

in ARI.Whenwe bootstrapped along the dimension of sample number, the average ARI decreased dramatically

with the reduced number of samples, even when comparing 90% versus 80% of the samples in the iTRAQ DDA

and SWATH-MS datasets (Figures 4A and 4B, respectively). However, the corresponding median ARI values of

the incrementally reduced sample sizes in the SWATH-MS dataset systematically exceed the median ARI values

of the iTRAQDDA dataset (Figure 4B). These results indicate that the fidelity of molecular clusters is rather sen-

sitive to the number of samples included in the analysis and that the clusters identified from the SWATH-MSdata

generally have slightly higher confidence. In comparison, when we bootstrapped along the dimension of the

number of quantified proteins (Figures 4C and 4D) the ARI was refractory to the number of proteins included

in the clustering. The difference among the ARI values did not reach statistical significance at a significance level

of 0.05 (i.e., the clusterswere stable) when the number of quantifiedproteinswas down-sampled to 30%and50%

of the initial group of proteins in the iTRAQ DDA and SWATH-MS datasets, respectively. Hence, the resulting

clusters are largely insensitive to the number of included proteins.

The sensitivity of molecular subtype clustering to the number of samples included in the analysis has been

shown previously (Levine and Domany, 2001; Monti et al., 2003); however, this phenomenon has not been

demonstrated in a systematic manner for proteomics data. Increasing the number of samples included in

subtype classification analyses renders the classifications more robust, whereas increasing the numbers of

proteins by employing proteomics methods such as 2DLC-MS/MS iTRAQ DDA does not provide an added

benefit in terms of cluster stability. Our bootstrapping approach clearly demonstrated how easily classifi-

cation results can be perturbed by experimental variables such as sample size, with a negative impact on

the ability to extract robust biological content.

Nevertheless, in our SWATH-MS analysis, we were able to extract one robust HGSOC subtype, which was

characterized by the increased relative abundance of proteins with extracellular matrix functions (Fig-

ure S3A). The robustness of this presumptive Mesenchymal subtype as a function of sample number was

demonstrated using different subsets of samples in the SWATH-MS dataset using a Fisher’s exact test (Fig-

ure S3B). A fundamental premise of this stability analysis is that only the most robust information can be

reproducibly extracted from the data. The emergence of the Mesenchymal phenotype as a robust subtype

in the iTRAQ DDA and SWATH-MS data indicates that biologically relevant content can be robustly

extracted from these orthogonal/complementary analytical methods. The proteins characterizing the

Mesenchymal cluster in the SWATH data (86 proteins) and the iTRAQ DDA data (283 proteins) were en-

riched in extracellular matrix organization function, show an overlap of 84 proteins (Figure 5A), and have

a significantly higher correlation of the relative abundance of constituent proteins compared with the
iScience 23, 101079, June 26, 2020 9



Figure 6. Group Comparison of Proteins in Mesenchymal Subtype versus the Non-mesenchymal Subtypes

Up-regulated proteins among the Mesenchymal subtype tumors are indicated in red and the down-regulated proteins

are indicated in blue. The fold-change cutoff was 1.3, and the significance cutoff was p < 0.05.

(A) iTRAQ DDA data.

(B) SWATH-MS data.

(C) Comparison of all proteins assigned to the ECM module based on the original proteomic classification (Zhang et al.,

2016a) versus proteins assigned to the ECM module in the iTRAQ DDA data and the SWATH-MS data.
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proteins in the entire dataset of 1,599 proteins (Figure 5B, median r = 0.79 compared with Figure 2B, me-

dian r = 0.61). The relatively high correlation of the relative abundance of proteins comprising the Mesen-

chymal cluster is also evidenced by the overlap among theMesenchymal subtype tumors (Figure 3A). These

results suggest that the robustness of the clusters increases with increasing quantification accuracy rather

than by increasing the number of quantified proteins.

To determine whether the same proteins from the iTRAQ DDA and SWATH-MS datasets would be identi-

fied in a group comparison of Mesenchymal subtype samples versus the other samples, we used the sam-

ple subtype annotations from the Zhang et al. iTRAQ DDA study (Zhang et al., 2016a). The log2-fold

changes of these proteins in the iTRAQDDA and SWATH-MS datasets were determined as well as the asso-

ciated p value (Figure 6). Proteins with significantly increased or decreased relative abundance (fold-

change cut-off: 1.3; p < 0.05) are indicated in red or blue, respectively. The significantly upregulated pro-

teins (Figures 6A and 6B, red dots) in these comparisons showed a high overlap with the 84 common pro-

teins from the ECM protein module (Figure 6C) as defined by the Zhang et al. iTRAQ DDA study (Zhang

et al., 2016a). Well-established cancer markers such as Fibronectin 1 and Thrombospondins that are known

for contributing to the metastatic progression of tumors (Hu et al., 2017; Incardona et al., 1993; Kenny et al.,

2014; Mitra et al., 2011; Ricciardelli et al., 2016) were among those proteins, confirming the characterization

of these samples as Mesenchymal subtype tumors. Although there is a high overlap of these proteins be-

tween the iTRAQ DDA and SWATH datasets, 33 of the up-regulated proteins were not identified as such in

the iTRAQ DDA dataset. Nevertheless, most of those 33 proteins are part of the extracellular region and

exhibit enrichment in extracellular matrix organization as well. Also, of note, the quantitative dimension

of iTRAQDDA is narrower than that of the SWATH-MS data, which influences the extent of similarity among

the proteins quantified by each method.

Since the proteomic subtypes other than the Mesenchymal subtype identified in the CPTAC and TCGA

studies could not be clearly distinguished by the classification analyses of the datasets used in this study,

we performed a similar differential expression analysis on those groups using the 1,599 proteins that were

quantified in the iTRAQDDA and SWATH-MS datasets (Figure S5). As expected, the p values of those com-

parisons were considerably less significant than those resulting from the analyses of the Mesenchymal sub-

type. The Differentiated and Stromal subtypes did not lead to any conclusive results in these analyses

based on the functional enrichment of the proteins with increased or decreased relative abundances,

whereas the Proliferative and Immunoreactive subtypes were characterized by several differentially ex-

pressed proteins with rather high p values (low significance). The WGCNA analyses of the respective differ-

entially abundant proteins identified protein modules related to immune response and gene expression

and translation (Figure S4). However, those modules did not show high associations with any of the patient

groups.
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Figure 7. Group Comparison of Proteins in HRD versus Non-HRD Tumors Analyzed by SWATH-MS

(A) Relative abundance of up- (red) and down- (blue) regulated proteins in the HRD compared with the non-HRD tumors.

The log2-fold change cutoff was 1.3 and the significance cutoff was p < 0.05.

(B) Functional enrichment analysis using STRING. Blue nodes: Chromosome organization proteins. Red nodes: DNA

repair proteins. Blue and red nodes: Proteins with roles in chromosome organization and DNA repair.
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Homologous Recombination Deficiency-Related Proteomic Signature of HGSOC Identified in

SWATH-MS Data

Previous studies have used gene expression and mutation profiles to characterize molecular subtypes of

high-grade serous ovarian cancer to identify patients who respond well to poly-ADP ribose polymerase

(PARP) inhibitor treatment (Lheureux et al., 2017; Tothill et al., 2008). Homologous recombination defi-

ciency (HRD) is associated with a higher sensitivity toward PARP inhibitor treatment and therefore with a

better prognosis for the respective patients. The initial iTRAQ DDA analysis of the HGSOC tumors resulted

in the identification of a well-defined network of proteins with roles in histone acetylation that differentiated

HRD from non-HRD tumors (Zhang et al., 2016a). Thus, we conducted an analysis to determine whether

similar HRD-related features could be identified from the SWATH-MS data in the current study.

A group comparison of HRD versus non-HRD patients using mapDIA (Teo et al., 2015) revealed several

differentially expressed proteins (Figure 7A). Because none of these proteins could be directly linked

to DNA repair mechanism-related functions, we used a network propagation approach (Hofree et al.,

2013) to extend the comparatively limited analytical depth of the SWATH measurements. As an input

we used a network obtained from STRING (Szklarczyk et al., 2015) filtered for highly confident experi-

mental evidence (physical interactions with a score higher than 800) with 4,424 nodes. Log2-fold changes

obtained from the group comparison approach were mapped on this network, and these signals were

propagated over the network to identify signals accumulating within a subnetwork. The top 5% (221 pro-

teins) of the resulting positive and negative scores were used for further investigation and functional

enrichment.

Further verifying that proteins with roles in histone acetylation differentiate HRD from non-HRD tumors (Zhang

et al., 2016a), DNA repair and chromosome organization were among the GO terms that were identified using

the previously described network propagation approach based on functional enrichment analysis. The respec-

tive sub-network contained proteins previously identified as belonging to the HRD-associated protein network,

including histone deacetylase 1 (HDAC1; Figure 7B) and a histone-binding protein RBBP7 (Zhang et al., 2016a)

(Figure 7B). HDAC1 and RBBP7 are among the blue nodes representing chromosome organization proteins.

Another protein identified in this sub-network was a DNA mismatch repair protein that is a well-known marker

for ovarian cancer, MSH2 (Maresca et al., 2015; Stewart et al., 2017; Xiao et al., 2014; Zhao et al., 2018). Addition-

ally, subunits of the tumor suppressor complex SWI/SNF, including ARID1A, SMARCC1, and SMARCA2, were

among the proteins in the enriched chromosome organization network. The interaction of SWI/SNF with

PARP and BRCA1 has been demonstrated previously by in vitro studies using yeast two-hybrid screening, affinity

purification followed by western blotting, and co-immunoprecipitation purification followed by LC-MS/MS (Bo-

char et al., 2000; Harte et al., 2010; Hill et al., 2004). The identification of SWI/SNF complex components in the
iScience 23, 101079, June 26, 2020 11
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enriched chromosomeorganization network in our study and the results from in vitro studies indicating the inter-

action of these proteins with PARP and BRCA1 support the well-known role of these proteins in the control of

homologous recombination during DNA repair.

In summary, the analysis of the SWATH data was able to provide not only confirmation of some previously

identified signatures from the iTRAQ DDA data in a larger untargeted network approach, but also impor-

tant mechanistic insights into HRD-related pathways as discovered by iTRAQ labeling and LC-MS/MS using

DDA (Zhang et al., 2016a).
DISCUSSION

HGSOC is among the cancer types that have been proteogenomically characterized by CPTAC. The large-

scale proteome analytical workflow employed by CPTAC uses isobaric tagging, offline peptide fraction-

ation, and LC-MS/MS. This workflow is considered a reference method for the comparison of tissue protein

relative abundance across large sample cohorts. However, recently, DIA proteomic methods exemplified

by SWATH-MS have been developed, which are simpler, cheaper, and consume less sample than the refer-

ence method but provide shallower proteome coverage.

Although HGSOC is the most common histological subtype of ovarian cancer, there is a considerable

amount of tumor heterogeneity (Arend et al., 2018), thus underscoring the need for comprehensive char-

acterization of the molecular subtypes of this lethal disease. Previous studies have shown that somatic mu-

tations (Wiegand et al., 2010), genetic (Gates et al., 2010) and environmental risk factors (Goode et al.,

2010), and the clinical response rates to platinum- or taxane-based therapy (Sugiyama et al., 2000) vary

considerably among the HGSOC molecular subtypes. As such, elucidating the molecular characteristics

of HGSOC could facilitate the development of more targeted and effective therapies (Leong et al.,

2015; Vaughan et al., 2011).

DDA mass spectrometry workflows have been employed to comprehensively characterize HGSOC (Coscia

et al., 2016; Li et al., 2017a; Xie et al., 2017; Zhang et al., 2016a) with varying numbers of molecular subtypes

emerging from these analyses. Functional genomic studies have identified various numbers of distinct

HGSOC molecular subtypes with clinical relevance and pathways that are responsible for growth control

in epithelial ovarian cancer (Cancer Genome Atlas Research, 2011; Tan et al., 2013). The discordance

among these subtypes results from the varied sample sizes and analytical criteria used to conduct these

studies (Helland et al., 2011; Tothill et al., 2008; Verhaak et al., 2013). As we show in this study, the discor-

dance also results from the low robustness of observed patterns as a function of sample size and the

numbers of protein used for the analysis. Our current study provides orthogonal evidence of the proteomic

signatures of the HGSOC Mesenchymal subtype and the fidelity of the HGSOC Mesenchymal subtype,

which is more sensitive to sample number compared with the number of quantified proteins. This has im-

plications for the design of future large-scale clinical proteomic studies of cancer types where molecular

subtyping is a predominant goal.

In this study, we compared the results obtained by the reference large-scale DDA proteomic method

versus SWATH-MS using aliquots of peptide samples generated for the CPTAC HGSOC study (Zhang

et al., 2016a). The results indicate that iTRAQ DDA and SWATH-MS confidently identified differentially ex-

pressed proteins in enriched pathways associated with theMesenchymal subtype of HGSOC tumors as evi-

denced by the (1) high degree of overlap of up-regulated extracellular matrix-related proteins (Figure 5A),

(2) strongly positive median correlation (r = 0.79) among the proteins comprising this subtype from both

proteomic workflows (Figure 5B), and (3) statistically significant stability of this subtype in the context of

the number of tumors included in the clustering analysis (Figure S3B). The robustness of the Mesenchymal

subtype with respect to molecular subtype cluster stability could be a signature of the decreased survival of

patients whose tumors express this molecular signature compared with an Immunoreactive signature. A

study conducted using a cohort of 174 HGSOC patients from the Mayo Clinic with long-term clinical

follow-up observed statistically significantly worse survival of patients whose tumor samples expressed a

Mesenchymal-like signature upon the analysis of a set of 1,850 genes (Konecny et al., 2014). A similar trend

of worse survival for patients with Mesenchymal subtype tumors compared with those with Immunoreactive

subtype tumors was observed upon the analysis of a separate cohort of 185 HGSOC patients (Bonome

et al., 2008).
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In addition to its association with worse survival and low rates of resection, the Mesenchymal subtype of

HGSOC is associated with a significant contribution from the cancer-associated stroma (Tothill et al.,

2008; Zhang et al., 2019). Cancer-associated stroma comprises extracellular matrix proteins, tissue remod-

eling proteases, and other proteins that comprise a scaffold for tissue organization and integrity (Davidson

et al., 2014). These proteins are highly abundant, which could explain why they are readily detectable across

distinct analytical workflows resulting in the consistent classification of the Mesenchymal subtype.

The notion of discreteHGSOCsubtypes that aremutually exclusive is not universally accepted. Verhaak et al. sug-

gested that an individual tumor could be represented bymultiple signatures based on different levels of pathway

activation (Verhaak et al., 2013). This concept has been supported byKonecny et al. whoproposed amulti-dimen-

sional approach tosubtypingwheremolecular subtypes lieonaspectrumwithpartlyoverlappingcauses (Konecny

et al., 2014). Additional large-scale clinical proteomic studies of HGSOC tumors that are designed to address is-

sues related to tumor heterogeneity would be beneficial in enhancing the resolution of molecular subtyping.

Our SWATH-MS analysis confirmed the proteomic signature of HRD established by iTRAQ DDA analysis

wherein a sub-network of BRCA1- or BRCA2-related proteins displayed co-expression patterns differenti-

ating HRD from non-HRD patients (Zhang et al., 2016a). Many of the proteins in these identified modules

have roles in histone acetylation or deacetylation. Inhibitors of PARP and histone deacetylase inhibitors

have emerged as novel classes of anti-cancer drugs to treat HR-related ovarian cancer associated with

BRCA1/2 mutations (Bryant et al., 2005; Farmer et al., 2005; Yano et al., 2018; Yuan et al., 2017). Thus,

the proteomic characterization of HGSOC tumor tissue biopsies from patients who receive PARP inhibitor

treatment could be beneficial in further elucidating the molecular mechanisms that are implicated in HRD.

One of the strengths of the iTRAQ DDA workflow is the ability to achieve deep proteome coverage that

exceeds that of the SWATH workflow by almost 3-fold. A total of 8,597 proteins were quantified by iTRAQ

DDA compared with 2,914 proteins by SWATH-MS. These numbers represent the aggregate numbers of

quantified proteins. However, after employing filtering strategies to restrict the data to only the proteins

that were quantified across all 103 tumors for each workflow, these numbers decreased to 4,363 and

1,659, respectively. The group of 1,599 proteins that were quantified by both proteomic workflows was

used to compare the performance of iTRAQ DDA and SWATH-MS.

In addition to their analytical performance, there are also considerable differences in the resource charac-

teristics of iTRAQ DDA and SWATH-MS, including sample requirement, sample throughput, and cost.

Hence, it is clear that iTRAQ DDA for comprehensive proteome profiling is a substantially more

resource-intense workflow compared with SWATH-MS.

Based on the concordance between the iTRAQ DDA and SWATH-MS results that we have shown in this

study, SWATH-MS, which is considerably less resource intense than iTRAQ DDA, can be reliably deployed

in the proteomic analysis of clinical specimens. The clinical utility of future large-scale translational prote-

omic studies, regardless of the employed analytical methodology, can be strengthened by the use of large

sample cohorts that have undergone comprehensive pathology review.

Although our study was focused on the performance of SWATH-MS, other DIA methods are currently avail-

able. Our SWATH-MS analysis was conducted using a 5600+ TripleTOF mass spectrometer; however, a

newer generation of this mass spectrometer platform exists with an increased linear dynamic range and

enhanced detection system, which could result in improved instrument performance with respect to the

number of quantifiable proteins per analytical run. A recent DIA study conducted by Bruderer et al. using

a quadrupole ultra-high field Orbitrap mass spectrometer resulted in the identification of more than 6,000

proteins in human cell lines and more than 7,000 proteins in mouse tissues (Bruderer et al., 2017). Of note,

the use of isobaric chemical labeling strategies, including 10- and 11-plex tandem mass tags, has greatly

facilitated the multiplexing capabilities of large-scale clinical proteomic studies resulting in the reproduc-

ible quantification of >10,000 proteins (Krieger et al., 2019; Mertins et al., 2018).

In contrast to the original CPTAC HGSOC study, we did not assess protein phosphorylation in the current

study. However, it should be noted that SWATH/DIA-MS has been shown to be compatible with the anal-

ysis of protein phosphorylation patterns and specific software tools supporting such analyses have been

developed (Rosenberger et al., 2017b).
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Limitations of the Study

As expected, the development of new analytical instruments and methods often enables an expanded

breadth and/or depth of analytical measurement. After the performance of these instruments and

methods has been optimized and validated, the short-comings of previously existing methods become

evident. It is as yet unknown whether SWATH-MS and other DIA proteomic methods will have an

increased prevalence in clinical proteomic analyses. However, our current study provides compelling

orthogonal evidence that SWATH-MS elucidates some of the common biological signatures of the

Mesenchymal subtype of HGSOC.

Novel biological insights beyond those that were initially gleaned from the iTRAQ DDA data (Zhang et al.,

2016a) and confirmed by the SWATH-MS data could be obtained via additional bioinformatics and statis-

tical analyses. However, the goal of this study, as reflected in the experimental design, was not to reveal

novel biological insights, but rather to demonstrate that the SWATH-MS workflow presents novel oppor-

tunities to enhance the efficiency of clinical proteomic studies and to disseminate large-scale cancer

proteomic studies beyond the realm of large research consortia, thus potentially accelerating the use of

this powerful proteomic approach to cancer biology.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

All the raw data from SWATH-MS measurements, along with the input spectral library and OpenSWATH

results, can be freely downloaded from the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) with the dataset identifier: PXD010437 via the PRIDE partner (Vizcaino et al., 2016).

The iTRAQ DDA data are available on the NCI CPTAC Data Portal (https://cptac-data-portal.georgetown.

edu/cptac/s/S026); mass spectrometry site: Johns Hopkins University. Other data are available from the

corresponding authors upon request.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101079.
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Supplementary Figures 
 

 
Supplementary Figure S1, Related to Figure 2. Distribution of quantified proteins 
from QC strategies used to assess technical variability. a) Distribution of quantified 

protein CVs from HEK293 lysate analyzed via SWATH (n=3 technical replicates per day 

for 3 days; total = 9 technical replicates) prior to the analysis of the ovarian tumors. Median 

total CV=15%; 3,855 quantified proteins. b) Distribution of quantified protein CVs from a 

control ovarian tumor analyzed in duplicate via DDA prior to and mid-way through the 

ovarian tumor SWATH analyses (n=4 technical replicates). Median total CV=7%; 781 

quantified proteins. 
 
 
 
 
 
 
 
 



 
Supplementary Figure S2, Related to Figure 2. Completeness of iTRAQ DDA and 
SWATH-MS proteomic data. a) Analysis of missing values in the iTRAQ DDA dataset. 

b) Analysis of missing values in the SWATH-MS dataset. c) Relationship between signal 

intensity and number of missing values for the proteins quantified by SWATH-MS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure S3, Related to Figure 3. Protein (iTRAQ DDA, SWATH-MS) 
and mRNA-based high-grade serous ovarian cancer subtype classification. a) 
Tumor subtype classification based on the associated driving protein modules. Numbers 

indicate z-scores. Subtype classification: Blue – Mesenchymal; Red – Differentiated; 

Purple – Proliferative; Green – Immunoreactive; Yellow – Stromal. b) Stability of the 

Mesenchymal compared to the non-Mesenchymal subtypes assessed by bootstrapping 

and Fisher’s exact test.  



 
Supplementary Figure S4, Related to Figure 3. Analysis of tumor subtype analysis 
according to data type. Correlation of weighted gene co-expression network analysis 

(WGCNA)-derived protein modules with proteomic subtypes derived from the iTRAQ DDA 

data (a) and the SWATH-MS data (b). The numbers in each box indicate the Pearson 

correlation coefficient (-1 to 1), and the numbers in parentheses indicate the p-value 

corresponding to the significance of each association. The enrichment of Reactome 

pathways in the WGCNA-derived modules in the iTRAQ DDA and SWATH-MS data is 

also shown. The significance of association is denoted by colored dots indicating the q-

value, and the number of proteins mapped to a given ontology as a proportion of the total 

number of proteins in the module (GeneRatio) is indicated by the size of the dot. The 

WGCNA-derived protein modules for the iTRAQ DDA data are as follows: magenta – 

gene expression; black – immune response; purple – transcription; tan – erythrocyte and 

platelet; magenta – cytokine signaling; red – ECM interaction; gray – metabolism. The 

WGCNA-derived protein modules for the SWATH data are as follows: green – immune 

response; turquoise – gene expression; black – ECM interaction; red – complement 

cascade; gray – metabolism. 



 
 

Supplementary Figure S5, Related to Figure 3. Differential relative protein 
abundance analysis of proteins in the Differentiated, Immunoreactive, Proliferative 
and Stromal subtype tumors from the iTRAQ DDA and SWATH-MS datasets. Up-

regulated proteins are indicated in red and the down-regulated proteins are indicated in 

blue. The log2 fold-change cut-off was 1.3 and the significance cut-off was set at p<0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Transparent Methods 
 
STAR Methods 
KEY RESOURCES TABLE 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Biological Samples   

Human ovarian tumor tissue 

National Cancer 
Institute Clinical 
Proteomic Tumor 
Analysis Consortium 

https://proteomics.ca
ncer.gov/programs/c
ptac 

Chemicals, Peptides, and Recombinant Proteins 
Urea Sigma-Aldrich Cat# U0631 
HPLC-grade water J.T. Baker Cat# 4218-03 
Triethylammonium bicarbonate Sigma-Aldrich Cat# T7408 
Ammonium bicarbonate Sigma-Aldrich Cat# A6141 

Tris (2-carboxyethyl) phosphine (TCEP) Thermo Fisher 
Scientific Cat# 20490 

Iodoacetamide Sigma-Aldrich Cat# A3221 
Sequencing-grade modified trypsin Promega Cat# V511X 
Formic acid Sigma-Aldrich Cat# 56302 
Trifluoroacetic acid Sigma-Aldrich Cat# 91707 
Acetonitrile J.T. Baker Cat# 9829-03 
iTRAQ reagent kit – 4plex Sciex Cat# 4352135 
Critical Commercial Assays 
BCA bicinchoninic protein assay kit Pierce Cat# 23325 
Deposited Data 

iTRAQ DDA data NCI CPTAC Data 
Portal 

https://cptac-data-
portal.georgetown.e
du/cptac/s/S026 
(Mass spectrometry 
site: Johns Hopkins 
University) 

SWATH data, input spectral library, OpenSWATH 
results 

ProteomeXchange 
Consortium 

http://proteomecentr
al.proteomexchange.
org  
Dataset identifier: 
PXD010437 

 
Software and Algorithms 

Programming code for bioinformatics pipeline Github repository 
bfriedrichgrube/OC_
CPTAC_iTRAQ_SW
ATH 

msconvert ProteoWizard 
v3.0.8851 

http://proteowizard.s
ourceforge.net/downl
oad.html 

X!Tandem 2013.06.25.1 Duncan et al., 2005 https://www.thegpm.
org/tandem/ 



OMSSA 2.1.9 Geer et al., 2004 https://omictools.co
m/omssa-tool 

Comet 2015.02 rev. 3 Eng et al., 2013 http://comet-
ms.sourceforge.net/ 

Trans-Proteomic Pipeline v. 4.7 Keller et al., 2005; 
Lam et al., 2007 

http://tools.proteome
center.org/wiki/index
.php?title=Software:
TPP 

OpenSWATH Rost et al., 2014 http://www.openswat
h.org/en/latest/ 

SpectraST Keller et al., 2005; 
Lam et al., 2007 

http://tools.proteome
center.org/wiki/index
.php?title=SpectraS
T 

TRIC Rost et al., 2016 http://proteomics.eth
z.ch/tric/ 

mapDIA v. 3.0.2 Teo et al., 2015 http://mapdia.sourcef
orge.net/Main.html 

Other 
SepPak tC18 Vac cartridges Waters Cat# WAT054925 
Polysulfoethyl A strong cation exchange columns Glygen Cat# TT3SSA 

 
 
CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Hui Zhang (huizhang@jhu.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Tumor samples The tumor specimens were obtained through The Cancer Genome Atlas 

(TCGA) Biospecimen Core Resource, and they were previously genomically 

characterized (Cancer Genome Atlas Research, 2011). As previously described (Zhang 

et al., 2016), the biospecimens were obtained from newly diagnosed patients with ovarian 

serous adenocarcinoma who were undergoing surgical resection and did not receive prior 

treatment, including chemotherapy or radiotherapy, for their disease. Per the TCGA 

study, all specimens were obtained from patients with appropriate consent from the 

relevant institutional review board. Frozen tissue specimens were extracted and used for 

subsequent proteomic analysis. 

 
 
 

mailto:huizhang@jhu.edu


METHOD DETAILS 
Protein extraction and in-solution digestion Approximately 50mg of each tumor tissue 

specimen was sonicated in 1.5mL of 8M urea, 0.8M NH4HCO3, pH 8.0. Protein 

concentration was determined using a BCA assay (Thermo Fisher Scientific). Protein 

disulfide bonds were reduced with 10mM tris (2-carboxyethyl) phosphine (TCEP) for 1h 

at 37°C, followed by alkylation with 12mM iodoacetamide for 1h at RT in the dark. After 

dilution 1:4 with deionized water, proteins were digested with sequencing-grade modified 

trypsin (Promega, Madison, WI) (1:50 enzyme:protein, weight/weight) for 12h at 37°C. 

This was followed by the addition of an aliquot of the same amount of trypsin and 

incubation overnight at 37°C. The digested samples were acidified with 10% 

trifluoroacetic acid (TFA) to pH<3, de-salted using strong cation exchange and C18 solid-

phase extraction (SPE) columns (Waters, Milford, MA) and dried using a Speed-Vac. 
 
Shotgun proteomics using iTRAQ data-dependent acquisition (DDA) Relative 

quantitative proteomic analysis was conducted using 4-plex isobaric tags for relative and 

absolute quantitation (iTRAQ) reagents (Sciex) as previously described (Zhang et al., 

2016). Peptides (500µg) were dissolved in 150µL of 0.5M triethylammonium bicarbonate, 

pH 8.5 and combined with 5U of 4-plex iTRAQ reagent dissolved in ethanol followed by 

a 2h incubation at RT, quenching with 10% TFA, and de-salting using C18 SPE columns. 

iTRAQ channel 114 was used to label the reference sample which was created by pooling 

an aliquot from each individual tumor sample. Offline basic reversed phase liquid 

chromatography (bRPLC) was conducted using a Zorbax extend 4.6 x 100mm C-18 

column (Agilent) and an Agilent 1220 Infinity HPLC system to reduce the sample 

complexity prior to mass spectrometry analysis. A total of 96 fractions were collected and 

concatenated into 24 fractions. The fractions were dried in a Speed-Vac and stored at -

80°C until analysis by LC-MS/MS using an LTQ Orbitrap Velos mass spectrometer 

(Thermo Scientific). Peptides were loaded onto a 2cm guard column (Thermo Scientific) 

and separated on a 75µm x 15cm Acclaim PepMap100 column (Thermo Scientific) using 

a Dionex Ultimate 3000 RSLC nano chromatography system (Thermo Scientific). The LC 

gradient profile was 2-22% B for 70min, 22-29% B for 8min, 29-95% B for 4min, and 95% 

B for 8min, where mobile phase B was 0.1% formic acid in acetonitrile, and mobile phase 



A was 0.1% formic acid in water. Orbitrap full MS spectra were collected from 400-1800 

m/z at a resolution of 30,000 followed by data-dependent MS/MS (7,500 resolution) of the 

ten most abundant ions. Charge-state screening was enabled to prevent the acquisition 

of MS/MS spectra for ions with unassigned or single charges. Dynamic exclusion (40s 

duration) was enabled to minimize the repeated acquisition of previously acquired MS/MS 

spectra. 
 
Proteomic analysis using SWATH mass spectrometry SWATH-MS measurements 

were conducted at the Johns Hopkins University using a Sciex 5600+ TripleTOF mass 

spectrometer interfaced with an Eksigent ekspert nanoLC 425 cHiPLC system. Peptides 

(1µg) were loaded onto a 6mm x 200µm ChromXP C18-CL 3µm, 120Å trap column 

followed by separation on a 75µm x 15cm ChromXP C18-CL 3µm, 120Å Nano cHiPLC 

column using a 120min method (90min gradient from 3-35% B – 0.1% formic acid in 

acetonitrile) at a flow rate of 300 nL/min. To create the spectral library for the SWATH-

MS data analysis, each sample was run individually (1µg peptides per injection) using a 

data-dependent data acquisition (DDA) method wherein MS spectra were acquired 

across a range of 400-1800 m/z followed by the acquisition of MS/MS spectra of the top 

30 most intense precursor ions with a charge state of z=2-5. The spectral library was also 

comprised of mass spectrometry data acquired from a fractionated (48 fractions) pool of 

peptides from all 103 tumors. Each of the 48 fractions from the pooled sample was 

analyzed using the same DDA method described above. SWATH data of the individual 

tumors were acquired using a variable window strategy wherein the sizes of the precursor 

ion selection windows were inversely related to m/z density. The average window width 

for precursor ion selection was 12 m/z with a range of 6-25 m/z. The collision energy was 

optimized for each window according to the calculation for a charge 2+ ion centered in 

the window with a spread of 5 eV. The MS accumulation time was 250ms and the MS/MS 

accumulation time for fragment ions accumulated in high sensitivity mode was 50ms, 

resulting in a total duty cycle of approximately 3.5s. To assess the analytical precision of 

the proteomics measurements, peptides from trypsin-digested HEK293 cell proteins were 

analyzed via SWATH-MS in triplicate immediately prior to the SWATH-MS analysis of the 

103 individual tumor samples. Additionally, an ovarian cancer tumor sample separate 



from the TCGA collection was used as a QC sample. This specimen was analyzed using 

the DDA method described above in duplicate prior to the SWATH-MS analysis of the 

103 individual tumor samples and 10 days later in duplicate mid-way through the analysis 

of the individual tumor samples. Instrument performance was assessed daily by 

monitoring the peak area of 5 peptides from a trypsin-digested E. coli ß-Galactosidase 

LC-MS standard that was injected every day a sample was run on the mass spectrometer. 
 
iTRAQ DDA data processing iTRAQ DDA data from the Johns Hopkins CPTAC center 

was analyzed by the Common Data Analysis Pipeline (CDAP) and downloaded from the 

NCI CPTAC Data Portal (https://cptac-data-portal.georgetown.edu/cptac/s/S026); mass 

spectrometry site: Johns Hopkins University (Edwards et al., 2015; Ellis et al., 2013). 

Values obtained from proteotypic peptides were chosen for further analysis. The protein 

matrix contained 8597 proteins. The protein matrix was filtered for proteins without 

missing values (4363 proteins). PSM files were additionally downloaded from the CPTAC 

Data Portal and processed following the CDAP to the peptide level data in order to 

investigate peptide variability. 

 

SWATH-MS data processing Raw mass spectrometry measurements obtained from the 

TripleTOF 5600+ in DDA and SWATH mode were converted to mzXML file format using 

msconvert (ProteoWizard v3.0.8851) (Chambers et al., 2012). DDA measurements from 

all 103 samples and 48 fractions of a pooled sample were searched with X!Tandem 

(2013.06.25.1) (Duncan et al., 2005), OMSSA (2.1.9) (Geer et al., 2004) and Comet 

(2015.02 rev. 3) (Eng et al., 2013). Identified peptides were processed through the Trans-

Proteomic Pipeline (TPP v.4.7 Polar Vortex rev 0) using PeptideProphet, iProphet and 

ProteinProphet scoring (FDR <0.01) and SpectraST (Keller et al., 2005; Lam et al., 2007). 

The assay library was built according to (Schubert et al., 2015) using a set of 113 common 

internal retention time standards (ciRTs) (Parker et al., 2015). The resulting library 

contained 8897 proteins supported by proteotypic peptides.  

 

SWATH data was analyzed using OpenSWATH (Rost et al., 2014) from OpenMS 

(v.1.10.0) with the previously described sample-specific assay library. FDR was controlled 

https://cptac-data-portal.georgetown.edu/cptac/s/S026


using PyProphet (v.0.0.19) allowing for a peptide-query FDR of 1% and protein-FDR of 

1% as described by Rosenberger et al. (Rosenberger et al., 2017). Runs were aligned for 

improved quantification using TRIC (msproteomicstools master branch from GitHub 

commit c10a2b8) (Rost et al., 2016).  

 

OpenSWATH results were annotated and formatted using the R package SWATH2stats 

(v.1.0.3) (Blattmann et al., 2016) prior to quantile normalization (preprocessCore v.1.32.0) 

(Bolstad, 2017) and batch-wise mean-centering batch correction of known sample 

preparation batches. Fragment-level data was then fed into mapDIA (v.3.0.2) (Teo et al., 

2015) in order to filter for outliers and proteins with at least 3 fragments per peptide and 

2 peptides per protein. The 3 most intense fragments per peptide were summed and the 

resulting peptide intensities were divided by the mean peptide intensity (as an internal 

reference) over all runs to obtain a similar data structure as in iTRAQ DDA. Peptide ratios 

were averaged per protein. A total of 2914 proteins were quantified in this manner across 

all 103 samples.  

 

An additional filtering and imputation step was conducted to mitigate the missing values 

in the SWATH data. Figure S2B shows the number of missing values in the SWATH data 

and their occurrence dependent on the protein abundance represented by log2 intensity 

(Figure S2C). As expected, there is an inverse relationship between protein abundance 

and missing values. Missing values in low abundance proteins are more likely to occur 

due to technical reasons, while missing values amongst high abundance proteins 

potentially have biological significance which might be important for further analysis. We 

therefore filtered the protein matrix based on the occurrence of abundance-dependent 

missing values. We confined the number of missing values using a stricter threshold for 

low abundance proteins than high abundance proteins according to the following rules:  

no missing values were allowed for the lowest abundant 10% of proteins, 10% missing 

values were allowed for the next 10% abundant proteins and so on until 90% missing 

values were allowed for the highest abundant proteins. A total of 1659 proteins remained 

that passed these filtering steps. The missing values from those proteins were filled using 

an imputation method based on what is used by Perseus software (Tyanova et al., 2016) 



wherein random numbers forming a normal distribution were generated fitting in the left 

end of the distribution of the measured values, representing values within the noise.  

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
Bioinformatics pipeline 
Bioinformatic analyses were performed in R (v.3.2.2 “Fire Safety”).  

Technical evaluation. A total of 1599 proteins common to the iTRAQ DDA and SWATH 

data sets were evaluated for their correlation and variability (Figure 2). The distribution 

of values in both data sets was plotted using the R package vioplot (v.0.2) (Adler, 2005). 

Spearman’s rank correlation was computed for each protein across all 103 samples in 

both data sets. The resulting Spearman’s rho values were ordered and the median was 

calculated. For peptide variability, a CV-like score was calculated for the peptides from 

each protein (standard deviation of peptides per protein divided by mean peptide intensity 

per protein). The distribution of the resulting CVs was plotted with vioplot.  

 

Molecular classification comparison. Protein matrices were transformed into z-scores and 

a molecular classification was obtained by running a model-based clustering with mclust 

from the R package mclust under default settings (v.5.2) (Fraley and Raftery, 2002; Fraley 

et al., 2012). Protein modules characterizing sample groups were obtained with weighted 

gene-correlation network analysis (WGCNA v.1.51) (Langfelder and Horvath, 2008, 

2012) and functional enrichment with clusterProfiler (v.2.4.3) (Yu et al., 2012) (Figure 
S4). The resulting molecular classifications were compared based on their similarity using 

the Adjusted Rand Index (ARI), a measure for classification similarity, implemented within 

the R package mclust previously used. The heat map displayed in Figure S3A was 

generated based on SWATH z-scores using pheatmap (v.1.0.8) (Kolde, 2015). The 

stability of the classification results was evaluated by bootstrapping. Different fractions of 

samples or proteins were drawn 100 times and classified using mclust with default 

settings, and the similarity to the molecular classification of the full data set was compared 

with the ARI (Figure 4).  

 



In order to assess the stability of the mesenchymal class a Fisher’s exact test was 

performed on the mesenchymal class and the other resulting classes with a bootstrapping 

approach by drawing a fraction of samples 100 times (Figure S3B). Group comparison 

of the original classes from CPTAC (Zhang et al., 2016) were obtained by a student’s t-

test (Figure 6 and S4).  

 

HRD group comparison. Group comparison to identify the differentially expressed 

proteins in the HRD vs. non-HRD patients was conducted using mapDIA (v.3.0.2) (Teo 

et al., 2015) on fragment ion-level data (Figure 7A). The resulting fold changes were used 

as input signal in a network propagation approach (Hofree et al., 2013) called Network 

Smoothing (R package BioNetSmooth v.1.0.0) (Chokkalingam et al., 2016).  

 

As an input network the STRING database for human (Taxon 9606 v.10.5) was 

downloaded and filtered for interactions with experimental evidence and a score >800. 

The top 5% of negative and positive scores were used for further investigation of 

functional enrichment of Gene Ontology using the STRING database (STRING-db.org 

v.10.5 accessed on 2018/03/14).  

 
DATA AND SOFTWARE AVAILABILITY 
Mass spectrometry data  

All the raw data from SWATH-MS measurements, along with the input spectral library and 

OpenSWATH results can be freely downloaded from the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) with the dataset identifier: PXD010437 via 

the PRIDE partner (Vizcaino et al., 2016).  

Reviewer account details:  

Username: reviewer95375@ebi.ac.uk 

Password: 9VoPWx2g  

The iTRAQ DDA data are available on the NCI CPTAC Data Portal (https://cptac-data-

portal.georgetown.edu/cptac/s/S026); mass spectrometry site: Johns Hopkins University. 

Other data are available from the corresponding authors upon request. 

 

mailto:reviewer95375@ebi.ac.uk
https://cptac-data-portal.georgetown.edu/cptac/s/S026
https://cptac-data-portal.georgetown.edu/cptac/s/S026


Programming codes 
All code used for the downstream bioinformatics pipeline can be obtained from the github 

repository (bfriedrichgrube/OC_CPTAC_iTRAQ_SWATH).  
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