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Abstract: The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto
substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to
biologically active and industrially demanded compounds. Newly developed synthesis methods can
be divided into conventional multistep processes and one-pot, atom economy procedures, realized
using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2

and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as
highly reactive building blocks for organic and organoelement synthesis, including the synthesis
of pharmacologically active heterocycles. The review provides a summary of findings, which may
be useful for developing new drugs and materials and new synthetic approaches and patterns
of reactivity.

Keywords: benzothiazole; 2-aminobenzothiazole; 2-mercaptobenzothiazole; synthesis; reactivity;
biological activity

1. Introduction

Benzothiazoles, as a bicyclic heterocycles with fused benzene and thiazole rings con-
taining electron-rich heteroatoms, nitrogen and sulfur, attract great interest from researchers
for drug design due to their high biological and pharmacological activity [1–5]. The present
review covers the literature from 2015. We consider modern trends in synthesizing bi-
ologically active and industrially demanded compounds based on the C-2-substituted
benzothiazole derivatives. The reactions of 2-amino- and 2-mercaptothiazole derivatives
provide a powerful, modern tools for the design of a wide variety of aromatic azoles.
Their synthesis methods can be divided into two main groups: “one-pot” synthesis and
sequential multistep synthesis.

Along with conventional approaches, effective and ecologically friendly alternative
reactions are being developed based on commercially available reagents and the principles
of green chemistry. These avoid the use of toxic solvents and minimize the formation of side
products. Many reactions are performed in water as the solvent, making the process much
cheaper. Multistep one-pot reactions of the C-2-substituted benzothiazoles play a special
role in the design of biologically active compounds. The advantages of these reactions are
atom-economy, simple experimental implementation and high yields. The effectiveness
and selectivity of multistep reactions can often be increased by using catalysts in the
absence of solvents. In addition, the methods based on the combined use of microwave
irradiation and multicomponent reaction in ecologically safe solvents or in the solvent-free
mode are actively used nowadays.

2. Aminobenzothiazoles

2-Aminobenzothiazoles demonstrate high antiviral activity [6–14], which is espe-
cially important in this period of global COVID-19 pandemic. They also possess antimi-
crobial [14–20], antioxidant [20], anti-inflammatory [21–24], analgesic [24], antidepres-

Molecules 2021, 26, 2190. https://doi.org/10.3390/molecules26082190 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4296-7899
https://doi.org/10.3390/molecules26082190
https://doi.org/10.3390/molecules26082190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26082190
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26082190?type=check_update&version=2


Molecules 2021, 26, 2190 2 of 35

sant [25,26], anticonvulsant [27–29], anti-diabetic [21,30], antitumor [31–35], antitubercu-
losis [14,36] activity. Their derivatives show also antimalarial [37,38], insecticide [39] and
herbicide effect [40]. They are also used as key intermediates in fine organic synthesis and
the resins’ components [41].

2.1. Synthesis

Several approaches to the thiazole ring formation are based on transition metal cataly-
sis using a one-pot process, either solvent-free or in green solvents.

Thus, direct synthesis of the substituted 2-aminobenzothiazoles 1a–t via the RuCl3-
catalyzed intramolecular oxidative coupling of N-arylthioureas in up to 91% yield was
proposed (Scheme 1) [42]. The electron-rich substrates demonstrate higher reactivity than
their electron-deficient analogs.
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Scheme 1. Ru(III)-catalyzed synthesis of substituted 2-aminobenzothiazoles from N-arylthioureas.

The Pd(OAc)2-catalyzed intramolecular oxidative cyclization of N-aryl-N′,N′-dialkylt-
hioureas proceeds similarly, resulting in the formation of 2-(dialkylamino)benzothiazoles
2a–p in the same yields (Scheme 2) [43]. No products of the intermolecular coupling were
formed. However, in view of preactivation, more expensive catalyst and its larger amount,
the method is more costly.

Molecules 2021, 26, x FOR PEER REVIEW 2 of 38 
 

 

2. Aminobenzothiazoles 
2-Aminobenzothiazoles demonstrate high antiviral activity [6–14], which is espe-

cially important in this period of global COVID-19 pandemic. They also possess antimi-
crobial [14–20], antioxidant [20], anti-inflammatory [21–24], analgesic [24], antidepressant 
[25,26], anticonvulsant [27–29], anti-diabetic [21,30], antitumor [31–35], antituberculosis 
[14,36] activity. Their derivatives show also antimalarial [37,38], insecticide [39]and 
herbicide effect [40]. They are also used as key intermediates in fine organic synthesis and 
the resins' components [41]. 

2.1. Synthesis 
Several approaches to the thiazole ring formation are based on transition metal ca-

talysis using a one-pot process, either solvent-free or in green solvents. 
Thus, direct synthesis of the substituted 2-aminobenzothiazoles 1a–t via the 

RuCl3-catalyzed intramolecular oxidative coupling of N-arylthioureas in up to 91% yield 
was proposed (Scheme 1) [42]. The electron-rich substrates demonstrate higher reactivity 
than their electron-deficient analogs. 

 
Scheme 1. Ru(III)-catalyzed synthesis of substituted 2-aminobenzothiazoles from N-arylthioureas. 

The Pd(OAc)2-catalyzed intramolecular oxidative cyclization of 
N-aryl-N′,N′-dialkylthioureas proceeds similarly, resulting in the formation of 
2-(dialkylamino)benzothiazoles 2a–p in the same yields (Scheme 2) [43]. No products of 
the intermolecular coupling were formed. However, in view of preactivation, more ex-
pensive catalyst and its larger amount, the method is more costly. 

 
Scheme 2. Pd-catalyzed synthesis of 2-(dialkylamino)benzothiazoles from 
N-aryl-N’,N’-dialkylthioureas. 
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Very recently, Ni(II) salts were shown to be very good catalysts for the same reac-
tion [44]. The method is more advantageous as it uses a cheaper and less toxic catalyst in a
much lower concentration, and the reaction is carried out under mild conditions in a very
short time resulting in up to 95% product yield (Scheme 3). The method can be applied to
N-arylthioureas containing both electron-donating or electron-withdrawing substituents in
the benzene ring and is scalable without any loss of the yield, which makes it promising
for industrial application.
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An alternative intermolecular approach to 2-aminobenzothiazoles 4a–m is based on
the reaction of 2-haloanilines with dithiocarbamates (Scheme 4) [45]. The metal-free or
transition-metal-catalyzed reaction proceeds in one pot in up to 93% yield of the prod-
ucts. Thus, the reaction of 2-iodoaniline with dithiocarbamate proceeds without a catalyst,
whereas 2-bromoanilines react only in the presence of copper catalysts, among which
CuO was found to be most effective. Due to the low reactivity of the CAr–Cl bond, 2-
chloroanilines were even less reactive and required more strong catalyst Pd(PPh3)4. Note
that such palladium catalysts as PdCl2, PdBr2 or Pd(OAc)2 showed poor catalytic activity,
and the copper catalysts were ineffective. The reaction proceeds in two steps. In the first
step, the base (t-BuOK) promotes the formation of arylthiourea, which is converted to
the arylisothiourea. In the second step, either metal-free or transition-metal-catalyzed in-
tramolecular cross-coupling occurs with the formation of the target 2-aminobenzothiazoles.
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The metal-free reactions of sulfanylation of the C–H bond are most appealing and
in line with the principles of green chemistry. Isothiocyanates are universal building
blocks used to synthesize various heterocyclic ensembles, mostly triggered by nucleophilic
addition. A convenient synthesis of 2-aminobenzothiazoles 5a–u from readily available
arylisothiocyanates and various formamides was reported (Scheme 5) [46]. The reaction
was assumed to proceed as decarbonylation of formamide under the action of n-Bu4NI and
t-BuOOH (TBHP) and formation of the aminyl radical, its addition to the isothiocyanate
and subsequent cyclization of the S-centered radical intermediates. The yield is strongly
affected by the nature and the position of the substituent in the phenyl ring.

Arylisothiocyanates also enter the one-pot cascade reaction with amines in the pres-
ence of iodine as the catalyst and molecular oxygen as the oxidant (Scheme 6) [47]. The
reaction proceeds via the in situ formation of benzothiourea with its subsequent intramolec-
ular oxidative cyclization. Inexpensive and ecologically pure oxidant, commercially avail-
able reagents, non-toxic side product, and no necessity to introduce a halogen to the
ortho-position—all these advantages meet the criteria of green chemistry. The yield of
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the products is higher for the compounds with the electron-donating groups in the ben-
zene ring.
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A simple and effective one-pot synthesis of 2-aminobenzothiazoles 7 from 2-iodoanilines
and sodium dithiocarbamates by the Ullmann-type reaction (CAr–S bond formation via the
intermediate copper thiolate) was developed with the yields of the products reaching 97%
(Scheme 7) [48]. Cu(OAc)2/Cs2CO3/DMF/120 ◦C was found to be the best combination of
the copper(II) catalyst, base, solvent, and temperature. The electron-donating or withdraw-
ing properties of the substituents in the ring do not affect the products’ yield, reaching 97%
for 2-iodo-4-fluoroaniline. The method employs readily available reagents, inexpensive
ligand-free catalyst, provide good yields of potentially biologically active compounds and,
therefore, is practically valuable.
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The formation of 2-aminobenzothiazoles 8a–d is possible also by one-pot condensation
of aminothiophenols with thiocarbamoyl chloride in the presence of CuCl2 and K2CO3
proceeding under mild conditions in good yields (Scheme 8) [49].
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Thiocarbamoyl chloride also reacts effectively with 2-bromo or 2-iodoanilines in the
presence of CuBr and t-BuOK to afford the corresponding 2-aminobenzothiazoles 9a–z in
good yields (Scheme 9) [50]. Less reactive 2-chloroanilines do not enter this reaction. The
reaction starts with the base-promoted formation of arylthioureas, which were further con-
verted to arylisothioureas. In the next step, the target products are formed by the reaction
of intramolecular cross-coupling. The method is characterized by mild reaction conditions,
inexpensive catalyst, good yield and a wide scope of substrates. 2-Chloroanilines and
thiocarbamoyl chloride afford 2-aminobenzothiazoles only in the presence of such a strong
catalyst as bis(dibenzylideneacetone)palladium(0) Pd(dba)2 (Scheme 9) [51].
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An alternative route to 2-aminobenzthiazoles is direct aluminum organic synthesis
shown in Scheme 10 [52]. The intermediate organoaluminum compound formed by
lithiation/alumination of benzothiazole reacts with O-benzoylhydroxylamines. The copper-
catalyzed reaction proceeds in one pot under mild conditions in up to 93%.
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The three-component copper-catalyzed reaction of 2-iodophenylisocyanides, potassium
sulfide and various amines was shown to give biologically interesting 2-aminobenzothiazoles
in up to quantitative yield (Scheme 11, the optimal conditions obtained by screening of the
alkali metal, catalyst, solvent, and temperature are given) [53].
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2.2. Alkylation and Acylation Reactions

Due to the presence of both exo and endo nitrogen atoms forming the amidine–N=C–
NH2 motif, 2-aminobenzothiazoles can enter the reactions of alkylation and acylation of either
the amino group or annulation with the whole amidine fragment being involved in giving
various heterocycles with fused rings. Below, we will consider some of these reactions.

The ring-substituted 2-aminobenzothiazoles formed in situ from diaminodiaryl disul-
fides enter the three-component domino reaction, which includes diacylation of diaminodi-
aryl disulfide, oxidative S-cyanation by CuCN, cyclization via nucleophilic attack of the
thiocyanate carbon atom and, finally, intermolecular acyl group migration to the exocyclic
nitrogen atom (Scheme 12) [54].
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Scheme 12. Synthesis of the ring-substituted N-acylated 2-aminobenzothiazoles 12a–u.

Acylation of 6-substituted 2-aminobenzothiazoles by polysubstituted benzoic acids
containing the uracil moiety affords benzamides 13a–i possessing herbicide activity
(Scheme 13) [40].

Alkylation of 2-aminobenzothiazoles is possible by highly reactive halogenides, such
as, e.g., 7-chloro-4,6-dinitrobenzofuroxane having two strong activating nitro groups [19].
First, the primary amino group is alkylated to give the monoalkylated products 14a–f,
which after tautomerization give the dialkylated products 15a–d (Scheme 14). Remarkably,
for the substrates containing electron-withdrawing substituents (6-Cl, 6-NO2), the dialky-
lation products were not formed. It was noted that in time the monoalkylated product
became the major one. The obtained compounds were shown to have antimicrobial activity
and also can be used as luminescing biosensors.
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Many researchers were engaged in the search for new families of biologically active
2,5(6)-substituted 2-aminobenzothiazoles. The starting 2-unsubstituted 2-aminobenzothiazoles
were obtained from the easily available anilines, potassium thiocyanate and bromine,
then acylated by chloroacetyl chloride and introduced in the reactions with various N-
heterocycles [7,14,17,20,25–29,31,36,38,39]. Thus, a large benzothiazole-piperazine series
of compounds 16a–v was synthesized in three steps (Scheme 15) [25,26]. The compounds
demonstrated good antidepressant activity without accompanying negative effects on
physical activity.
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Similarly prepared 4,5,6-trisubstituted 2-aminobenzothiazoles were acylated by 3-
bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carbonyl chloride to give N-1,3-benzothiazol-
2-yl-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamides 17a–t (Scheme 16), which
showed insecticide activity [39].

Molecules 2021, 26, x FOR PEER REVIEW 8 of 38 
 

 

thiazole-piperazine series of compounds 16a–v was synthesized in three steps (Scheme 
15) [25,26]. The compounds demonstrated good antidepressant activity without accom-
panying negative effects on physical activity. 

 
Scheme 15. Synthesis of antidepressant heterocycles 16a–v. 

Similarly prepared 4,5,6-trisubstituted 2-aminobenzothiazoles were acylated by 
3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carbonyl chloride to give 
N-1,3-benzothiazol-2-yl-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamides 
17a–t (Scheme 16), which showed insecticide activity [39]. 

 
Scheme 16. Synthesis of benzothiazolyl-piperazine heterocycles 17a–t with insecticide activity. 

6-Substituted 2-aminobenzothiazoles prepared in the same manner were treated 
first with ethyl chloroacetate and then with hydrazine hydrate to afford the correspond-
ing acetohydrazides. The latter's condensation with aldehydes led to benzylideneaceto-
hydrazides, which after acylation with chloroacetyl chloride gave acetamides 18a–t 
(Scheme 17). The products were tested for the anticonvulsant effect, and those containing 
electron-withdrawing groups (Cl, F, NO2) in the benzothiazole ring and unsubstituted or 
chlorine-substituted in the benzene ring were found to be more active [28]. 

Scheme 16. Synthesis of benzothiazolyl-piperazine heterocycles 17a–t with insecticide activity.

6-Substituted 2-aminobenzothiazoles prepared in the same manner were treated
first with ethyl chloroacetate and then with hydrazine hydrate to afford the correspond-
ing acetohydrazides. The latter’s condensation with aldehydes led to benzylideneace-
tohydrazides, which after acylation with chloroacetyl chloride gave acetamides 18a–t
(Scheme 17). The products were tested for the anticonvulsant effect, and those containing
electron-withdrawing groups (Cl, F, NO2) in the benzothiazole ring and unsubstituted or
chlorine-substituted in the benzene ring were found to be more active [28].
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Scheme 17. Synthesis of polyheterocyclic acetamides 18a–t.

Multistep synthesis of 2-aminobenzothiazole analogs of clathrodine (marine pyrroloimi-
noquinone alkaloid) 19a–f was reported (Scheme 18) [7]. N-Acylated 4-nitrobenzylamines
were reduced to the corresponding anilines, which were cyclized by ammonium thio-
cyanate to the target products. However, the yields in the last step for the azole elec-
trophiles were too low (0–10%) (Scheme 18). The alternative approach using N-protection
of 4-aminobenzylamine by Fmoc as the first step (lower line in Scheme 18) allowed obtain-
ing the products via the intermediate 6-aminomethyl-2-aminobenzothiazole in 36–54%.
The antimicrobial, antiviral and antiproliferative activity of the products was estimated.

6-Substituted 2-aminobenzotriazoles obtained by the same procedure (with NH4SCN
and Br2) were successively subjected to hydrazinolysis and reacted with acetophenones
to obtain the corresponding hydrazones. The latter was converted to the target products
20a–k in 65–85% by the Vilsmeier–Haack reaction (Scheme 19) [20]. The reaction proceeds
smoothly for the electron releasing or withdrawing substituents in the o- and p-positions of
the phenyl ring and 6-position of the benzothiazole ring.
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Scheme 19. Synthesis of 1-benzothiazolyl-3-aryl-4-formyl-1H-pyrazoles 20a–k.

The ammonium thiocyanate-based method was applied to synthesize a large series of
2-aminobenzothiazoles 21–23 containing the motif of sulfanilamide, which laid the founda-
tion for a large family of sulfa antimicrobial drugs. The obtained aminobenzo[d]thiazole-6-
sulfonamide was acylated with chloroacetyl chloride, which then reacted with thiols to give
products 21, or with 5-amino-1H-pyrazole-4-carbonitrile to give benzothiazolo-pyrazole
heterocycles 22, or with another molecule of sulfanilamide resulting in compound 23 with
two pharmacophore sulfanilamide moieties (Scheme 20) [31]. All products showed high
antitumor activity.

Acylation of 2-aminobenzothiazole with various α-halogenoketones in the presence of
carbon disulfide or arylisothiocyanates led to functionalized bis-thiazolo derivatives 24a–d
and 25a–e in high yields (Scheme 21) [55]. Their formation proceeds via the addition of
carbon disulfide to 2-aminobenzothiazole, acylation, enolization of the formed intermediate
and cyclization with dehydration.
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Scheme 21. Synthesis of functionalized bis-thiazolo derivatives 24a–d and 25a–e.

Very recently, starting with acylation of the ring-substituted 2-aminobenzothiazoles,
and followed by hydrazinolysis, thioetherification with carbon disulfide and oxidation,
a large family of bis-sulfoxide derivatives 26a–x containing the acylhydrazone and the
benzothiazole groups have been synthesized (Scheme 22) [56] and shown to possess
antibacterial activity.
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A similar approach was earlier used to synthesize heterocyclic amines 27a–d and
their Schiff bases 28a–k [17]. Acylation with chloroacetyl chloride followed by cyclization
with thiourea to form the second 2-aminothiazole moiety and condensation of the amino
group in amines 27a–d with aromatic aldehydes led to the target azomethines 28a–k in
moderate yields (Scheme 23). The products were tested on the biological activity, and both
amines 27a–d and the Schiff bases 28a–k showed high or even maximum antibacterial,
antifungal and anthelminthic activity. Electron-donor groups (Me, OEt) in the 6-position of
the benzothiazole ring enhance the anthelminthic effect. The NO2 group in the phenyl ring
promotes antibacterial activity. Electron-acceptor F and Cl atoms both in the benzothiazole
and the phenyl ring enhance antifungal activity.
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Scheme 23. Synthesis of bis-thiazolo-containing amines 27a–d and azomethines 28a–k.

The Schiff base 29 formations between the NH2 group of 2-amino-6-nitrobenzothiazole
was performed by the MW-assisted reaction with a 3,5-diiodosalicylic aldehyde in 76–80%
yield in 8–10 min (Scheme 24) [57]. For example, without MW irradiation, the yield was as
low as 38% after 2 h.
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The synthesis of the derivatives of 2-aminobenzothiazoles with N-functionalized
groups in the benzene ring is possible from the corresponding nitro-derivatives by pre-
protection of the 2-amino group followed by reduction of the nitro to the amino group and
its functionalization. Using this approach compounds 30–32 with high anti-inflammatory
activity were synthesized in three steps from 6-nitro-2-aminobenzothiazole, as shown in
Scheme 25 [21]. Different functions have been introduced by the reactions of acylation,
sulfonylation or addition to isocyanates of isothiocyanates.

A similar ideology was employed to synthesize new benzothiazol-disulfonamide
scaffolds 33a–n as a potent hepatitis C virus inhibitor (Scheme 26) [58]. The key inter-
mediate product prepared by the reaction of 6-nitro-2-aminobenzothiazole with proline
activated by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDCl) with subsequent
reduction of the nitro group (omitted in Scheme 26) is sulfonylated by arenesulfonyl chlo-
rides at the free amino group. The obtained aminobenzothiazoles have a smaller molecular
mass and hydrophobicity concerning the known antiviral agents, which provides better
peroral bioavailability.
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MW irradiation was also used in the synthesis of benzothiazole-imidazolidines 34a–h.
The diazonium salt of 2-aminobenzothiazole reacted with a salicylic aldehyde in an alkaline
solution to form the azoaldehyde derivative of benzothiazole [15]. The latter was cyclized
by condensation with primary aromatic amines under MW-irradiation, and the formed
imines were reacted with L-alanine under MW-irradiation in THF to give imidazolidines
with benzothiazolyl fragment possessing antibacterial activity (Scheme 27).
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Triazole and isoxazole-tagged benzothiazole/benzoxazole derivatives 35a–c and
36a–g were synthesized as potent cytotoxic agents by multistep synthesis starting from
N-propargylation of the Boc-protected 2-aminobenzothiazole, as shown in Scheme 28 [33].
The key intermediate A was converted to the target products, either directly or after depro-
tection with trifluoroacetic acid, using Cu-catalyzed Sharpless click chemistry concept by
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the reaction with different amide azides. The presence of various pharmacophores in the
synthesized compounds not only enhances the antitumor effect in vivo but also promotes
new mechanisms of action.
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Scheme 28. New potent cytotoxic hybrid azolyl derivatives of benzothiazole 35a–c and 36a–g.

2.3. Annulation Reactions

In a number of works, both nitrogen atoms of the amidine moiety in 2-aminobenzothiazole
are involved in the reaction with electrophiles, resulting in the formation of complex heterocyclic
systems with fused rings. Thus, CuI-catalyzed oxidative cyclization of 2-aminobenzothiazole
and 2-phenoxyacetophenones led to 3-phenoxybenzo[d]imidazo [2,1-b]thiazoles 37a–e in high
yield (Scheme 29) [59]. Atmospheric oxygen acted as an oxidant. The ketones with both
electron-donor and electron-acceptor substituents readily entered the reaction. Of special
interest for synthesizing drugs are C-3 oxo-substituted imidazoheterocycles.
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An example of green synthesis is Sc(OTf)3-catalyzed MW-assisted atom-economy
three-component reaction of 2-aminobenzothiazole, aromatic aldehydes and 1,3-diketones,
leading to annulated products 38 bearing pharmacophore motifs (Scheme 30) [60]. The re-
action proceeds as the CO-activation, Knoevenagel condensation reaction, and nucleophilic
addition of azole followed by intramolecular cyclization. The advantages of the reaction,
such as high product yields, short time, easy isolation of the products and ecologically safe
conditions, can be realized only by a combination of Sc(OTf)3 catalysis, MW-assistance,
and solvent-free conditions.
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Another example of an environmentally friendly process is the multicomponent
reaction of 2-aminobenzothiazole or its 6-substituted derivatives, indole-3-carbaldehyde
and arylisonitriles, in the presence of P2O5 on SiO2 as the acidic catalyst (Scheme 31) [61].
The formation of the products, 3-aminoimidazo[2,1-b](1,3)benzothiazoles 39a-l, is facilitated
by fast removal of water due to strong dehydrating agent P2O5/SiO2. This catalyst is widely
used nowadays in view of its effectiveness, ecological safety, stability, low toxicity and
simple handling.
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Recently, the use of the cellulose-based nanocatalyst Fe3O4@NCs/Sb(V) to synthe-
size 4H-pyrimido[2,1-b]benzothiazoles 40a–m was described [62]. The one-pot reaction
proceeds without solvent at heating (Scheme 32). The yield and the rate of the process
are strongly affected by the nature and position of the substituent, the reactivity and the
yield being higher for aldehydes with electron-withdrawing groups. The role of the Lewis
catalyst is to activate the carbonyl groups and, thus, accelerate the reaction. Up to five
turnovers of the catalyst are possible without notable loss of the catalytic activity.

A similar approach, but with p-TSA as a catalyst, was used to synthesize quinazoline
derivatives of 2-aminobenzothiazole 41a–f [63]. The three-component reaction proceeds
under mild conditions (aqueous acetone, room temperature) and includes a cascade of
reactions (Scheme 33): Knoevenagel condensation reaction, Michael addition with subse-
quent intramolecular condensation of the imino group to the carbonyl group of the quinone
fragment, and, finally, the intramolecular dehydration/aromatization of the intermediates
and the keto-enol rearrangement. p-TSA is supposed to accelerate the reaction due to
the increase of nucleophilicity of the nitrogen atom in 2-aminobenzothiazole. Mild reac-
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tion conditions, readily available catalysts, simple product isolation, good yield (79–85%)
provide ecological safety and efficiency of the method.
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A strategy for the design of spiroheterocycles annulated with biologically active
fragments was developed on the example of the pseudo-four-component reaction of 2-
amino-6-bromo-4-methylbenzothiazole, 4-anisaldehyde and 4-hydroxycoumarine in the
presence of sulfamic acid [64]. The reaction proceeds in 93% yield in 10 min resulting in
the target product 42 (Scheme 34). The proposed mechanism includes the acid-catalyzed
sequence of reactions: the Knoevenagel reaction, condensation of the second aldehyde
molecule with 2-aminobenzothiazole, the Diels–Alder heterocycloaddition of the interme-
diates. Spirocyclic structures are privileged in synthetic and medicinal chemistry due to
their structural rigidity, which strongly affects biological and pharmacological activity. By
the use of different cyclic β-diketones, 2-aminobenzothiazoles and aromatic aldehydes,
three series (12 examples) of structurally diverse spiroheterocycles have been synthesized
in the aqueous medium in high yields (88–93%).
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Another route to the design of biologically active derivatives of 2-aminobenzothiazole is
a successive multistep synthesis based on the commercially available substrates and reagents.
Thus, a two-step synthesis of tricyclic derivatives of imidazo[2,1-b](1,3)benzothiazolones
43a–k was realized (Scheme 35) [6]. In the first step, 2-aminodihydrobenzothiazole-7-ones
were obtained by the reaction of 1,3-diketones with bromine and thiourea in situ, which
were then involved in alkylation with aromatic or heteroaromatic α-halogenoketones with
subsequent intramolecular cyclization. The substituent in the imidazole ring is of principal
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importance for antiviral activity because it was shown that the replacement of the aryl
group by a smaller thiophene substituent drastically increases the antiviral action.
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Scheme 35. Synthesis of tricyclic derivatives of imidazo[2,1-b](1,3)benzothiazolones 43a–k.

Catalyst-free MW-assisted method for preparation of annulated heterocyclic structures
in aqueous medium was demonstrated by the synthesis of benzo[d]imidazo[2,1-b]thiazoles
44a–l (Scheme 36) [65]. As a polar protic “green” co-solvent capable of easy absorbing MW-
radiation, isopropanol was used. The yields were excellent (90–95%) irrespective of the
substituents in the benzene ring. The advantages of MW irradiation combined with the use
of aqueous isopropanol include short time, the absence of side products, excellent yields,
no toxic catalysts, and wide spectrum of the substrates, scalability, thus proving that the
process is economic and environmentally friendly. The reaction proceeds successively via
the in situ steps and includes quaternization of 2-aminobenzothiazole with bromomethyl
aryl ketone, HBr evolution, and formation of the imine with subsequent intramolecular
cyclization. The final step is water elimination and aromatization. As a rule, condensed
heterocyclic systems possess various types of biological activity.
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2.4. 2-Hydrazinobenzothiazoles as Analogs of 2-Aminobenzothiazoles

Replacement of the amino group in 2-aminobenzothiazoles by the hydrazine residue
opens the way to numerous hydrazones whose chemistry is thoroughly studied. An
example of such an approach was demonstrated by the synthesis of 6-substituted 2-
hydrazinobenzothiazoles by the reaction of the corresponding 2-aminobenzothiazoles with
hydrazine hydrate followed by the reaction with various 2-(arylamino)nicotinealdehydes
(Scheme 37) [34]. The products 45a–v possess antiproliferative activity. Both the benzoth-
iazole and aniline pharmacophores can have both electron-donor and electron-acceptor
substituents. The highest antitumor effect was observed for compounds having electron-
donor 6-substituents in the benzothiazole fragment and electron-acceptor substituents in
the aniline phenyl ring.

Another example is the synthesis of antimalarial drugs 46a–f from 2-hydrazinobenzothiazole
(Scheme 38) [37]. The structure–activity relationship (SAR) investigation showed that it is
the N,S-containing five-membered aromatic ring in the benzothiazole hydrazones, which
may be responsible for the antimalarial activity.
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To finalize this part and to transfer the bridge to the next section, let us consider sev-
eral works in which the derivatives of 2-hydrazinobenzothiazole were obtained from 2-
mercaptobenzothiazole, and the hydrazine residue was further functionalized. Thus, in [22,23],
the target products were obtained by the reflux of mercapto benzothiazoles with hydrazine
hydrate in ethanol (Scheme 39). Condensation of the formed 2-hydrazinobenzothiazoles
with oxadiazoles in dry pyridine led to 1,2,4-triazoles 47a–n in good yield via the ring-
opening/ring-closure reaction.
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Conversion of the hydrazine moiety in 2-hydrazinobenzothiazole to the pyrazole
ring and further functionalization of the latter was realized, as shown in Scheme 40 [66].
2-Hydrazinobenzothiazole, prepared as in Scheme 39, reacted with ethyl acetoacetate
to give benzothiazolo-5-pyrazolone (A). The latter was converted to the derivatives of
2-aminonicotine nitrile bearing the benzothiazole motif by a different two-step procedure:
by a conventional method, ultrasound, and MW activation. The ultrasound activation was
less effective (68% yield), whereas, for conventional or MW-assisted syntheses, the yields
in the first step reached 83 and 85% of intermediate B, respectively. Further reaction of
the intermediate B with malononitrile in the presence of ammonium acetate to give the
2-aminonicotine nitriles 48a–f in good yields. The decisive advantage of the MW irradiation
was the short reaction time and higher yields.
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Scheme 40. Synthesis of 2-aminonicotine nitriles 48a–f having the benzothiazole fragment.

Therefore, 2-aminobenzothiazole and its derivatives are of great synthetic potential for
synthesizing various heterocyclic systems, including fused and spirocyclic compounds. Re-
cent research in this field achieved substantial progress in discovering new benzothiazolium
compounds as good candidates for drugs with different biological activity. This activity
may strongly depend on the nature and position of the substituents both in the benzene
ring of the benzothiazole moiety and in the heterocycles formed by the functionalization of
the amino group.

3. 2-Mercaptobenzothiazoles
Synthesis

As 2-aminobenzothiazoles, 2-mercaptobenzothiazoles attract the interest of researchers
due to their various biological activities viz. antimicrobial [18,19,66–69], anti-inflammatory
and antioxidant [69–71], antitumor [72–74]. Agrochemicals with 2-mercaptobenzothiazole
moiety in the molecule are used as fungicides of a wide spectrum [75–77], herbicides [78],
insecticides [39,78,79]. In industry, they are used as metal corrosion inhibitors in different
media [80–90], additives to lubricants [89,90], sorbents of trace amounts of metals, including
noble metals [91–93] and rubber vulcanization accelerators [94–96].

Not only organic derivatives of 2-mercaptobenzothiazole, but also its organosilicon
analogs are valuable reagents and synthetic building blocks; they occupy an important place
in the chemistry of polymers and materials [88,93,97]. The introduction of organosilicon
groups containing biogenic elements in the molecule of 2-mercaptobenzothiazole can
render new properties to the compounds. However, organosilicon thiol derivatives of
azoles are still poorly studied.

A simple, efficient, catalyst-free method for synthesizing precursors of potentially
biologically active derivatives of 2-mercaptobenzothiazole 49a,b in excellent yield was
developed via cyclization of 2-aminothiophenols with tetramethyl thiuram disulfide in
water by heating on an oil bath (Scheme 41) [98]. In an alternative modified procedure [99],
sodium dithiocarbamate in DMF was used as a reagent and AlCl3 as the catalyst. Appar-
ently, the reaction proceeds via the intermediate formation of thiourea A, which suffers
intramolecular cyclization with the elimination of dimethylamine and the formation of the
target products (Scheme 41).
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Scheme 41. 2-Mercaptobenzothiazoles 49a,b from aminothiophenols and tetramethylthiuram disul-
fide or sodium dimethyl dithiocarbamate.

Green chemistry synthesis of 2-arylthiobenzothiazoles 50a–c was described in [100].
The ring-opening of the five-membered cycle of benzotriazole in aryl 1H-1,2,3-benzotriazole-
1-carbodithioates and the subsequent cyclization was performed by the use of polymethyl-
hydrosiloxane (PMHS) acting both as the solvent and the reagent in the presence of AIBN
as an initiator (Scheme 42). Earlier, in this reaction, a highly toxic tributyltin hydride
n-Bu3SnH was used. The use of PMHS, which is a byproduct in the synthesis of silicone,
makes this approach green and practical, which can be considered as an industrial method
to synthesize benzothiazoles.
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Scheme 42. Mercaptobenzothiazoles 50a–c from N-thioacylbenzotriazoles in the presence of PMHS.

Different 2-mercaptobenzothiazoles 51a–n can be readily prepared from the easily
available 2-halogenoanilines and potassium xanthogenate (Scheme 43). Compounds 51a–c
prepared in [101] were subjected to cross-coupling with aryl boronic acids in dichloroethane
(DCE) in the presence of Cu(acac)2 (Scheme 43, upper reaction). The method is character-
ized by mild conditions, the absence of additional ligand, short reaction time and good
yield. The reaction does not depend on the substituents in the reagents.
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Later on [102], this method was applied to the synthesis of 2-mercaptobenzothiazoles
51d–n (Scheme 43). Their treatment with sulfuryl chloride gave 2-chlorobenzothiazoles
53d–n in excellent yield. Earlier, this simple procedure gave low yields and was poorly re-
producible. In [102], the authors have found that the simple addition of water substantially
increases the effectiveness of the reaction. This effect was assigned to the formation of acid
by partial hydrolysis of sulfuryl chloride. The formed 2-chlorobenzothiazoles 53d–n act as
precursors in the synthesis of 2-substituted benzothiazoles playing an important role in
medicinal chemistry due to their pharmacological properties.

The tandem reaction for synthesizing aryl derivatives of 2-mercaptobenzothiazole
54a–g was reported (Scheme 44) [103]. The in situ inter- and intramolecular condensation
of o-aminothiophenols with tetramethylthiuram disulfide gives rise to the correspond-
ing 2-mercaptobenzothiazoles, which further underwent intermolecular coupling with
iodobenzenes. Among the studied copper catalysts, CuBr used at 80 ◦C was found to
be the most effective. Other metal catalysts, such as Fe, Co, or Ni, were ineffective as
catalysts. The derivatives of 2-mercaptobenzothiazole with F, Cl, Br as substituents in the
aryl ring were obtained in high yield (76–84%). Therefore, the use of inexpensive catalysts,
simple ligand, water as the solvent, and moderate reaction temperature make the process
practically valuable and useful in organic synthesis.
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Scheme 44. CuBr-catalyzed synthesis of 2-mercaptobenzothiazoles 54a–g from o-aminothiophenols,
tetramethylthiuram disulfide and iodobenzenes.

The CuCl-catalyzed three-component reaction of o-iodoanilines, K2S and (tosylmethyl)
isocyanide proceeds with the formation of two C–S and one C=S bond and gives rise to ben-
zothiazolethiones 55a–y (Scheme 45) [104]. The reaction is influenced by the substituents
in both the ring and at the nitrogen.
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Scheme 45. Benzothiazolethiones 55a–y from o-iodoanilines, K2S and (tosylmethyl)isocyanide.

The result of a one-pot, CuI-catalyzed reaction of benzothiazoles, sulfur and aryl
boronic acids were shown to strongly depend on the nature of the oxidant (Scheme 46) [105].
No reaction or only trace amounts of the target products 56a–k were obtained with a
number of oxidants examined. Among different silver salts, Ag2CO3 demonstrated the
highest oxidative activity.

The above methods of assembling the 2-mercaptobenzothiazoles via direct functional-
ization of the C2–H bond, although being atom-economic and ecologically pure, suffer from
such drawbacks as the reaction temperatures up to 120–140 ◦C, the use of stoichiometric
amounts of copper catalyst, a strong oxidant, and, in some cases, specific ligands.
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Scheme 46. Oxidative synthesis of 2-arylthiobenzothiazoles from benzothiazoles, elemental sulfur
and arylboronic acids.

The alternative approach is the photoinduced sulfanylation of the C2–H bond in
benzothiazoles by aryl(hetaryl) electrophiles and elemental sulfur. The reaction shown
in Scheme 47 occurs at room temperature in air in the presence of copper(I) thiophene-2-
carboxylate (CuTc) [106] and can be applied to the synthesis of a wide series of alkyl(aryl)
or hetaryl derivatives 57a–w. The photocatalysis proceeds via the in situ formation of
diaryl disulfides as key intermediates.
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Scheme 47. Synthesis of 2-(arylthio)benzothiazoles 57a–w via photoinduced sulfanylation.

Direct sulfanylation of the C2–H bond in benzothiazole by disulfides using nanosized
Fe3O4 particles was realized to prepare 2-(arylthio)benzothiazoles 58a–e (Scheme 48) [107].
Apparently, nanosized powdered catalyst Fe3O4 acts as the Lewis acid by activating the
disulfide via the S–S bond splitting. The formed anion ([Fe3O4]SPh)– is oxidized by
air oxygen to recover the initial disulfide and the nanosized catalyst so that half of the
molar equivalent of disulfide is required. The advantages of the method are the atom-
economy synthesis, non-inert atmosphere, small quantities of the highly efficient catalyst,
and recycling.
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Scheme 48. Nano-Fe3O4 promoted synthesis of 2-(arylthio)benzothiazoles 58a–e.

An interesting example of C2–H-functionalization of thiazoles using phosphines was
reported recently [108]. The intermediate triflate phosphonium salts (Scheme 49) were
treated with thiols, which form the corresponding thiolates by treatment with sodium
hydride. The reactions proceed under mild conditions; the starting triphenylphosphine can
be recovered, the yield varied from low (21%) to quantitative (99%). Remarkably, electronic
or steric factors do not have a notable effect on the efficiency of the reactions.

Functionalization of the SH group is the key step in the synthesis of 2-mercaptobenzothiazole
derivatives with pronounced biological activity. Thus, aerobic base-free and transition
metal catalyst-free regioselective S-arylation of 2-mercaptobenzothiazole with diaryliodo-
nium triflates in DMF at 130 ◦C with the formation of 2-(arylthio)benzothiazoles 60a–d in
good yields was reported (Scheme 50) [109].
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Scheme 50. Base-free S-arylation of 2-mercaptobenzothiazole with diaryliodonium triflates.

The KI/K2S2O8-mediated C–H sulfanylation of ketones with 2-mercaptobenzothiazole
easily occurs at room temperature, leading to variousβ-ketothio esters 61a–o (Scheme 51) [110].
The yields for aromatic ketones were 67–92%, with aliphatic ketone or aldehyde, they
decreased to 41 and 47%.
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The two-step protocol was proposed for synthesizing 2-benzothiazolyl sulfones 63a–n
via intermediate thioethers 62a–n and their oxidation with m-CPBA (Scheme 52) [111].
Sulfones 63a–n were reduced with sodium borohydride to afford functionalized sulfonates—
universal intermediates in organic, biopharmaceutical and polymer chemistry—in up to
quantitative yield.
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Scheme 52. Sequence of reactions 2-mercaptobenzothiazole → thioethers 62a–n → sulfones
63a–n→ sulfinate salts.

Alkylation of 2-mercaptobenzothiazole with benzyl halogenides and oxidation of
the formed sulfides 64a–k by KMnO4 in the presence of FeCl3 catalyst to sulfones 65a–k
was realized in two different ways: in two separate steps with isolation of intermediate
sulfides 64a–k or in one-pot reaction (Scheme 53) [76,77]. The use of water as the solvent,
inexpensive oxidant and higher yields in one-pot reaction make the process to green
protocols. The antifungal activity of sulfones 65a–k is much higher than that of their
non-oxidized precursors 64a–k, probably, due to the higher hydrophilicity of the former,
increasing their ability to penetrate through biological membranes.
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Scheme 53. Different protocols for synthesizing biologically active sulfones 65a–k.

Using the same procedure as in the first step of the reaction of benzothiazole with
a series of substituted benzyl chlorides in the presence of KI, a series of aryl sulfides of
general formula 64 was synthesized and shown to have antiparasitic, anti-inflammatory
and antioxidant activity [79].

A similar reaction of cyanomethylation of the SH group followed by hydroxyamina-
tion of the formed nitrile and further functionalization led to a series of mercaptothiazole-
1,2,4-oxadiazole compounds 66a–h, which demonstrated better anti-inflammatory activity
than ibuprofen (Scheme 54) [70]. Note that the method is equally successful for benzoic
acids containing electron-withdrawing or electron releasing groups in the ring. Methyl
benzoate (R = 4-COOMe) formed in the maximal yield was used to synthesize the amide
analogs 67a–k (Scheme 54, T3P = propylphosphonic anhydride; HATU = hexafluorophos-
phate azabenzotriazole tetramethyl uronium) [70].
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Scheme 54. Multistep synthesis of anti-inflammatory mercaptobenzothiazole-1,2,4-oxadiazoles 66a–h
and their benzamide analogs 67a–k.

From 2-mercaptobenzothiazole and propargyl bromide, 2-propargyl thiobenzothiazole
was obtained, which reacted with sodium azide and benzyl bromides to give benzothiazole-
1,2,3-triazoles 68a–s (Scheme 55 [71]. Benzyl bromides with both electron-donor and
electron-acceptor substituents react in good yield.
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Scheme 55. Synthesis of benzothiazole-1,2,3-triazole compounds 68a–s.

Compound 68 with R = C6H4COOMe was hydrolyzed to the corresponding acid
69 (R = C6H4COOH) and amide 70 (R = C6H4CONH2), which both showed antitumor
effect [71].

A series of compounds having anti-inflammatory, antimicrobial and antioxidant
activity and possessing the benzothiazole and 1,3,4-oxadiazole heterocycles 71a–e was
synthesized starting from 6-ethoxy-2-mercaptobenzothiazole by alkylation with ethyl
chloroacetate, hydrazinolysis, cyclization with carbon disulfide and, finally, S-acylation
(Scheme 56) [69].
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Scheme 56. Multistep synthesis of benzothiazole-1,3,4-oxadiazole heterocycles 71a–e having anti-
inflammatory, antimicrobial and antioxidant activity.

The design, synthesis and biological activity study of β-lactames possessing ben-
zoquiniline and 2-mercaptobenzothiazole heterocycles 73a–m was performed. First, the
reaction of arylation gave the corresponding aldehyde an 80% yield, which reacted with
anilines to give imines 72a–m. The [2+2]-cycloaddition reaction of the latter with ketenes
generated from substituted acetic acids in the presence of triethylamine and tosyl chloride
led exclusively to cis-β-lactames 73a–m in high yield (Scheme 57) [67]. β-Lactames 73a–m
and their imine predecessors 72a–m showed high antibacterial activity with low toxicity.
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Scheme 57. Synthesis of lactames 73a–m and their precursors 72a–m from 2-mercaptobenzothiazole.

Acylhydrazides based on 5-substituted 2-mercaptobenzothiazoles react with p-hetaryl-
substituted benzaldehydes to afford benzothiazolyl acyl hydrazones 74a–j having an
antitumor activity (Scheme 58) [74].

New structural hybrids of benzofuroxan and benzothiazole derivatives were synthe-
sized by nucleophilic aromatic substitution in 7-chloro-4,6-dinitro-2,1,3-benzoxadiazole 1-
oxide or 4,6-dichloro-5-nitro-2,1,3-benzoxadiazole 1-oxide by 2-mercaptobenzothiazole [19].
Remarkably, with the former, the reaction proceeds as substitution of the chlorine atom
activated by three nitro groups (two in the benzene ring and one in the 1,2,5-oxadiazole
2-oxide moiety) to give compound 75, while with the latter, either two thiol residues appear
in the 4- and 5-positions (compound 76a), or chlorine atom replaces the 5-NO2 group,
and the thiol residue goes to the 4-position (compound 76b, Scheme 59). The synthesized
scaffolds 75 and 76 are considered pro-drugs that realize their biological activity via the
intracell mediators [19].
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Scheme 59. Synthesis of scaffolds 75, 76 from 2-mercaptobenzothiazole and 4,6,7-substituted 2,1,3-
benzoxadiazole 1-oxides.

2-Mercaptobenzothiazole reacts with aryl enyne ketones in the presence of DBU at
room temperature via cyclization to give benzothiazolyl furfuryl sulfides 77a–d [112].
Cyclization to furans proceeds, apparently, via the intermediate ions (Scheme 60). Ketones
with electron-acceptor substituents in the aryl ring give higher yields of the products.
Compounds 77 are potential fungicides.
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Scheme 60. Benzothiazolyl furfuryl sulfides 77a–d via cyclization of 2-mercaptobenzothiazole with
aryl enyne ketones.

In a series of our works, the reactions of 2-mercaptobenzothiazole with iodomethylsilanes
were examined. As distinct from the reactions described above, 2-mercaptobenzothiazole,
when treated with (iodomethyl)(dimethyl)phenyl silane (a) or (iodomethyl)-1-methylsilolane
(b), having the exocyclic or endocyclic silicon atom in the molecule, afford new iminium
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salts 78a,b and 79a,b with the iodide or triiodide counter-ions (Scheme 61) [113]. The
reaction proceeds at room temperature in the absence of bases or phase-transfer catalysts.
When carrying out the reaction in the presence of equimolar amounts of iodine required for
the formation of triiodide anion, the yield of compounds 79a,b is increased by three times.
New ionic liquids having stable organosilicon disulfonium cations and iodide and triiodide
counter-ions 80a,b were obtained by the reaction with di(2-benzothiazolyl)disulfide. Com-
pounds 80 are promising electrophiles for synthesizing organoelement derivatives by the
reaction with C-nucleophiles. The increased interest in the salts of heterocyclic compounds
is due to wide application in different fields [114–119].
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Scheme 61. Organosilicon salts 78, 79 and disulfonium dications 80 from 2-mercaptobenzothiazole.

The three-component reaction of 2-mercaptobenzothiazole, silane (a, see Scheme 61)
and molecular iodine, in addition to product 79a, leads to the annulated N,S,Si-heterocycle
81 [120]. The formation of this interesting tricyclic structure occurs due to partial splitting of
the Si-Csp2 in the product of S-alkylation 79a induced by the in situ formed HI and elemental
iodine. The intermediate labile silane A readily enters the reaction of intramolecular
cycloquaternization resulting in the formation of B, which suffers the intramolecular
rearrangement with the migration of the methylene group in the N–Si–CH2–S вN–CH2–
Si–S in the heterocycle to give salt 81 (Scheme 62). To the best of our knowledge, this is
the first example of the annulation of 2-mercaptothiazolyl derivative resulting in the so-far
unknown 2,3-dihydro[1,4,2]thiazasilolo[5,4-b][1,3]benzothiazol-4-ium heterocyclic system.
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Scheme 62. Annulation with rearrangement of salt 79a to salt 81.

2-Mercaptobenzothiazole was S-alkylated with mono- and bifunctional iodomethyl-
siloxanes at high temperatures in the solvent-free and base-free manner to give bis-iminium
salt 82 (Scheme 63) [121]. The formation of product 82 from 1-(iodomethyl)-1,1,3,3,3-
pentamethyldisiloxane occurs via the splitting of the siloxane bonds in the product of
S-alkylation induced by the in situ formed HI. Subsequent intermolecular condensation of
the intermediate labile products affords diiodide 82.
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Scheme 63. Synthesis of bis-iminium salt 82 from 2-mercaptobenzothiazole and iodomethylsiloxanes.

The reactions of 2-mercaptobenzothiazole with different organosilicon alkylated
reagents were also carried out under the conventional conditions, excluding the formation
of hydrogen iodide in the reaction mixture and, hence, the bond splitting [121,122]. The
reaction is performed in the presence of an inorganic (K2CO3) or organic non-nucleophilic
base (2,4,6-collidine). In this case, non-salt forms of silicon-aromatic, silicon-acetylenic,
or siloxane derivatives of 2-mercaptobenzothiazole 83a–c, 84 were obtained (Scheme 64).
From the virtual screening using the PASS program, compounds 83a,c in high probability
may possess biological activity, displaying antisclerotic and antioxidant activity.
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Scheme 64. Synthesis of non-salt forms of silicon-aromatic, silicon-acetylenic, and siloxane deriva-
tives of 2-mercaptobenzothiazole 83a–c, 84.

Noteworthy is the presence of tetramethylsiloxane groups in molecules 82, 83a, 84
imparting the materials on their basis elasticity, strength, chemical inertness and biocom-
patibility.

New compounds 85–88 (Scheme 65) were obtained by the reaction of 2,2′-(organyldithio)
dibenzothiazoles with iodoacetone in the presence of elemental iodine [123]. The presence
of I2 is necessary for the formation of triiodide counter-ions, which were shown by us to
stabilize the formation and accumulation of disulfonium cations.

The course of the reaction is affected by the nature of the spacer introduced in the
disulfide link. In the case of polymethylene spacer, the reaction proceeds exclusively on
the exocyclic sulfur atoms, whereas the carbonyl group in the spacer initiates the reaction
on the nitrogen atoms in the heterocycle.

Silylpropyl derivatives of 2-mercaptobenzothiazole have also been described [124]. They
have been obtained by nucleophilic substitution of chlorine in (chloropropyl)trimethoxysilane
in the presence of sodium methoxide and crown-ether in DMF on heating and gave product
89 in 77% yield. The latter was converted to hydrolytically unstable trifluorosilyl derivative
90 by the reaction of 89 with trifluoroboron etherate (Scheme 66).
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Scheme 66. Synthesis of trimethoxysilyl and trifluorosilyl derivatives of 2-mercaptobenzothiazole.

The sol–gel technique, which is a promising method in material science, was used for
the preparation of a silane-based coating 91 using (3-glycidoxypropyl) trimethoxysilane,
tetraethyl orthosilicate, and Al(OPr-i)3 as a chemical modifier, and benzotriazole or 2-
mercaptobenzothiazoleas as corrosion inhibitors (Scheme 67) [88].
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Scheme 67. Sol–gel synthesis of anticorrosion coating 91 based on 2-mercaptobenzothiazole.

Also, note the use of 2-mercaptobenzothiazole for the preparation of nanocompos-
ite 92 from magnetic graphene oxide (GO/Fe3O4) and (3-chloropropyl)trimethoxysilane
(Scheme 68) [94]. Nanosorbent 92 is successfully used in different matrices for the extrac-
tion of trace amounts of cadmium copper and lead.
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Scheme 68. Preparation of nanosorbent 92 based on magnetic GO and 2-mercaptobenzothiazole.

Consequently, 2-mercaptobenzothiazole and its derivatives, as 2-aminobenzothiazole,
have great potential in synthetic organic chemistry, the chemistry of drugs and material
chemistry. The results of the last five years have unequivocally proven that investigation
in this field allows discovering new reactions and approaches to valuable products of
considerable interest as biologically active compounds, new synthons and materials. Func-
tionalization of the amino or mercapto groups in the 2-position allows not only preparing
new products but also assembling new types of annulated heterocycles.

4. Conclusions

In summary, based on the analysis of the recent literature (since 2015) on the synthe-
sis and chemical transformations of the 2-amino and 2-mercapto-substituted derivatives
of benzothiazole in the present review, we conclude that practically all products clearly
demonstrate various practically valuable properties. Easy functionalization of the amino
and mercapto groups and the benzene ring in 2-amino- or 2-mercaptobenzothiazole allows
considering them as highly reactive synthons for the design and preparation of biologi-
cally active and industrially demanded products and materials. Note that, in addition to
conventional multistep methods of their syntheses, large efforts are being made to develop
environmentally friendly atom economy one-pot methods having high synthetic potential
and representing the basis of modern organic synthesis.
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