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Splicing perturbation in cancers contribute to different aspects of cancer cell progression.

However, the complete functional impact of cancer-associated splicing have not been

fully characterized. Comprehensive large-scale studies are essential to unravel the

dominant patterns of cancer-associated splicing. Here we analyzed the genome-wide

splicing data in 16 cancer types with normal samples, identified differential splicing

events in each cancer type. Then we took a network-based and modularized approach

to reconstruct cancer-associated splicing networks, determine the module structures,

and evaluate their prognosis relevance. This approach in total identified 51 splicing

modules, among which 10/51 modules are related to patient survival, 8/51 are

related to progression-free interval, and 5/51 are significant in both. Most of the 51

modules show significant enrichment of important biological functions, such as stem

cell proliferation, cell cycle, cell growth, DNA repair, receptor or kinase signaling, and

VEGF vessel development. Module-based clustering grouped cancer types according to

their tissue-of-origins, consistent with previous pan-cancer studies based on integrative

clustering. Interestingly, 13/51modules are highly common across different cancer types,

suggesting the existence of pan-cancer splicing perturbations. Together, modularized

perturbation of splicing represents an functionally important and common mechanism

across cancer types.
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INTRODUCTION

Newly transcribed messenger RNAs undergo processing steps such as capping, splicing and
polyadenylation to derive mature RNAs for export and translation (Hocine et al., 2010). The
splicing process, as accomplished by the spliceosome machine, can produce multiple alternative
products, which is a well-known phenomena called alternative splicing (AS) (Lee and Rio,
2015). Since its first discovery in 1977, many classical studies have characterized its widespread
participation in biological processes such as cell proliferation, apoptosis, angiogenesis, neuronal
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functions, and transcriptional regulation (Kelemen et al., 2013).
Deregulation of AS also contributes to human diseases and
various aspects of cancer development (David and Manley, 2010;
Scotti and Swanson, 2016).

To systematically characterize the extensive cancer-associated
AS perturbations, it is essential to design effective analytic
strategies suitable for the ever-growing cancer genomic datasets,
largely from projects such as The Cancer Genome Atlas (TCGA).
Several approaches have already been taken previously. One
of the most popular approaches is the event-driven approach,
which aimed to detect individual events that are correlated with
cancer or prognosis (Danan-Gotthold et al., 2015; Dvinge and
Bradley, 2015; Shen et al., 2016). A second approach focuses
on the splicing machinery side and tries to determine the
deregulation of splicing factors in tumors (Sebestyén et al., 2016;
Sveen et al., 2016; Seiler et al., 2018). Since these approaches
emphasized different aspects of the AS perturbations, several
recent studies have been linking the splicing factors and events
together to identify AS deregulation and the corresponding
functional impacts (Li et al., 2017; Kahles et al., 2018). However,
this approach may oversee the vast majority of perturbed splicing
events that are not easily explained by the few known regulatory
factors (Li et al., 2017). Moreover, these studies essentially relied
on single-event analysis, and have missed the inter-event linkages
which could be equally important to fully understand cancer-
specific AS perturbations. To complement these analyses, a fully
network-based approach is needed to capture the concurrent
perturbation patterns of cancer-associated AS. In addition, such
an approach might also discover more robust AS patterns in one
or multiple cancer types.

FIGURE 1 | Flowchart of analyses.

We carried out an extensive analysis of AS events and their
interactions in different cancer types. For each cancer type, a
network of cancer-associated events is reconstructed. To uncover
the potential modularized control in these splicing networks,
a random walk-based community identification algorithm is
employed. These analyses have revealed representative splicing
modules in each type of cancers, and a number of them are
prognosis-relevant and involved in cancer-related functional
processes. Finally, our work supports the unique value of
an splicing network-based approach in understanding cancer
splicing deregulation.

MATERIALS AND METHODS

Data Sets and Processing
Splicing data have been downloaded from the TCGASpliceSeq
database (Ryan et al., 2016). Clinical information is from the
GDC TCGA project. Splicing events that failed to be quantified
>10% in normal samples or >1% in cancer samples were filtered
without further use. Cancer samples with >0.1% missing data
were also removed. The remaining missing values were imputed
with the Bioconductor impute package.

Network Reconstruction and Module
Identification
For each cancer type, Pearson correlation coefficients among
splicing events were computed between each pair of the
differentially spliced events (Wilcoxon signed-rank test
FDR<0.1, |delta PSI|>0.1), and were used as edge weights
in the reconstructed undirected graph. The Pons-Lapaty random
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walk algorithm (step = 4) was used to partition the weighted
graph. The identified modules from each cancer type were
named according to the order of module sizes (from larger to
smaller). So M1 is always at least as large as M2, and M2 at least
as large as M3, etc.

Overall and Progression-Free Survival
Analysis
Module scores are averaged from all splicing events in each
sample, with normal sample PSI values used as references and
subtracted. Thus, the score measures how strong the module is
perturbed in one cancer sample. To ensure robustness, both the
average and median scores have been calculated. Overall survival
(OS) and progression-free intervals (PFI) are respectively
categorized for testing with module scores. The Kaplan-Meier
survival curves are fitted and compared between samples with

a higher vs. a lower module score using the Log-rank test.
Hazard ratios and confidence intervals are estimated from the
Cox proportional regression model. In total, 13 modules were
found to be significantly correlated to either OS (10 modules) or
PFI (8 modules). Of these, 5 modules were commonly significant
in both OS and PFI. In addition, 2 Lung squamous cell carcinoma
(LUSC) modules were nearly significant in OS and also included
as candidates. Therefore, 15 modules were retained after filtering
with OS and PFI analyses.

Functional Enrichment Analyses
Gene ontology (GO) enrichment was used to assess the functional
properties of each module. The enrichment was determined by
the Fisher’s exact test method. For all significant GO terms,
careful manual inspection and curation were performed to find
the most relevant and biologically important functions, which is
often a subset of the significant terms.

FIGURE 2 | Splicing networks for different cancer types. Modules identified by random walks are highlighted in different colors.

Frontiers in Genetics | www.frontiersin.org 3 April 2019 | Volume 10 | Article 246

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Du et al. Splicing Networks and Modules in Human Cancers

RESULTS

Splicing Network-Based Flowchart for
Identifying Prognosis-Relevant Splicing
Modules
The main analytic flowchart consist of six steps (Figure 1):
(1) Collection of annotated events from the TCGASpliceSeq
database across 33 cancer types. The splicing classes included
are exon skipping (ES), retention of introns (RI), alternative
donor (AD), alternative acceptor (AA), mutually exclusive exons
(ME), alternative terminator (AT). The numbers of quantified
events were found in at least 99% of the samples in each
cancer type range from 21129 to 43937 across the cancer types.
(2) Differential splicing events between cancer samples and
adjacent normal samples were identified for 16 cancer types
with at least 10 normal samples. The Wilcoxon signed-rank
test was used for testing. The number of differential events
obtained ranges from 228 in ESCA to 1133 in LUSC. (3)
Reconstruction of splicing network for each cancer type, with
Pearson correlation coefficient-based similarity linkages. Pearson
and Kendall correlation coefficients showed a good consistency
in subsequent community detection, confirming the reliability of
this procedure (Figure S1). (4) Network module identification
with the Pons-Lapaty algorithm which is based on random
walks in 3–5 steps to measure vertex distances for hierarchical
clustering and subsequent modularity-optimized graph partition
(Pons and Latapy, 2005). (5) Modules are then scored with the
averaged splicing deregulation between each cancer sample and
the normal samples, which provide a reasonable quantification of
module-level perturbation across cancer samples. (6) Prognosis
analyses for each module and its corresponding cancer type.
Figure 1 shows a schematic diagram of these steps.

Cancer Splicing Networks and Modules for
TCGA Cancer Types
We reconstructed splicing networks for each cancer type with
at least 10 normal samples on differential events. There are 16
cancer types that bypass the above criteria, namely: Bladder
urothelial carcinoma (BLCA), Breast invasive carcinoma
(BRCA), Colon adenocarcinoma (COAD), Esophageal
carcinoma (ESCA), Head and Neck squamous cell carcinoma
(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell
carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP),
Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma
(LUAD), Lung squamous cell carcinoma (LUSC), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ),
Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA),
and Uterine Corpus Endometrial Carcinoma (UCEC). The
number of modules identified with the Pons-Lapaty algorithm
varied between 2 and 5 for these cancer types. The visualized
inspection revealed quite clear network partitions (Figure 2). In
total, 51 modules were identified, and the number of events and
genes in each module can be found in Table 1 and Table S1. For
example, the KIRC_M1 module consisted of 710 events in 630
genes, with 41 AA events, 36 AD events, 229 AT events, 210 ES
events, 3 ME events, and 191 RI events.

TABLE 1 | A list of 51 cancer splicing modules.

Module Genes Events AA AD AT ES ME RI

BLCA_M1 302 332 22 19 130 73 0 88

BLCA_M2 188 191 4 0 152 30 1 4

BLCA_M3 118 119 8 7 91 12 0 1

BLCA_M4 104 111 3 4 73 26 1 4

BRCA_M1 239 257 14 8 137 73 1 24

BRCA_M2 216 221 8 8 158 37 2 8

BRCA_M3 107 121 6 5 54 40 1 15

BRCA_M4 51 52 2 2 25 19 1 3

COAD_M1 91 94 2 0 67 15 0 10

COAD_M2 57 66 2 1 48 8 1 6

COAD_M3 56 56 1 4 49 1 0 1

COAD_M4 42 43 2 3 16 6 0 16

ESCA_M1 132 141 5 13 60 32 0 31

ESCA_M2 86 87 1 8 64 12 1 1

HNSC_M1 200 220 14 9 93 53 1 50

HNSC_M2 159 165 3 4 126 28 0 4

HNSC_M3 116 127 7 2 84 29 0 5

KICH_M1 449 490 23 23 224 125 1 94

KICH_M2 363 383 10 19 232 90 5 27

KICH_M3 272 290 7 17 164 78 2 22

KIRC_M1 630 710 41 36 229 210 3 191

KIRC_M2 279 286 1 3 243 30 5 4

KIRC_M3 104 137 8 5 80 38 2 4

KIRP_M1 442 483 34 29 189 110 0 121

KIRP_M2 283 324 6 8 262 33 2 13

LIHC_M1 163 169 5 7 105 28 1 23

LIHC_M2 148 154 6 4 118 21 0 5

LIHC_M3 49 53 2 4 30 8 0 9

LIHC_M4 42 43 2 1 36 3 0 1

LUAD_M1 305 321 11 4 212 79 4 11

LUAD_M2 217 230 13 21 71 64 0 61

LUAD_M3 192 196 7 7 132 42 3 5

LUSC_M1 526 574 16 16 312 208 5 17

LUSC_M2 397 428 20 38 235 113 6 16

LUSC_M3 281 333 19 24 128 81 1 80

PRAD_M1 202 220 11 9 82 51 0 67

PRAD_M2 105 105 1 1 80 19 0 4

PRAD_M3 8 11 0 0 11 0 0 0

READ_M1 186 199 11 17 106 31 1 33

READ_M2 132 154 10 7 66 29 1 41

READ_M3 122 131 3 1 67 52 0 8

STAD_M1 141 164 11 13 37 41 0 62

STAD_M2 123 130 9 10 51 51 2 7

STAD_M3 108 112 1 3 71 35 1 1

STAD_M4 34 34 0 0 25 8 0 1

STAD_M5 17 24 1 1 16 4 0 2

THCA_M1 157 168 0 2 128 22 0 16

THCA_M2 149 151 4 2 114 17 0 14

UCEC_M1 292 302 7 5 244 31 2 13

UCEC_M2 206 210 4 4 172 14 0 16

UCEC_M3 117 121 4 7 65 27 1 17

AA, alternative acceptor; AD, alternative donor; AT, alternative terminator; ES, exon

skipping; ME, mutually exclusive exons; RI, retention of introns. For cancer type

abbreviations, see text.
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Overall and Progression-Free Survival
Analyses for Cancer Splicing Modules
Since the motivation of this study is to discover prognosis-
related splicing modules, we quantified module scores in
each cancer sample and test associations between module
scores and patient survival. Both the average score and
median score were computed and assessed for prognosis
correlation, and a very good consistency was found (Figure S2),
indicating robustness of the module scoring procedure. At a
0.05 significance level, Log-rank tests identified 10 prognosis-
related modules: BLCA_M1, BLCA_M2, KIRC_M1, KIRC_M2,
LIHC_M1, LIHC_M2, LUAD_M1, LUAD_M3, PRAD_M1, and
UCEC_M3 (Table 2, Figure 3). Two additional modules, the
LUSC_M2 (P = 0.0595, HR = 0.75 with a confidence interval
0.55–1.01) and the LUSC_M3 (P = 0.099, HR = 0.77 with a
confidence interval 0.57–1.05), are close to the significance level,
and therefore are still likely to be potential prognosis biomarkers
(Figure 3E). Notably, LUSC_M2 contains a ME event on the
known LUSC amplification gene FGFR1 (exons 12.1:12.2 vs. exon
13), which could be functionally important in LUSC (Weiss et al.,
2010; Heist et al., 2012).

Besides overall survival (OS) that reflects a long-term
prognosis, it is often of interest to evaluate short-term effects
on disease progression. Therefore, to further capture more
prognosis-related modules, we also tested the correlation
betweenmodule scores and progression-free intervals (PFI). This
analysis returned 8 significant modules (P ≤ 0.05), namely,
BLCA_M1, BLCA_M2, BLCA_M4, LUAD_M3, PRAD_M1,
PRAD_M2, THCA_M1, and UCEC_M3 (Table 2, Figure 4).
Note that BLCA_M4 is also marginally significant in OS
analysis (P = 0.076, HR = 0.75 with a confidence interval of
0.54–1.03), while PRAD_M2 (OS P = 0.29) and THCA_M1
(OS P = 0.7) are only significant in PFI analysis. Five

modules are strictly significant in both the OS and PFI
settings (BLCA_M1, BLCA_M2, LUAD_M3, PRAD_M1, and
UCEC_M3), and interestingly, their HR ratios in these two
settings are in a similar trend, either both reducing or
both increasing malignancy risks. BLCA_M1 lowers both the
death risk (0.57, 0.41–0.78) and the disease progression risk
(0.67, 0.48–0.91); BLCA_M2 increases both the death risk
(1.78, 1.29–2.48) and the progression risk (1.42, 1.04–1.95);
LUAD_M3 also increases both risks (1.86, 1.34–2.58 and 1.42,
1.05–1.93, respectively); PRAD_M1 also increases both risks
(6.42, 0.78–52.60 and 1.80, 1.16–2.79, respectively); UCEC_M3
similarly increases both risks (1.81, 1.15–2.84 and 1.66, 1.12–
2.47, respectively). These strongly indicate the consistency of
splicing modules as potential prognosis biomarkers, suggesting
underlying functional involvement of these modules in their
corresponding cancer types.

Cancer Splicing Modules Are Enriched for
Critical Biological Functions
The above analyses yielded 15 modules with potential prognosis
relevance (Table 2). To characterize the functional properties of
each splicing module, GO enrichment analysis was performed
on the 15 modules. The major functional implications of
each module were manually examined and curated from the
enrichment results (Table 2). Since nearly all genes transcribed
in the genome, including many long non-coding genes,
underwent alternative splicing, typically very few events
could drive strong functional changes, and the majority
of alternative splicing events at most function as weaker
modifiers. Surprisingly, we found that the 15 modules, when
compared to the splicing events catalog, showed very strong
enrichment of important biological functions, such as stem cell
proliferation and epithelial-mesenchymal transition (EMT),

TABLE 2 | Cancer splicing modules correlated with prognosis.

Module OS_HR OS_P PFS_HR PFS_P Function

BLCA_M1 0.57 (0.41–0.78) 0.00052 0.67 (0.48–0.91) 0.011 Stem cell proliferation; EMT

BLCA_M2 1.78 (1.29–2.48) 0.00044 1.42 (1.04–1.95) 0.027 Microtubule bundle; actin filament polymerization

BLCA_M4 0.75 (0.54–1.03) 0.076 0.70 (0.51–0.97) 0.029 Cell junction; Rac and Ras signaling

KIRC_M1 2.04 (1.46–2.84) 2E−05 1.24 (0.89–1.74) 0.2 mRNA splicing and export; transcription termination

KIRC_M2 0.50 (0.36–0.70) 3.5E−05 0.77 (0.55–1.08) 0.12 Drug metabolism; PI3K signaling; amino acid metabolism

LIHC_M1 2.06 (1.41–3.02) 0.00013 1.32 (0.96–1.82) 0.085 ERK1/2 signaling; organ growth; PI3K signaling

LIHC_M2 0.50 (0.34–0.73) 0.00023 0.79 (0.57–1.08) 0.14 ERK1/2 signaling; stem cell proliferation; embryonic epithelium

LUAD_M1 0.63 (0.45–0.87) 0.0043 0.74 (0.55–1.01) 0.054 PKC signaling; VEGF and lymph vessel development

LUAD_M3 1.86 (1.34–2.58) 0.00018 1.42 (1.05–1.93) 0.023 Mitosis; double-strand break repair

LUSC_M2 0.75 (0.55–1.01) 0.059 0.80 (0.56–1.15) 0.22 Phospholipase activity; formation of primary germ layer

LUSC_M3 0.77 (0.57–1.05) 0.099 0.98 (0.69–1.41) 0.93 EMT; GPCR signaling; double–strand break repair

PRAD_M1 6.42 (0.78–52.60) 0.049 1.80 (1.16–2.79) 0.0081 Calcium ion homeostasis; muscle contraction; mesoderm morphogenesis

PRAD_M2 0.42 (0.08–2.19) 0.29 0.52 (0.33–0.81) 0.0032 Calcium ion homeostasis; cell-cell adhesion

THCA_M1 1.21 (0.45–3.23) 0.7 0.55 (0.31–0.99) 0.041 Stem cell proliferation

UCEC_M3 1.81 (1.15–2.84) 0.0087 1.66 (1.12–2.47) 0.01 Type I interferon production; DNA duplex unwinding

OS, overall survival; PFS, progression-free survival; HR, hazard ratio; P, Log-rank test p-value.
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FIGURE 3 | Overall survival analyses for splicing modules. Red curves are with a high module score, and blue curves with a low module score. (A) BLCA_M1; (B)

KIRC_M2; (C) LIHC_M1; (D) LUAD_M1; (E) LUSC_M2; (F) UCEC_M3.

(BLCA_M1, LIHC_M2, LUSC_M1, THCA_M1, THCA_M2,
UCEC_M2), cell cycle control (BRCA_M1, BRCA_M2,
COAD_M4, KICH_M1, STAD_M1), DNA repair or regulation
(COAD_M3, ESCA_M2, HNSC_M3, KICH_M1, LUAD_M3,
LUSC_M3, UCEC_M3), developmental cell growth (BRCA_M4,
COAD_M1, LIHC_M1, LIHC_M3, READ_M1, READ_M2,
STAD_M2, STAD_M3), receptor or kinase signaling pathways
(BLCA_M4, HNSC_M1, KICH_M1, KIRC_M2, KIRP_M1,
KIRP_M2, LIHC_M1, LIHC_M2, LUAD_M1, LUAD_M2,
LUSC_M1, LUSC_M3, READ_M2), VEGF-mediated vessel
development (LUAD_M1, LUSC_M1) (Table 2). Among
these major functions, EMT is required for cancer invasion
and metastasis, which is closely related to cancer mortalities
and prognosis (Singh and Settleman, 2010). The important

EMT-related gene modulated in BLCA and LIHC is FGFR2,
which regulates mesenchymal condensation in BLCA (Chaffer
et al., 2006). Targeting FGFR signaling through splicing
factors might expand the current toolkits (Touat et al.,
2015). Vessel development controlled by VEGF signaling
is another pathway directly involved in cancer metastasis
and patient survival (Stacker et al., 2002; Su et al., 2006).
Both VEGFA and its receptor FLT4 (VEGFR-3) were altered
during splicing in lung cancers LUAD and LUSC, which
might modulate angiogenesis through splicing control. In
summary, these suggest that the splicing network-based module
identification approach taken in this study was powerful enough
to extract the few critically functional events from a much larger
splicing background.
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FIGURE 4 | Progression-free survival analyses for splicing modules. Red curves are with a high module score, and blue curves with a low module score. (A)

BLCA_M4; (B) LUAD_M3; (C) PRAD_M1; (D) PRAD_M2; (E) THCA_M1; (F) UCEC_M3.

Splicing Modules Across Cancer Types
Reveal Pan-Cancer Signatures
Having obtained those functionally coherent modules, we next
asked whether it would be helpful to explore the pan-cancer
landscape at the module level. Hierarchical clustering of cancer
types with the 51 modules revealed a clear pattern that is closely
related to tissue origins (Figure 5A). Lung cancers (LUAD,
LUSC), colon cancers (COAD, READ), gynecological cancers
(BRCA, UCEC), kidney, and prostate cancers (KIRC, KIRP,
KICH, PRAD) each are clustered in a tissue origin manner.
This is actually consistent with a recent pan-cancer analysis
using multi-platform integrative clustering (Hoadley et al., 2018),
suggesting that splicing events can also be useful for cancer
classification and subtyping.

Due to the intra-type and between-type heterogeneity of

cancers, it is important to knowwhich of the splicingmodules are

shared by multiple cancer types and which modulesare restricted
to one or few cancer types. We summarized the scores for

each module in the cancer samples and categorized them by
cancer type (Figure 5B). The diagonal line here reflects the score

of modules in their corresponding cancer types, while the off-
diagonal regions depicts their pan-cancer potential. Although
a few modules from kidney and liver cancers show a strong
cancer type specificity, and largely not perturbed in other
types (KICH_M3, LIHC_M3, LIHC_M4), many other modules
display strong pan-cancer perturbation patterns, suggesting their
wider involvement in most cancer types. With a strict criteria
(perturbation found in at least 15/16 cancer types), we found that
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FIGURE 5 | (A) Hierarchical clustering of cancer types by 51 splicing modules. (B) Heatmap of module scores in each cancer type. “+” and “–” respectively denote

that for ≥80% samples in the cancer type are with a higher and lower module score than normal samples. “∗∗” denotes the module are consistently “+” or “–“ in

≥15/16 cancer types.
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13/51 modules are highly common across different cancer types
(marked with ∗∗, Figure 5B), again suggesting that the modules
identified with splicing network analysis are highly informative
and important.

DISCUSSION

Although AS has been identified and studied for many years,
the full regulation pattern of these many AS events within
and across cancer types are still not completely understood.
Previous studies have taken advantage of single-event analyses
and linked splicing to splicing factors as well as the cis-elements.
Very recently, an interesting study sets out to determine the
involved of spliceosome RNAs in cancer-specific AS regulation
(Dvinge et al., 2018).

In this study, we have taken a novel approach that
emphasizes the inter-event correlations and uncovers the
modularized perturbation of splicing events in cancers.
Previous studies have not emphasized the modularized
control of splicing events, which according to our study
is quite important. Indeed, a relatively small number of
functionally important and prognosis-relevant modules have
been successfully identified, with some of them being common
across cancer types and others being more specific to one or
few cancer types, indicating that our approach is both powerful
and useful.

To focus on the more typical AS classes, we have not
considered alternative promoters in this study, as their
regulation are more relevant to transcriptional factors, enhancers
or even epigenetic modifications (Maunakea et al., 2010;
Kowalczyk et al., 2012). Nonetheless, it would be interesting to
investigate the possibility of combining transcriptional events
and splicing events in the future, as co-transcriptional splicing
has already been proposed and supported by various studies.
This might serve as a plausible framework for those interactions
(Lee and Rio, 2015).
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