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ABSTRACT

Mapping co-evolved genes via phylogenetic profil-
ing (PP) is a powerful approach to uncover func-
tional interactions between genes and to associate
them with pathways. Despite many successful en-
deavors, the understanding of co-evolutionary sig-
nals in eukaryotes remains partial. Our hypothesis
is that ‘Clades’, branches of the tree of life (e.g.
primates and mammals), encompass signals that
cannot be detected by PP using all eukaryotes. As
such, integrating information from different clades
should reveal local co-evolution signals and improve
function prediction. Accordingly, we analyzed 1028
genomes in 66 clades and demonstrated that the co-
evolutionary signal was scattered across clades. We
showed that functionally related genes are frequently
co-evolved in only parts of the eukaryotic tree and
that clades are complementary in detecting func-
tional interactions within pathways. We examined the
non-homologous end joining pathway and the UFM1
ubiquitin-like protein pathway and showed that both
demonstrated distinguished co-evolution patterns in
specific clades. Our research offers a different way to
look at co-evolution across eukaryotes and points to
the importance of modular co-evolution analysis. We
developed the ‘CladeOScope’ PP method to integrate
information from 16 clades across over 1000 eukary-
otic genomes and is accessible via an easy to use
web server at http://cladeoscope.cs.huji.ac.il.

INTRODUCTION

Phylogenetic profiling (PP) predicts functional interactions
between genes (or their products) by measuring the sim-
ilarity of their evolutionary profiles (i.e. presence and
absence/loss) across different organisms. The phylogenetic
profile of a gene is represented by a vector across all ex-
amined species of whether a gene ortholog is present or
absent in each organism (1,2). Genes that are lost and re-
tained together are considered to be co-evolved and are pre-
dicted to be functionally related such that when the function
is needed, the genes are retained together and lost other-
wise. It is well established that genes with similar phyloge-
netic profiles are substantially more likely to be function-
ally related (1–9). This can be used to annotate uncharac-
terized proteins to a putative function or pathway, based on
the similarity of their PP with those of annotated proteins.
When expanding PP comparisons to the entire genome, it
is expected to reveal functional linkages on a genome-wide
scale, elucidating both known and novel pathways and cel-
lular systems. Previous studies identified unknown func-
tional associations of genes and were employed to discover
unknown disease-causing genes (3,10,11) and new members
in pathways (12–14).

Originally, a binary representation of presence or ab-
sence was used to describe the PP of genes. This approach
was successfully applied to predict functional interactions
in prokaryotes (1,2,15–17). Nevertheless, the implementa-
tion of the binary representation to eukaryotes might not be
trivial (18–20). Eukaryotic genes are not enclosed in oper-
ons, usually encode proteins far larger (21) with several do-
mains, undergo massive splicing and have more paralogs as
compared to prokaryotic protein-coding genes. Other po-
tentially influential differences are due to the variation in
mutation rates and generation time between eukaryotes and
prokaryotes. Thus, different levels of sequence identity, with
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partial loss, suggest variable selective pressures. Variable se-
quence identity may hint to differences in functional simi-
larity between orthologs, which also depends on the phylo-
genetic distance between species (3,4).

As variable conservation levels suggest differences in se-
lection and therefore in function, several methods, such
as normalized phylogenetic profiling (NPP) (3,4,14,22–24)
and SVD-phy (7) have been suggested. These methods offer
an alternative to the binary presence-or-absence scoring sys-
tem using a continuous metric of conservation. Continuous
methods aim to model small evolutionary changes in a non-
discrete (binary) way and with higher resolution (3,7,8).
These PP methods identify genes that co-evolved ‘globally’
across the entire tree of life, or in some cases across all eu-
karyotic species, hereafter referred to as ‘all eukaryotes’.

However, the PP of a gene represents a complex signal
that reflects the integration of genomic events and many
evolutionary phenomena that happened across millions of
years of evolution at different scales (both at the molecular,
organismal and population levels). At the molecular level,
new genes appeared, genes duplicated, diverged in sequence
or were completely lost across clades. These events hap-
pened sporadically and through the process of natural selec-
tion contributed to the creation or destruction of functional
associations between genes. For example, ancient gene du-
plications may lead to sub-functionalization, specialization
or neo-functionalization of one or more of the resulting par-
alogs (25), which can then distinctively co-evolve with new
genes and pathways. These phenomena can be manifested
as a tight co-evolution of genes in a specific pathway in
some clades as well as divergence in their evolution in other
clades. These and similar processes may drive co-evolution
but can also mask co-evolution signals. Thus, genes shar-
ing similar phylogenetic profiles, despite millions of years
of complex evolution even in part of the tree of life, may
suggest functional interactions between them.

The variability between clades and the complexity of evo-
lution make it reasonable to assume that co-evolution of
genes might not be reflected by the PP signals across the
full tree of life. These signals may instead be hidden ‘locally’
in specific clades (14,26,27). ‘Clade-wise’ PP analysis aims
to detect local co-evolution signals. A clade in this context
refers to a monophyletic group, essentially a ‘branch’ of the
phylogenetic tree, consisting of species stemming from the
same common ancestor (e.g. Primates, Mammals, Fungi,
etc.).

It has been shown that PP analyses can benefit from
clade-wise measurements (14,26). Shin et al. (26) found that
by integrating local co-evolution across domains of life (eu-
karyotes, bacteria and archaea), one could identify func-
tional interactions that were not identified when performing
PP using the whole tree of life. Additionally, Sherill-Rofe
and Rahat et al. (14) showed how local co-evolution can be
used within the eukaryotic tree to identify candidate DNA
repair genes.

The concept of clade-wise co-evolution holds the promise
of a more accurate functional interaction prediction as these
results emphasize the value of inspecting co-evolution in
specific clades (and not only globally across all organisms).
Clade-based approaches, previously hampered by the lack
of available data, are poised to become more accurate and

more specific given the exponential growth in the number
of sequenced organisms. Furthermore, combining various
clades should improve the predictive power and our under-
standing of the biology in cases where the relevant clade is
unclear.

To date, these expectations have not been demonstrated
thoroughly and at a large scale. Since the concept was
first introduced, studies were only applied in very restricted
cases, such as a comparison between domains of life (26)
and analyses for a DNA repair pathway within a few eu-
karyotic clades, and limited to model a large group of genes
(14). A comprehensive study of clade-based PP is still lack-
ing to explore the benefits and predictivity of each clade, the
difference between the clades and analyses of clade integra-
tion.

Here we explore a broader perspective for the integration
of clade-wise analysis in PP. We analyzed the co-evolution
patterns of 186 KEGG pathways in 66 clades and 1028
eukaryotic species genomes and demonstrated how clades
vary in their ability to detect different events of co-evolution
of functional interactions. We established that clades are
complementary in the prediction of functional interactions
and propose a method to integrate clade-wise phylogenetic
profiles, which we term ‘CladeOScope’. The CladeOScope
method and its accompanying web server are presented
for the prediction and analysis of functional interactions
between human genes using clade-wise PP analyses. Our
method can identify signals that are harder to detect by
global PP methods. Examples are provided where clade
analyses improved performance and identified additional
pathway genes, such as the UFM1 pathway where the signal
was found in an unbiased fashion in two clades––all eukary-
otes and Alveolates.

MATERIALS AND METHODS

Normalized phylogenetic profiling

The NPP matrix was prepared as previously described
(3,4,14,22–24). Specifically, proteomes for all species were
downloaded from UniProt (June 2018 release, reviewed pro-
teomes) (28). The reference (Human) proteome was also
downloaded from UniProt (June 2018 release, reviewed pro-
teomes) and proteins with lengths of <40 amino acids were
excluded. In cases where multiple isoforms were annotated
for the same protein, we retained only the longest isoform.
Species were annotated according to NCBI Taxonomy (29).
In total, the matrix contains 20 192 human genes and 1028
species.

The NPP for each human gene is based on the similarity
between the query (human) protein and the BLAST (30,31)
best hit in each of the different species. One directional
BLAST was shown to be highly sensitive in identifying or-
thologs for PP (32).

The alignment is local, thus a low score may stem from
partial alignment (e.g. of a specific domain of a protein). To
reduce noise, bitscores less than a threshold t were clipped
to t, where t = 20.4. This bitscore threshold is the minimal
bitscore value across all species that corresponds to an E-
value ≤ 0.05.

The bitscore of each best BLAST hit was first normalized
by the bitscore of the query protein self-hit (33). Then the
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log2 of the normalized bitscore was taken. The log scores
were normalized by the level of conservation for all proteins
in the given specific proteome by Z-scoring of all scores for
a specific species (3,4). Thus we based our global analysis on
a ∼20 000 genes × ∼1000 species NPP matrix, where each
data point xa,b is the normalized phylogenetic profile (NPP)
score for gene a in species b, as compared to human. Based
on the resulting NPP matrix, we constructed a ∼20 000 × 20
000 correlation matrix containing the Pearson correlation
between the phylogenetic profiles of every gene pair for each
clade.

An identical process was used to construct the phyloge-
netic profile for Caenorhabditis elegans (C. elegans, taxid
6239) presented in Supplementary Figure S3. The canon-
ical C. elegans proteome was retrieved from UniProt at the
same time and was used to construct a PP matrix similarly
to human.

Filtering non-conserved genes

Some of the protein-coding genes were conserved only in
certain clades. The normalized phylogenetic profile of such
genes is mostly clipped (as explained earlier) and has low
information value. To eliminate this artifact, we excluded
from the analysis genes with a bitscore < 40 in 90% or more
of the species inspected in a clade. This was performed upon
analyzing all eukaryotes as well as in the separate analyses
of each clade.

Clade annotation and representative clades

Using the NCBI taxonomy (29), we annotated each species
to all clades it belonged to. We then filtered the clades such
that only clades with more than 20 species were retained, re-
sulting in 66 clades (a full list of clades is available in Supple-
mentary Table S2). For each of the 66 clades, as well as for
the set of all eukaryotes, we constructed a gene-wise Pear-
son correlation matrix and filtered non-conserved genes as
described above.

From these clades, we chose 16 representative clades
spanning the eukaryotic tree. To define the clade combi-
nation for which CladeOScope calculates the score, clades
were chosen based on three guiding principles: wide cov-
erage, mutual exclusivity and uniformness in clade types.
To achieve wide coverage, clades were chosen to span most
of the eukaryotic tree. Mutual exclusivity was achieved by
choosing non-nested clades such that each species belonged
to as few clades as possible. Uniformness is attributed to
choosing clades with similar depth in the tree, e.g. kingdoms
or phyla. Additionally, uniformness refers to each species
belonging to a similar number of chosen clades. All three
principles are conceptually important to avoid over- or
under-representation of species. Based on these principles,
we defined a combination of 16 clades, in addition to the
set including all eukaryotes: Chordata, Ecdysozoa, Platy-
helminthes, Alveolates, Stramenopiles, Fungi, Viridiplan-
tae, Mammalia, Archelosuria, Arthropoda, Nematoda, Ba-
sidiomycota, Ascomycota, Fungi incertae sedis, Liliopsida
and Eudicotyledons (and see Supplementary Table S1 for
further information).

Broad clade-wise co-evolution analysis of KEGG pathways

We sought to compare the ability of different clades to
identify functional interactions between genes belonging to
the same pathway by clade-wise co-evolution. We utilized
KEGG pathways (34) downloaded from MSigDB (35)
(http://software.broadinstitute.org/gsea/downloads.jsp;
version 28.11.2018). For C. elegans, KEGG path-
ways were downloaded from the KEGG API (http:
//rest.kegg.jp/link/cel/pathway, retrieved at 10 November
2020) and matched to UniProt ids using the mapping
available from KEGG (http://rest.kegg.jp/conv/cel/uniprot,
retrieved at 10 November 2020). Overall, the data con-
tained 186 KEGG pathways. For each KEGG pathway, we
calculated the recall of pairwise interactions in the pathway
among the top 5% of correlations in a given clade. The
recall here is defined as the number of pairwise interactions
passing a given threshold, divided by the total number of
interactions between pairs of genes belonging to the same
pathway. A recall value of of 1 indicates that we identified
pairwise interactions between each pair of genes in the
pathway at a given threshold.

We compared the scores in clades for each pathway
and calculated how many clades outperformed the 1028
genomes that represent all eukaryotes, and how many times
each clade was best performing for all pathways. The data
were visualized as a heatmap (Figure 1). Each row depicts
a KEGG pathway, each column depicts a clade, and each
entry is the recall as described above. Heatmaps were pro-
duced with the R package ComplexHeatmap (36).

Multi-clade integration

To investigate the utility of using multiple clades for func-
tional interaction prediction, we developed a heuristic mea-
suring the unique contribution of each clade to pathways.
For each clade, gene pairs were considered co-evolved if
their correlation was among the top 5% of correlations for
that clade out of all possible gene–gene pairs (20 192 × 20
192). For each pathway, we calculated the proportion of
connections in the pathway found in each clade (consider-
ing all possible gene-pairs). To optimize a combination of
several clades to yield a maximum of connections, we ap-
plied greedy optimization. The first step was to identify the
clade detecting the largest number of ‘unique connections’
(not detected by other clades). Then we removed these con-
nections from the overall pool and repeated the same step
for the rest of the clades. Thus, for each pathway, we assem-
bled a ranked list of clades according to the proportion of
connections that it uniquely identified in the pathway.

‘CladeOScope’ method for clade integrated co-evolution pre-
diction

The ‘CladeOScope’ approach is designed to integrate the
phylogenetic signal from clades to predict functional inter-
actions. For a given query gene, CladeOScope first calcu-
lates the Pearson correlation between the phylogenetic pro-
file of the query and the profiles of all ∼20 000 genes sepa-
rately in 16 clades as well as ‘all eukaryotes’ (all eukaryotic
species in our NPP matrix).

http://software.broadinstitute.org/gsea/downloads.jsp
http://rest.kegg.jp/link/cel/pathway
http://rest.kegg.jp/conv/cel/uniprot
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Figure 1. KEGG pathway prediction by clades. Heatmap demonstrating
the performance of 17 clades (16 as defined in this study, as well as all eu-
karyotes) over 186 KEGG pathways. Each column depicts a clade while
each row depicts a pathway. Each entry in the heatmap is colored by the
percent of functional interactions in the pathway identified by the clade
(see text). Dotted entries mark the best performing clade for each en-
try. The annotation bar ‘Ratio’ shows the fraction of clades that surpassed
the score of all eukaryotes for each pathway (row).

CladeOScope then computes a min rank score, which
is the best rank of correlation for each of the ∼20 000
genes across the clades. Thus, for a query gene q and a
target gene h, the score is defined as follows: S (q, h) =
minc (rank(ρc(q, h))): where ρc(q, h) is the Pearson corre-
lation between the phylogenetic profiles of genes q and h in
clade c, and rankc is the rank of this correlation in the vec-

tor of correlations between the query gene and all genes in
clade c.

As ranks are not symmetrical (i.e. gene A may be ranked
as the 10th most co-evolved for gene B, but gene B may be
ranked only 30th for gene A), a geometric mean of the two
ranks is used as a representative of the pair. As explained
previously, non-conserved genes are excluded from the anal-
ysis (for each clade individually). Notably, since the score is
based on the rank of the correlation, a lower score implies
stronger evidence for co-evolution (the lower the rank, the
higher the correlation).

In addition to the CladeOScope min rank score, for com-
parison we also computed the maximal correlation across
all clades max(ρc(q, h)), and a geometric mean across all
clades.

Comparison to other methods

We benchmarked the ability of this integrated score, as
well as the combination of clades, to predict functional
interactions. Gene sets were gathered from CORUM
(37) complexes, REACTOME (38) and KEGG (34)
pathways. In addition to the KEGG pathways data
described above, we downloaded CORUM complexes
(https://mips.helmholtz-muenchen.de/corum/download/
allComplexes.txt.zip; version 12 February 2019), and
the Reactome database (reactome.org/download/current/
ReactomePathways.gmt.zip; version 5 February 2019).
CladeOScope was compared to the NPP method using
all eukaryotes (3,4), as well as several other published
PP methods including PrePhyloPro (8) and a binarized
phylogenetic profile with hamming distance as the profile
similarity (BPP hamming) (8,39). PrePhyloPro was calcu-
lated using the same BLAST data as the NPP as previously
described, taking the BLAST E-Value as a measure of
protein presence. BPP was similarly calculated from the
BLAST E-value with a threshold of 10−3.

CladeOScope web tool

The web server is implemented in HTML, CSS,
JAVASCRIPT and R. It was built primarily using the R
shiny package to embed R computations on both the server
and client sides. The R packages used include iheatmapr
(40) for interactive heatmaps, and ComplexHeatmap (36)
for non-interactive heatmaps. The site is deployed using
the Shiny Server software of R studio, hosted locally on
a server of the Hebrew University of Jerusalem, and is
available at http://cladeoscope.cs.huji.ac.il.

Paralog filtration

Paralogous genes present a known challenge in PP, both
in the profile preparation step and in the analysis of co-
evolved genes. Paralogous genes show similar phylogenetic
profiles as they have a high sequence similarity. Although
this is perhaps a true co-evolution signal, it is more easily
captured by homology-based methods and thus of less in-
terest in PP. Therefore, we highlight the existence of par-
alogs in the analysis and allow the user to filter out paral-
ogous genes easily in the query or the results. This is done

https://mips.helmholtz-muenchen.de/corum/download/allComplexes.txt.zip
file:reactome.org/download/current/ReactomePathways.gmt.zip
http://cladeoscope.cs.huji.ac.il
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by retaining the first gene of each pair of paralogous genes
(discarding the second), based on the human paralogs lists
as found in GeneCards (https://www.genecards.org/) (41),
that are based on Homologene (https://www.ncbi.nlm.nih.
gov/homologene/) (42) and Ensembl (https://www.ensembl.
org/) (43).

RESULTS

Clades vary in their ability to detect co-evolution signals in
different pathways

We determined whether PP performed using different clades
improved the detection of known functional interactions as
compared to using all eukaryotes. For the analysis, we ex-
amined the ability of 66 eukaryotic clades to detect func-
tional interactions among members of 186 KEGG path-
ways. Genes in these pathways functionally interact by def-
inition and are expected to show a co-evolution signal. For
this analysis, we used 66 clades of 20 or more species at
different levels of the eukaryotic tree (see ‘Materials and
Methods’ section). For each clade we calculated the corre-
lation matrix between all the genes and considered the top
5% gene pairs that had the highest correlations. The top
5% correlated gene pairs identified a significant proportion
of functional interactions. Interestingly, different clades re-
cover varying proportions of functional interactions in dif-
ferent pathways, with some clades performing better than
others (Figure 1).

In some cases, different clades were grouped by biological
context. For example, a cluster of metabolic pathways com-
posed of ‘KEGG Citrate Cycle TCA Cycle’, ‘KEGG Valine,
Leucine and Isoleucine Degradation’, ‘KEGG Fatty Acid
Metabolism’ and ‘KEGG Terpenoid Backbone Biosyn-
thesis’ was best predicted by Fungi, with 60–74% of the
connections identified in Fungi for each pathway. How-
ever, this clade performed poorly for a cluster of different
metabolic pathways. ‘KEGG Glycosphingolipid Biosynthe-
sis Lacto and Neolacto Series’, ‘KEGG Glycosphingolipid
Biosynthesis Globo series’ and ‘KEGG Glycosphingolipid
Biosynthesis Ganglio Series’ detected around ∼0–7% of the
pathway connections. These pathways in turn are well de-
scribed by green plants (Viridiplantae), which detected up
to 70% of the connections. Both of these clades, Fungi
and Viridiplantae, performed poorly for a cluster of im-
munologic pathways of ‘KEGG Graft Versus Host Dis-
ease’, ‘KEGG Asthma’ and ‘KEGG Type I Diabetes Melli-
tus’. For the latter cluster, while both Fungi and Viridiplan-
tae detected ∼0–0.02% of the interactions in the pathways,
they were well-detected by Chordata with 45–58% of the in-
teractions.

Using only all eukaryotes at once is seldom optimal

Most previous PP approaches were based on using the full
tree of life at once. We were interested to study the extent
to which specific clades outperform functional interaction
prediction in pathways as compared to using all eukaryotes.
Analysis of 16 clades (see ‘Materials and Methods’ section)
revealed that PP based on all eukaryotes had the best per-
formance in only ∼20% of the pathways, (see row annota-
tion bar in Figure 1). The Chordates clade (Chordata) had

a better performance than all eukaryotes in ∼45% of the
pathways, Fungi, Alveolates and Mammalia outperformed
all eukaryotes in ∼35–25%, while the rest in ∼20% or less
(Figure 2A). Platyhelminthes and Ecdysozoa surpassed eu-
karyotes the least, yet still for 11–12% of the pathways. This
further suggests that the sole use of all eukaryotes may not
be sufficient and that the addition of clade-specific informa-
tion has a beneficial impact.

No single clade is optimal for all pathways

For each pathway, we computed which clade had the top
score. In Figure 1, the dots (marking the best performing
clade for each pathway) show a highly versatile pattern,
suggesting that no one or two clades can be used to pre-
dict connections optimally in all KEGG pathways. Among
the examined 66 clades (Figure 2B), those that scored the
best for most pathways were vertebrates (∼18% of the path-
ways), followed by all eukaryotes (17.7%), fungi and meta-
zoa (∼8% each), chordata (∼6%) and the rest for 5% or less.
These results suggest that no specific clade captures all path-
ways. We then checked whether combining different clades
had the potential to improve the detection of functional in-
teractions.

Clades are complementary in predicting functional interac-
tions

While different clades may detect a substantial proportion
of a pathway’s interactions, these interactions may overlap
to various extents. Hence, we wanted to test whether using a
variety of different clades could lead to complementary pre-
dictions such that, when combining co-evolved genes from
several clades, one could better reconstruct the pathway.
Combining information from different clades might have a
significant effect on reconstructing a pathway as the best
clade (which identifies the most unique pairwise connec-
tions) on average only predicts 31% of the connections in
the pathway (Figure 3A). Using only all eukaryotes per-
formed even worse, with around 15% of the connections
identified (of a pathway) (Figure 3B). However, by combin-
ing the top five clades per pathway, it predicted up to 52%
of connections at the fifth top clade as compared to 20% of
connections in random gene sets (Figure 3A, orange). Over-
all, KEGG pathways identification benefits from further in-
tegrating the next clade in each of the top five clades (Figure
3A). By inspecting all 16 chosen clades, we found that this
effect saturates at about the eighth best clade with ∼60% of
connections identified per pathway on average (Figure 3B).

Some clades appear to be more informative than other
clades and thus are listed more often as the top clades per
pathway. Not surprisingly, the two prevailing clades are
all eukaryotes and Chordata, as described above. However,
some other clades such as Mammalia and Nematoda tend
to be top-ranking clades as well (Figure 3C).

Recapitulation of pathway components using the combined lo-
cal co-evolution approach

Recently we identified nine novel genes in the homologous
recombination repair pathway using a simple clade-based

https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/homologene/
https://www.ensembl.org/
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A

B

Figure 2. Comparison of clade prediction of KEGG pathways. (A) Different clades surpass the all eukaryotes score in predicting KEGG pathways. This
plot demonstrates how in many pathways each clade scored higher than all eukaryotes. (B) The fraction of KEGG pathways for which each clade had the
best score out of all 66 examined. For panels (A) and (B), the x-axis shows 66 examined clades ranked by performance, and clades selected for our method
are marked in blue. The y-axis depicts the ratio of KEGG pathways in which each clade scored higher than all eukaryotes in panel (A) and the ratio of
KEGG pathways for which each clade was the top scoring in panel (B).
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A B

C

Figure 3. Clades are complementary in predicting functional interactions. Clades were used to predict functional interactions in KEGG pathways. (A)
The recall for the top five clades per pathway (blue) compared to random gene sets (orange). The x-axis indicates the recall––i.e. the proportion of unique
interactions identified (not identified by other clades). Histograms are ordered from top to bottom by the number of clades used for prediction. Vertical
line is the mean of the distribution, with the value written above. (B) Performance of clades and groups of clades, ranked from best to worst per pathway,
in predicting unique interactions (such that they are only predicted by a specific clade). All eukaryotes are shown for reference (light gray). For each rank,
the proportion of unique connections (dark gray) and cumulative connections (purple) is shown. For each violin plot, the lines at the top and bottom are
the min and max appropriately, while the black line in the middle is the mean. (C) Heatmap representing the percentage of pathways for which a specific
clade (column) is ranked first to fifth (row).

PP approach (14). This pathway is important for repair-
ing double-strands breaks and has a major role in cancer.
In the present study, we demonstrated how the exploration
of another DNA repair pathway, the non-homologous end
joining pathway (NHEJ), might benefit from using clades.
When inspected using all eukaryotes (top 5% interactions),
NHEJ genes showed poor co-evolution with only the three
DNA polymerase genes POLL, POLM and DNTT pre-
dicted to be co-evolved (Figure 4A). However, the top five
clades (top 5% interactions in each clade, with redundancy)
showed high connectivity between the 12 NHEJ genes and
identified 68 interactions (51 unique interactions), 23-fold
(17-fold unique) more than using all eukaryotes only. While
most of the connections are predicted by the top clade, Ne-
matoda in this case, some of these interactions seem to be
specifically identified by other clades. One such example
is the set of genes NHEJ1, FEN1, PRKDC and XRCC4,
which are connected in Mammalia (Figure 4B).

However, this analysis integrates more interactions (top
5% of interactions in five clades) as compared to all eu-

karyotes (top 5% in a single clade). To compare the same
number of interactions, we recapitulated the network us-
ing the CladeOScope method (see ‘Materials and Meth-
ods’ section). The interactions were scored by the minimal
rank achieved for each pair across all clades. Thus the best
(bottom) 5% of minimal ranks is taken. The CladeOScope-
based analysis used the same number of interactions as in all
eukaryotes but identified 26 interactions (eight times more
than all eukaryotes) among the NHEJ genes (Figure 4C).

An additional pathway that is well reconstructed is gly-
cosphingolipid biosynthesis, which underlies Tay Sachs dis-
ease. All eukaryotes identified a few disconnected sub-
groups of genes (Figure 4D). The top five clades con-
nect all these genes, again revealing some subgroups
of genes, such as HEXA, HEXB, FUT1 and FUT2,
which are connected by Arthropoda (orange) and Nema-
toda (Figure 4E, turquoise). Figure 4F presents the net-
work recapitulation using the CladeOScope method, which
identified more interactions between the genes than all
eukaryotes.
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Figure 4. The utility of using clade-wise PP as demonstrated on specific pathways. The network of interaction between pathway genes is shown for two
pathways, KEGG NHEJ (A–C) and KEGG glycosphingolipid biosynthesis globo series (D–F). For each pathway, the network spanned by interactions
found in all eukaryotes is shown on the left (A and D, in black), the network spanned by the top five clades is shown in the middle (B and E, edges colored
by clade) and on the right the network spanned by the CladeOScope method (C and F, based on minimal rank over all clades for each interaction; edges
colored by clade). Light gray represents the top clade in each example by the top five combination method. On the right, a color legend is included to
highlight the clades used for identification of connections.

The CladeOScope method for clade integrated phylogenetic
profiling for functional interaction prediction

Different clades harbor co-evolution-based interaction sig-
nals for different genes. To harness the unique predictions of
each clade for different pathways, we developed the CladeO-
Scope method to provide a ranked list of the most cor-
related genes with the input gene, integrating data from
different clades. We developed a score that ranks all the
genes across all the clades. This score integrates 16 clades
and all eukaryotes and represents how co-evolved a gene
is with the query gene. To calculate it, we first calculate
the Pearson correlation between each gene-pair in each
clade. We then rank for each gene those genes that are
the most correlated with it per clade. Finally, for each
gene pair the score corresponds to the minimal (best) rank
they achieve across all clades (see ‘Materials and Methods’
section). This scoring system was benchmarked and was
shown to outperform other possible clade integration ap-
proaches such as the maximal correlation across all clades
and a geometric mean across all clades, which were infe-
rior to the min rank in performance (See Supplementary
Figure S1).

We further experimented with different clade combina-
tions (Supplementary Figure S2) and found that the com-
bination shown in Supplementary Table S1 performs best.
Supplementary Figure S2 presents its performance (Comb.
5) as compared to other existing approaches and several
other clade combinations (Comb. 1–4, all satisfying the
principles discussed above, see ‘Materials and Methods’ sec-
tion).

To assess the ability of our and other PP approaches
to predict functional interactions, we utilized known path-
ways from KEGG, REACTOME and protein complexes
from CORUM (see ‘Materials and Methods’ section). We
compared these methods using ROC curves (Figure 5A–
C) and partial ROC curves (Figure 5D–F). Encouragingly,
we found that CladeOScope could predict functional inter-
actions with high performance, achieving an AUROC of
0.758 for KEGG on which it was optimized and a simi-
lar, albeit slightly reduced, performance for other databases;
0.725 for CORUM, and 0.692 in REACTOME. Examples
of pathway recapitulation by CladeOScope were discussed
above (see Figure 4C and F). These results demonstrate that
CladeOScope outperformed other PP methods, both con-
tinuous and binary representation-based approaches, in uti-
lizing gene co-evolution to predict functional interactions.

A similar analysis was performed for C. elegans KEGG
pathways, showing ROC (Supplementary Figure S3A) and
partial ROC curves (Supplementary Figure S3B). This anal-
ysis shows that the CladeOScope approach outperformed
the other PP approaches as for human. While the differ-
ence is small, a different combination outperformed the rest
for C. elegans. Specifically Comb. 0, where all 66 clades are
used, had a slightly better performance than Comb. 5, which
was described above as the best performing combination for
human.

CladeOScope web tool

The primary aim of the CladeOScope web tool is to make
the analysis of 1028 organisms and the 16 most informa-
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Figure 5. ROC curves for prediction of functional interactions. Prediction of functional interactions by the CladeOScope method was compared to the
prediction using four other PP approaches––NPP with rank of correlation (NPP (rank)), NPP, Binarized PP with Hamming distance (BPP Hamming) and
PrePhyloPro (PPP). The comparison was performed for predicting functional interactions (gene co-occurrence in KEGG pathways (A and D), CORUM
complexes (B and E) and Reactome pathways (panels C and F)). Comparison is shown as ROC curves (A–C) with corresponding partial ROC curves
where FPR < 0.1 (D–F, demarcated as dashed rectangle in A–C). TPR was adjusted for visibility. ROC: receiver operator characteristics; pROC: partial
ROC; AUC: area under the curve; FPR: false positive rate; TPR: true positive rate.

tive clades simple and accessible. The goal is that every user,
even without computational skills, will be able to map the
evolution of their gene of interest and identify genes that
most significantly co-evolved with it in each clade. It also
provides a score that accumulates the information from all
clades and points to the most promising candidates.

The interface is simple. The user submits a query gene
and the web tool performs the aforementioned analyses and
returns the list of co-evolved genes in 16 clades and the
combined CladeOScope score. CladeOScope also includes
a variety of useful visualizations of the co-evolutionary
data, including a correlation heatmap and the clustered
phylogenetic profiles of the query gene with its co-evolved
genes. Additionally, the web tool enables pre-processing of
gene-sets by paralog filtration for further study, e.g. for en-
richment analysis. Paralogous genes are highly co-evolved
by definition, however this signal is easily captured using
homology-based methods and thus of less interest in PP.
CladeOScope thus enables the optional filtering of paralogs
present in a gene set to help identify functional interac-
tions between non-paralogous genes. The webserver inter-
face was used to identify the UFM1 components described
below.

The UFM1 pathway can be accurately detected using
CladeOScope

We present an example for using the CladeOScope web
tool to predict genes associated with ubiquitin-like protein
UFM1 (ubiquitin-fold modifier-1). Similar to ubiquitin,
UFM1 modifies target proteins via a three-enzyme cascade
involving E1, E2 and E3. However, in contrast to ubiquitin
with tens of E2s and hundreds of E3s, UFM1 has a single E1
(UBA5), E2 (UFC1) and E3 (UFL1) (46). Currently little
is known about the mechanism of UFL1 E3 ligase activity
but recently it was shown that it functions in a complex with
two additional proteins, DDRGK1 and CDK5RAP3 (47).
Finally, like other post-translational modifications that are
reversible, UFM1 is removed from the target protein by the
UFM1 specific proteases, UFSP2 and UFSP1 (48). Taken
together, although little is known about the role of protein
modification by UFM1, this system includes seven proteins
that, together, comprise the machinery needed for the depo-
sition and removal of UFM1 from target proteins.

Querying UFL1 in CladeOScope single gene analysis
identified 6/7 of its known partners, UFSP2, UFSP1,
UFC1, UFM1, UBA5 and CDK5RAP3, in the top 15
genes in Alveolata and Alveolata only. The seventh part-
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ner, DDRGK1, ranks 73rd, also in Alveolata (Figure 6B).
In terms of the CladeOScope score, three were detected in
the top 20, two in the top 50 and the rest in the top 100 re-
sults. Interestingly, when querying for UFC1, UFM1 or any
other partner of the system, CladeOScope was able to de-
tect all other partners specifically when combining the top
scores of two clades, all eukaryotes and Alveolata (the top
100 in Alveolata intersected with the top 100 in all eukary-
otes; see Figure 6A). The phylogenetic profile of this path-
way (Figure 6C) identified Alveolates as having a strong
signal as compared to other clades. These genes are lost
throughout the Fungi clades (44) with only a partial signal
in the Animalia clades. However, Alveolates show several
concordant loss events across the pathway’s genes. These
loss events in the Plasmodium genus as well as several other
species (demarcated in Figure 6D) contribute a strong co-
evolutionary signal to the prediction of these genes as func-
tionally interacting. Previous works have described the loss
of UFM1 and other ubiquitin-like proteins in Alveolates
and discussed their potential for therapeutics development
(45).

In such cases, where other genes in the pathway are
known, co-occurrence of known genes directed us to the rel-
evant clade to search for functionally related genes. In dif-
ferent situations where the relevant clade cannot be identi-
fied, the CladeOScope algorithm suggests the relevant genes
and clades. This two-level search further highlights the ap-
plicability of the CladeOScope web tool for research as it is
very simple to use, accurate, and allows the user to explore
new depths of information.

DISCUSSION

We built upon previous works that suggested the impor-
tance of clade-based PP in order to perform a thorough
clade signal analysis and improve PP methods. We studied
the complex co-evolution of eukaryotic genes under the hy-
pothesis that different genes may show co-evolution signals
in certain clades but not in others. We highlighted the evolu-
tionary signal found in various clades of the eukaryotic tree
of life. Moreover, we showed that clades differentially spe-
cialize in detecting functional interactions in different path-
ways as, for some functionally related genes, co-evolution is
only detectable in some parts of the tree of life.

Overall, gene evolution is a complex process with an in-
terplay between the evolution at genes, trait, organism and
population levels, as well as co-evolution of species, and in-
teraction with the changing environment. As such, while it
is reasonable to assume that genes co-evolution is common
across evolution, the assumption that it can be fully repre-
sented by a PP signal across all eukaryotes may be simplis-
tic. Dealing with these complexities is the main challenge in
understanding PP signals. Previous attempts to overcome
these challenges in PP include the introduction of several
metrics (6,8) or approaches (5). We showed that our clade-
based analysis improved the predictive power of PP, with
higher sensitivity and more accurate quantification of in-
teractions. Furthermore, as the clade analysis is more bio-
logically sound, it detected pathways that were previously
not considered to be co-evolved. Using CladeOScope, we
integrated co-evolution signals across clades and found that

many pathways are better predicted with specific clades in-
stead of using all eukaryotes. Moreover, no specific clade,
including all eukaryotes, can cover the entire breadth of hu-
man pathways.

Our analysis showed that some clades are better suited
to predict functional interactions between specific human
genes. One hypothesis is that the nature of the pathway dic-
tates the clade in which it will be detected. For example, we
showed that some metabolic pathways were well predicted
by distant species (Alveolates) while some immune path-
ways were found by closer species (Ecdysozoans). A dif-
ferent prism concerns the variability and thus informative-
ness of genes in specific clades. For example, some genes are
found only in metazoans and thus are non-informative to
study across all eukaryotes or distant species. In other cases,
functionally related genes were tightly co-evolved in some
clades, but their co-evolution dissolved in clades where the
function was not relevant.

However, more complex evolutionary trajectories can
also take part in local co-evolution. Gene duplication and
sub-functionalization may lead one of the resulting par-
alogs to co-evolve with genes related to a different function,
while in distant clades (prior to the duplication) they will
share a single ortholog. As can be seen, these processes and
others may both amplify the co-evolutionary signal in a spe-
cific clade, or mask it.

Our findings raise several questions for future research.
First, we do not fully understand the meaning of co-
evolution in a specific clade nor how to optimize its anal-
ysis. It remains unclear how to best combine these clade-
specific signals. Furthermore, like other PP methods, we
also observed high false-positive rates. This may be due
to the inherent difficulties of PP methods in Eukaryotes
in comparison to Prokaryotes where evolutionary distance
is larger and genome architecture is different, i.e. oper-
ons, plasmids, and more common horizontal gene trans-
fers etc. Further improvement may be achieved using ma-
chine learning methods. Additionally, other factors may af-
fect performance of PP. For example, isoform selection for a
gene may in turn affect the similarity calculated with respect
to its orthologs and their isoforms. While the canonical iso-
form used in this study constitutes a sensible baseline, PP
may benefit from a thorough isoform selection or harmo-
nization scheme.

The primary goal of our research was to emphasize the
importance of the co-evolution signal in the relevant clade
for each pathway. The utilization of multiple clades as
well as an increasing number of species allows for a more
intricate exploration of pathway co-evolution. For cases
where the appropriate clades for analysis are unknown, our
method scores interactions by clade-relevance. This may
bridge the gap between the use of PP to predict functional
interactions and studies in comparative genomics in the co-
evolution of specific pathways. For this purpose, we present
our web tool, which enables the user to perform clade-wise
co-evolutionary analyses throughout 16 eukaryotic clades.

Overall, the concept of searching for co-evolution in mul-
tiple clades is still in its infancy and further research is re-
quired to extract the maximum information from the teem-
ing amount of genomic data. In addition, this research
raises a set of new questions related to the crosstalk be-
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Figure 6. CladeOScope results for UFM1 pathway genes UFC1 and UFL1. (A) CladeOScope results for UFC1 gene as obtained by the web tool. It is
clear that the genes of the pathway show a pattern of co-evolution in both alveolates and all eukaryotes. Most of the genes of the pathway were detected
within the top 15 ranks while a few were detected lower in ranks 20–72. Each row depicts a gene with known genes of the pathway colored in yellow. Each
column stands for a clade in which the gene was inspected. Values in cells indicate the rank of a gene in a clade (lower is better, 1 is best). Ranks greater than
100 were omitted and presented as a blank cell. Genes are sorted by ascending rank on all eukaryotes. (B) Similar results were obtained for the gene UFL1
of the UFM1 pathway. This time the only clade detecting the rest of the partners was alveolates with 6/7 in the top 14 ranks, and 7/7 in rank 73. Genes
are sorted by ascending rank in Alveolata. Clade (column) order is shared across (A) and (B). (C) Phylogenetic profiles of genes in the UFM1 pathway.
Color scale depicts the relative signal as a min–max gene-wise scaled profile. The profiles are self-hit normalized bitscores as described in the ‘Materials
and Methods’ section. The top bar annotation describes the clades to which each species (column) belongs. (D) An enlarged view of the Alveolata clade;
row (gene) order is preserved across (C) and (D).
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tween gene PP, clades and species. We believe our work ex-
tends the understanding of co-evolution in the clade and
global prism. It systematically and comprehensively ex-
plored clade-wise co-evolution of pathways and its broad
application to functional interaction prediction. With ever-
growing species sequencing data, these ideas will enhance
our understanding of how human genes interact and evolve.
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