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Animal experimentation is limited by unethical procedures, time-consuming protocols,
and high cost. Thus, the development of innovative approaches for disease treatment
based on alternative models in a fast, safe, and economic manner is an important, yet
challenging goal. In this paradigm, the fruit-fly Drosophila melanogaster has become a
powerful model for biomedical research, considering its short life cycle and low-cost
maintenance. In addition, biological processes are conserved and homologs of ∼75%
of human disease-related genes are found in the fruit-fly. Therefore, this model has
been used in innovative approaches to evaluate and validate the functional activities
of candidate molecules identified via in vitro large-scale analyses, as putative agents to
treat or reverse pathological conditions. In this context, Drosophila offers a powerful
alternative to investigate the molecular aspects of liver diseases, since no effective
therapies are available for those pathologies. Non-alcoholic fatty liver disease is the
most common form of chronic hepatic dysfunctions, which may progress to the
development of chronic hepatitis and ultimately to cirrhosis, thereby increasing the
risk for hepatocellular carcinoma (HCC). This deleterious situation reinforces the use
of the Drosophila model to accelerate functional research aimed at deciphering the
mechanisms that sustain the disease. In this short review, we illustrate the relevance
of using the fruit-fly to address aspects of liver pathologies to contribute to the
biomedical area.

Keywords: alternative animal model, Drosophila, genetics, liver diseases, system biology

INTRODUCTION

In modern societies, obesity has become a prevalent problem; according to the World Health
Organization (WHO), more than 600 million adults were obese in 2016 (WGO, 2020).
Consequently, metabolic dysfunctions have considerably increased, including hepatic diseases,
which are one of the top 10 causes of death worldwide (Asrani et al., 2019; WHO, 2020; Powell
et al., 2021). These diseases classified as acute or chronic may progress to irreversible damage and
malfunction of the liver, while therapeutic strategies are still limited. To address this problem,
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innovative drugs and natural products have been explored;
however, clinical trials have their own limitations, considering
patient safety against the adverse side effects of pharmaceutical
products, extensive time required for analyses, and ethical
issues. Thus, to help investigating new compounds in preclinical
stages, the Drosophila melanogaster model has become of utmost
importance. Drosophila genetics has been used for studying
many biological processes and is now a powerful alternative
model to investigate metabolic changes associated with disease
settings. The fruit-fly has a short life cycle, which enables
analyses of the effects of drugs on various metabolic routes
in a short time (Tennessen et al., 2014; Men et al., 2016;
Lee et al., 2020). Furthermore, relevant biological processes
and disease-related genes are conserved between humans and
Drosophila (Pandey and Nichols, 2011; Ugur et al., 2016),
despite the flies lower genomic complexity compared to that of
humans. In this minireview we discuss the advantages offered
by the fruit-fly model to investigate hepatic dysfunctions in a
translational perspective.

THE BURDEN OF HEPATIC DISEASES
NEEDS TRANSLATIONAL SCIENCE

The liver is a critical organ for the maintenance of body
homeostasis; it controls several molecular and metabolic routes
and also acts in detoxification processes (Ramos et al., 2021). In
metabolic disorders, lipids may accumulate in the hepatocytes
contributing to the establishment of fatty liver, also known as
hepatic steatosis. This clinical condition, which happens when
triacylglycerols (TAGs) represent at least 5% of the liver weight
(Ikura, 2014; Powell et al., 2021; Ramos et al., 2021), can remain
asymptomatic for several years or progress to more deleterious
stages. Non-alcoholic fatty liver disease (NAFLD) is one of
the most common forms of liver pathologies affecting ∼25%
of the world population (Younossi et al., 2018). In addition,
drug abuse, environmental contaminants, imbalanced diet, and
viral infections may also contribute to the development of
NAFLDs (Byrne and Targher, 2015). More dramatically, NAFLD
favors the development of chronic hepatitis that potentially
progresses to cirrhosis, increasing the risk for HCC (Friedman
et al., 2018; Powell et al., 2021). The worldwide panel of liver
pathologies also comprises chronic viral hepatitis, alcoholic liver
disease, metabolic and cholestatic liver dysfunctions (Asrani
et al., 2019; WGO, 2020). Although NAFLD was identified more
than 50 years ago (Parise, 2019; Sanyal, 2019), the therapeutic
options to treat or at least to control these diseases rely on long-
term procedures and are still limited to weight loss and diet
modification, stressing the critical need for innovative strategies
based on fast and reliable preclinical tests.

Translational science aims at using the scientific discoveries
from preclinical models to set up the bases for clinical trials
(Gilliland et al., 2016; van Erk et al., 2021). Knowledge on liver
pathologies has now increased, leading to the characterization
of the biochemical mechanisms underlying disease progression
and to the identification of specific biomarkers (Friedman et al.,
2018; Samuel and Shulman, 2018; Eslam and George, 2020).

Advances in our understanding of lipid and sugar metabolism
along with omics studies and mechanistic investigations, have
revealed important regulatory functions for the transcription
factors sterol-regulatory-element-binding-proteins (SREBPs),
carbohydrate-responsive-element-binding-protein (ChREBP),
liver-X-receptors (LXRs), and peroxisome-proliferator-activated-
receptors (PPARs). In addition, the patatin-like-phospholipase-
domain-containing-3 (PNPLA3), a triacylglycerol-lipase, has
been shown to contribute to the control of energy expenditure or
storage; PNPLA3 expression is regulated by nutritional sources,
especially carbohydrates (Bruschi et al., 2017). Furthermore, the
mechanistic-target-of-rapamycin (mTOR), which coordinates
cell growth at the organismal level, is implicated in metabolic-
related disease (Saxton and Sabatini, 2017; Ji et al., 2021).
Other studies have demonstrated that epigenetic processes
have been linked to liver diseases, but also that the genetic
profile of an individual is directly correlated to the severity of
the disease, since different alleles encode metabolic enzymes
with variable functional activities (Anstee et al., 2019; Ramos
et al., 2021). These findings open unexplored fields in the
search for innovative therapeutics, including oligonucleotide
usage to reduce through RNA-interference (RNAi) the levels
of molecules relevant for liver homeostasis. In this context,
translational research provides a safe way to test innovative
drugs at a large scale using animal models. Rodents have long
been used in preclinical trials, despite the time-consuming
analyses, while unpredictable side-effects of the drugs in
humans cannot be excluded (Bryda, 2013; Van Norman,
2019). Thus, alternative models provide a golden solution,
considering that many societies limit animal experimentation
to protect them against cruelty (Doke and Dhawale, 2015;
Freires et al., 2017).

THE FRUIT-FLY MODEL

In this paradigm, the fruit-fly has emerged as a powerful
system to study pathological conditions. The Drosophila life-
cycle comprises four developmental stages: embryonic, larval,
pupal, and adult. Development from embryo to adult takes
about 10 days and adult lifespan 1–2 months (Johnson and
Stolzing, 2019), allowing metabolic investigations on hundreds
of offspring either at juvenile (larva and pupa) or adult
stages. Given its powerful genetics, the Drosophila model has
proved an efficient strategy for the study of several types
of human pathologies, including metabolic (Perrimon et al.,
2016; Musselman and Kuhnlein, 2018; Baenas and Wagner,
2019), neurological (Coll-Tane et al., 2019; Link and Bellen,
2020; Mariano et al., 2020; Salazar et al., 2020), cardiac
(Birse et al., 2010; Piazza and Wessells, 2011; Diop et al.,
2015; Guida et al., 2019), digestive (Musselman and Kuhnlein,
2018; Nayak and Mishra, 2019), and nephrocytic (Millet-
Boureima et al., 2018; Rani and Gautam, 2018) comorbidities.
In addition, tumor models may be induced in larvae or
adult flies by genome manipulation (Pagliarini and Xu,
2003; Igaki et al., 2006; Dong et al., 2007; Gonzalez, 2013;
Hirabayashi et al., 2013; Samji et al., 2021). The fruit-fly enables
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functional large-scale analysis to validate relevant molecules
and biomarkers in a faster way than with rodent-based studies
(Fernandez-Hernandez et al., 2016; Richardson and Portela,
2018; Bossen et al., 2019; Papanikolopoulou et al., 2019;
Bangi, 2020).

Most of the genes and metabolic routes involved in
human hepatic diseases are conserved in Drosophila (Table 1).
The conservation between fly and mammalian genes is
of utmost interest for translational studies aiming for a
deeper understanding of cellular dysfunctions for which,
investigation is technically restricted in mammalian models and
impossible in humans.

In contrast to mammals, most invertebrates do not contain
an organ equivalent to the liver, although hepatic functions
are conserved. In insects, the fat body (FB) has long been
considered as the liver counterpart (Li et al., 2019), although
recent studies suggest that the oenocytes also accomplish hepatic-
related functions (Gutierrez et al., 2007; Storelli et al., 2019). In
Drosophila, the FB is an organ that spreads throughout the entire
organism and oenocytes are groups of cells located underneath
the abdominal external cuticle. In humans, dietary nutrients
are transferred to the liver through a portal system and lipids
are transported through the lymph stream as chylomicrons.
Drosophila has an open circulatory system, so that nutrients
crossing the intestinal epithelium enter the haemolymph, and
thus, the body-wide distribution of the FB favors nutrient uptake
(Figure 1A). Further, given its eating sources (mostly rotting
fruits), the fruit-fly needs a powerful detoxification system that

involves the gut, the FB and the oenocytes (Yang et al., 2007;
Iredale, 2010; Huang et al., 2019). Over the past two decades,
several studies on metabolic hepatic dysfunctions have taken
advantage of the fly model (Hader et al., 2003; Villanueva
et al., 2019; Ghosh et al., 2020; Hofbauer et al., 2020; Liao
et al., 2020) to describe the functional activities of molecules
relevant for human pathologies (Perrimon et al., 2016; Ugur
et al., 2016; Heier and Kuhnlein, 2018; Hmeljak and Justice,
2019).

HOMEOSTATIC DYSFUNCTIONS IN
NON-ALCOHOLIC FATTY LIVER
DISEASE

Type 2 diabetes mellitus (T2DM) is another metabolic-related
disease progressing exponentially. The T2DM hallmark is the
development of insulin resistance, due to impaired response to
the hormone or its reduced production by pancreatic β-cells
(Boland et al., 2017; Li et al., 2021), thereby resulting in
high glucose levels, increased general oxidative stress, vascular
problems, and serious secondary perturbations in the physiology
and the metabolism of the body (Chatterjee et al., 2017; Galicia-
Garcia et al., 2020). In diabetic patients, lipid metabolism is
modified, and the liver may accumulate fatty acids (FAs), which
facilitates the establishment of NAFLD (Sanyal, 2019; Kuchay
et al., 2020).

TABLE 1 | Drosophila homologs of human gene products involved in metabolic and liver disease.

Human Drosophila Function in Drosophila References

ChREBP
MondoA

Mondo Regulates sugar usage Havula et al., 2013

SREBPs SREBP Regulates genes of FA synthesis Kunte et al., 2006

LXRs EcR Receptor for the steroid hormone ecdysone Parvy et al., 2014

PPARs Eip75B Intermediate in steroid hormone signaling Parvy et al., 2014

PNPLA3 Brummer Performs TAGs breakdown Gronke et al., 2005

Perilipins Lsd1
Lsd2

Envelop LDs Bi et al., 2012

Apolipoproteins apoLpp
apoLTP
MTP

Performs lipid transport throughout hemolymph
Performs lipid loading on Lpp in enterocytes
Performs lipid loading on Lpp in FB cells

Palm et al., 2012

mTOR TOR Regulates growth in response to nutrients Oldham et al., 2000

Insulin
IGF1
IGF2

DILPs Regulate growth and metabolism Brogiolo et al., 2001

IGFBP Imp-L2 Modulates DILP activity Honegger et al., 2008

InR
IGF-R

InR Receptor for the DILPs Brogiolo et al., 2001

IRS1 Chico Regulates body growth and aging Bohni et al., 1999

Glucagon AKH Regulates dietary sugar response Kim and Rulifson, 2004

Leptin Unpaired2 As for leptin, Udp2 is a ligand for the receptor of the JAK/STAT pathway Rajan and Perrimon, 2012

ACC1
ACC2

ACC Rate-limiting enzyme for fatty acid synthesis Parvy et al., 2012

FASN FASN1
FASN2
FASN3

Ubiquitous FA-synthesis
Oenocyte-restricted FA-synthesis
Oenocyte-restricted FA-synthesis

Garrido et al., 2015
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FIGURE 1 | Hepatic-like homeostasis in Drosophila. (A) In fed Drosophila, nutrients are transferred to the appropriate organs, in particular the FB, which acts as a
nutrient sensor to coordinate organismal growth and homeostasis. The FB synthesizes and stores glycogen and TAGs, and secretes several proteins, including
Upd2, which can be replaced experimentally by mammalian leptin; Upd2 and glucose-sensing neurons contribute to regulating the secretion of Dilps and AKH to
control growth and homeostasis. (B) In fasting Drosophila, FB glycogen and TAGs are remobilized, the latter being transferred to the oenocytes to produce ketone
bodies, while glucose sensing neurons potentiate AKH secretion and Dilp retention in neurosecretory cells to maintain homeostasis.

In NAFLD, the metabolism of both lipid and glucose in
hepatic cells is disrupted (Shen et al., 2017; Sanyal, 2019). The
accumulation of lipids in the hepatocytes results from changes
in lipid uptake, de novo synthesis of FAs, β-oxidation and
export of very-low-density-lipoproteins (VLDL) (Ipsen et al.,
2018; Sanyal, 2019), which together affect the serum levels
of TAG and cholesterol and may provoke instability of body
homeostasis. Conversely, these changes in lipid metabolism,
which are in part connected to insulin resistance in the
hepatic tissue, reinforce the persistence of liver dysfunction,
indicating that cellular metabolism is integrated at the organismal
level (Chao et al., 2019; Sanyal, 2019). Under a normal and
healthy homeostatic environment, hepatic cells use pyruvate to

produce energy through the citric-acid cycle in mitochondria.
During this process the exceeding energy is exported from
the mitochondria as citrate to generate palmitic acid that can
be used as a precursor of membrane lipids or esterified to
TAGs and stored in cytosolic lipid droplets (LDs) (Currie et al.,
2013; Ramos et al., 2021). These hepatic lipid stores can be
remobilized through the β-oxidation pathway in response to
energy demands, or exported from the liver in water-soluble
VLDL particles comprising apolipoproteins, cholesterol and
phospholipids (Ipsen et al., 2018). However, under conditions
of metabolic dysfunction, excess LDs may accumulate in the
liver and trigger the NAFLD, which favors lipotoxicity and,
subsequently, the development of inflammatory processes and an
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increase in the levels of reactive oxygen species. Together, these
perturbations provoke mitochondrial dysfunction and disease
progression, leading to insulin resistance, T2DM and metabolic
syndrome (Rosato et al., 2019).

Binding of insulin to its cognate receptor activates
the mTOR signaling network (Yoon, 2017; Meng et al.,
2021), which acts through a feedback loop to dampen
the insulin response by inactivating insulin-receptor-
substrate-1 (IRS1) and repressing the expression of the
insulin receptor (InR) and insulin-like-growth-factor-1
(IGF1). Therefore, in the context of metabolic dysfunction,
the mTOR signaling network is poorly activated and the
subsequent absence of the negative feedback loop sustains an
auto-amplification of the insulin resistance process. In this
pathological condition, a number of regulatory proteins are
synthesized by the hepatocytes to counteract homeostasis
disruption, including Notch-receptor-2, insulin-like-growth-
factor-binding-proteins (IGFBPs), the potassium-inwardly
rectifying-channel-subfamily-J-member-11, chemokines and
kinases (Tamarai et al., 2019).

The PPAR nuclear receptors that can act as lipid sensors
to regulate metabolic homeostasis are potential targets for the
development of drug therapy against NAFLD (Liss and Finck,
2017). The human genome encodes three PPAR members (α,
β/δ, and γ), which are differentially expressed in tissues, although
each of them may impinge on liver metabolism. PPARα is
largely expressed in the liver where it controls several aspects
of FA homeostasis; it is frequently reduced in patients with
steatosis. PPARβ/γ is mainly expressed in muscle cells and but
at lower levels in adipocytes and hepatocytes. PPARγ, which
is mainly expressed in adipose tissue, is upregulated in the
NAFLD pathological condition to dampen dysfunction of lipid
and glucose metabolism. However, these unbalanced production
of PPARs may contribute to insulin resistance and metabolic
syndrome (Liss and Finck, 2017; Corrales et al., 2018), supporting
the use of PPAR agonists to treat NAFLD (Seo et al., 2008;
Yoo et al., 2021). The utilization Glucagon-likepeptide-1 (GLP-
1) receptor agonists is another therapeutic strategy currently
explored in clinical trials (Dai et al., 2020; Lv et al., 2020). GLP-
1 is secreted by enteroendocrine cells after meal ingestion to
potentiate insulin secretion and suppress glucagon production.
The secreted bioactive forms act systemically, since the GLP-
1 receptor (GLP-1R) is expressed in a number of tissues (Dai
et al., 2020). The utilization of GLP-1R agonists exhibiting a
longer half-life compare to that of the genuine hormone has
been approved for T2DM treatment (Andersen et al., 2018).
These agonists have positive effects on steatogenesis in T2DM
patients (Teshome et al., 2020), but controversial results on
their benefits for NAFLD have as yet restrained their use
(Lv et al., 2020). Finally, a number of molecules secreted by
the adipose tissue may affect inflammatory processes, insulin
resistance and NAFLD progression. Adiponectin is one such
factor that is down-regulated in response to hepatic stress and
constitutes a promising target to treat steatosis, since studies
demonstrated that increased levels of this adipokine ameliorate
NAFLD (Scherer et al., 1995; Shabalala et al., 2020). Given the
diversity of signals that may induce metabolic deregulations

in hepatic cells, genetic investigations using alternative in vivo
models are needed to decipher the organ interconnections that
elicit the deleterious condition of NAFLD.

HOMEOSTASIS AND METABOLISM IN
DROSOPHILA

In Drosophila, the FB synthesizes and stores glycogen and
TAG-containing LDs (Figure 1A; Gronke et al., 2003; Garrido
et al., 2015; Yamada et al., 2018). In the gut, dietary lipids
are hydrolyzed to glycerol, free FAs and monoacylglycerols and
taken up into the enterocytes through a molecular mechanism
poorly characterized as yet (Miguel-Aliaga et al., 2018; Holtof
et al., 2019; Toprak et al., 2020). In the enterocytes, these
molecules are converted to diacylglycerols that are loaded in
the haemolymph on apolipophorin particles, functioning as lipid
vehicles to the FB (Palm et al., 2012). However, FB cells deficient
for fatty-acid-synthase fail to accumulate LDs, indicating that
de novo FA synthesis is essential for lipid storage in these cells
(Garrido et al., 2015). Conversely, fasting induces mobilization
and consumption of lipid stores from the FB. The perilipins
Lsd1 and Lsd2 envelop LDs and protect them from lipolysis,
whereas the lipase, Brummer, catalyzes TAG hydrolysis (Gronke
et al., 2005, 2007; Bi et al., 2012). Concurrent to fasting-
induced lipid hydrolysis, oenocytes accumulate LDs (Figure 1B),
suggesting that remobilized lipid stores efflux from the FB and
are taken up and oxidized in the oenocytes (Gutierrez et al.,
2007). This process is similar to the remobilization of lipid
stores from adipocytes to hepatocytes induced by fasting in
mammals (Iredale, 2010; Yamada et al., 2020). Congruently,
enzymes responsible for ketone body biogenesis are highly
expressed in oenocytes (Huang et al., 2019), although it has not
been formally demonstrated whether other tissues (FB, muscles)
may also perform β-oxidation to supply energy demand (Parvy
et al., 2012). This energy mobilization process is regulated by
target-of-rapamycin (TOR), which is present in two distinct
complexes, TORC1 and TORC2; the former directly responds
to nutrients, whereas the latter is a component of the insulin
signaling pathway. The intermediates of this signaling network
are conserved in the fruit-fly (Table 1), although the TORC1 and
insulin/TORC2 signaling branches can work independently in
most Drosophila tissues, including the FB (Devilliers et al., 2021).

The FB also acts as a nutrient sensor to coordinate overall
body growth and homeostasis through the production of insulin-
like-peptides (Dilps) by a cluster of neurosecretory cells (NSCs)
(Colombani et al., 2003). Moreover, similar to mammals, sugar
metabolism in flies is modulated by an insulin/glucagon-like
axis (Figures 1A,B; Oh et al., 2019). The Drosophila genome
encodes eight Dilps (Brogiolo et al., 2001), Dilp2 and Dilp5,
which are produced in the NSCs, are the major regulators of
sugar homeostasis (Rulifson et al., 2002). Genetic ablation of
the NSCs results in an overall reduced body size and in an
increase in the levels of glucose and trehalose (disaccharide
of glucose) that is the main circulating sugar in insects. This
phenotype resembles the metabolic defects provoked by insulin
deficiency in Type-I-diabetic patients. Conversely, the Drosophila
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adipokinetic hormone (AKH) produced by the neuroendocrine
corpora cardiaca (CC) controls circulating sugar levels in a
glucagon-like manner (Kim and Rulifson, 2004). Both NSCs
and CC secrete their products into the haemolymph, close
to the Drosophila heart equivalent, thereby favoring hormone
distribution throughout the entire body. Secretion of AKH in
Drosophila by the CC depends on an ATP-K + -dependent
channel that directly responds to circulating sugar levels
(Kim and Rulifson, 2004). A pair of glucose-sensing neurons
plays a pivotal role in coordinating NSC and CC functions
by activating Dilp secretion, while inhibiting AKH secretion
(Figures 1A,B; Oh et al., 2019). Furthermore, secretion of
Dilps by the NSCs strongly relies on FB messengers that
relay nutritional cues (Colombani et al., 2003; Delanoue et al.,
2016). The JAK-STAT ligand Unpaired2, is one such messenger,
which can be functionally replaced using molecular genetic
tools by human leptin, showing that as in mammals, fat cells
produce an hormone in response to nutrient load to control
feeding physiology (Rajan and Perrimon, 2012). Therefore,
although the mammalian liver equivalent is not a discrete
organ in Drosophila, hepatic functions and dysfunctions are
closely conserved: the FB appears to be in charge of hepatic
functions related to feeding, whereas the oenocytes accomplish
functions related to fasting. Further, both in mammals and flies,
integration of the TOR signaling network at the organismal
level is central in controlling lipid and sugar metabolism
in response to the nutritional status (Schmitt et al., 2015;
Sanguesa et al., 2019).

Most of the mammalian transcriptional regulators involved
in NAFLD are conserved in Drosophila (Table 1). Mondo,
the ChREBP/MondoA homolog, regulates several metabolic
routes in response to dietary sugar (Mattila et al., 2015).
The Drosophila SREBP regulates the expression of genes
required for FA synthesis (Kunte et al., 2006). However,
consistent with insect sterol auxotrophy (Clark and Block,
1959), SREBP activity is not regulated by sterols, but by
phosphatidylethanolamine (Dobrosotskaya et al., 2002). The
best homologs of LXRs and PPARs are the Ecdysone receptor
(EcR) and the nuclear receptor Eip75B, respectively (Parvy
et al., 2014). Ecdysone is a steroid hormone that controls
developmental transitions, whereas Eip75B is an intermediate of
the ecdysone signaling, whose activity depends on nitric-oxide-
synthase. Surprisingly, manipulating this signaling pathway in
the ecdysone-producing gland, results in a dramatic changes
in LD accumulation in FB cells, indicating that this signaling
pathway also impinge on lipid homeostasis (Caceres et al.,
2011). In summary, the metabolic routes and most of the
regulatory genes that play a critical role in NAFLD are
conserved in Drosophila. The activities of some regulatory
gene products varies as compared to that of their mammalian
counterparts, but remain connected to basal metabolism.
Importantly, the phenotypes induced by loss-of-function of
these genes can be used as reference criteria to monitor

the efficiency and the adverse effects of drug compounds in
preclinical trials.

PERSPECTIVES

Alternative models have largely contributed to our understanding
of biological processes. Recent studies have shed light on
potential targets for drug therapy, which need physiological
validation prior to clinical trials. Thanks to a plethora of
genetics tools to direct in a tissue-specific manner either
over-expression or RNAi-inactivation of a gene of interest
(Ugur et al., 2016; Senturk and Bellen, 2018), the fruit-
fly model emerges as a powerful alternative for large-scale
analyses. Collections of transgenic lines targeting a vast
majority of the Drosophila genes, with a particular focus on
the orthologs of disease-related-human genes, are available
from Stock centers (Dietzl et al., 2007; Heigwer et al., 2018).
This approach validated the functions of relevant proteins,
such as CDGSH-iron-sulfur-domain-containing-protein-2,
whose haplo-insufficiency causes NAFLD and promotes HCC
development (Shen et al., 2017). This approach also identified
genes that contribute to fat deposition (Pospisilik et al.,
2010; Hoffmann et al., 2013) and whose dysregulation in
humans can lead to obesity, diabetes, and NAFLD (Graham
and Pick, 2017). Liver diseases are a burden in modern
societies, especially NAFLD and HCC; in vivo investigations
using Drosophila in translational approaches will be useful
to validate enzymes and other molecules crucial for body
homeostasis, increasing the chance to develop innovative
therapeutic strategies.
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