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Background: Oral squamous cell carcinoma (OSCC) is the most common cancer of oral
and maxillofacial region. A recent clinical research has shown that tumor immune
microenvironment (TIME)cells are closely related to immunotherapy sensitivity and
OSCC prognosis. Nonetheless, a comprehensive analysis of TIME in OSCC has not
been reported.

Methods: Bioinformatics and computational algorithms were employed to determine the
significance of TIME cells in 257 OSCC patients. TIME scores were measured by three
TIME models, and then used to evaluate the prognosis of OSCC patients.

Results: High TIME score was characterized by better prognosis in OSCC patients less
than 60 years old, overexpression of immunotherapy targets (e.g., PD-1 and CLTA-4), and
higher T-cell activity to inhibit tumor growth. Besides, poor prognosis was associated with
low time score.

Conclusion: TIME score exhibited potential as a prognostic biomarker and an indicator in
predict immunotherapeutic outcomes. Through the understanding of TIME model, this
study can provide a better scheme for immunotherapy as the effective treatment of OSCC
patients in the future.
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is a malignant cancer
derived from oral epithelium, and is the most harmful tumor in
the head and neck area (Dourado et al., 2018). OSCC is originated
from gingiva, hard palate, tongue, buccal mucosa, lips and other
organs, which accounted for more than 350,000 new cancers and
170,000 deaths in 2018 (Bray et al., 2018; Sun et al., 2020). In
addition, OSCC is prone to distant metastasis, causes the loss of
oral function, affects the quality of life, and ultimately results in a
life-threatening condition (Linsen et al., 2018; Lu et al., 2019).

At present, OSCC treatment is mainly surgery-based
comprehensive sequence therapy, especially the triple
combination therapy of chemotherapy, radiotherapy and surgery
(Huang and O Sullivan, 2013; Chai et al., 2020). However, the 5-
years overall survival rate of OSCC patients is only about 60%
(Chinn and Myers, 2015). Thus, it is imperative to find a more
effective treatment for current status. Previous research has shown
that immune microenvironment is closely related to tumor
progression and prognosis (Binnewies et al., 2018; Bray et al.,
2018). Tumor-infiltrating immune cells are involved in the
establishment of tumor immune microenvironment, for example,
tumor-associated macrophage (TAMs) is involved in the
progression and metastasis of OSCC patients (Zhang X et al.,
2020; Park et al., 2020). Moreover, IL-4, a cytokine produced by
TAMs, promotes tumor angiogenesis, while IL-10 increases tumor
cell migration and invasion through Gas6/Axl pathway (Yang W
et al., 2020; Tanaka and Siemann, 2020; Wang et al., 2020). Besides,
tumor-infiltrating lymphocytes can promote anti-tumor immunity,
for example, CD4+T cells have cytotoxicity and their combination
with CD8+T cells can exert better inhibitory activity on tumor cells
(Hoesli et al., 2018; Lin et al., 2020). As a result, immunotherapy
shows a good application prospect for OSCC treatment (Zhu et al.,
2019a).

So far, the TIME characteristics of OSCC patients have not been
fully elucidated through a comprehensive landscape. Previous
immunotherapies for OSCC have only targeted individual genes,
however, systematic analysis of immune-related genes is lacking.
Therefore, CIBERSORT and ESTIMATE algorithms were used to
analyze the gene expression profiles of a large number of OSCC
samples and obtain a comprehensive prospect of intratumoral
immune status (Wang et al., 2020; Zhao et al., 2020; Peng et al.,
2021). TIME scores were then applied to predict OSCC patients’
results and their responses to immunotherapy.

MATERIALS AND METHODS

OSCC Datasets
From the OSCC database (http://www.cancergenome. nih.gov/),
TCGA RNA-seq dataset and the respective clinical data of 257
oral squamous cell carcinoma samples (e.g., palate samples,
gingival samples, tongue root samples, unspecified oral
samples, mouth floor samples, unspecified tongue samples,
and others) were downloaded (Zollinger et al., 2018; Chen
et al., 2020). The baseline and clinical data, including sex, age,
tumor grade, race, survival status, survival time and pathologic

stage, were collected. The login numbers of all specimens are
listed in Supplementary file S1. We also searched the human
expression profile of oral cancer from NCBI GEO (accession
number: GSE41613). The public domain names and direct Web
links are summarized in Supplementary File S2.

Consensus Clustering for Tumor Immune
Microenvironment Cells
CIBERSORT is a deconvolution method applied for the
characterization of cell composition of a complex tissue (Peng
et al., 2021). LM22 is a leukocyte gene signature matrix that
contains the expression levels of 547 genes for distinguishing 22
human hematopoietic cell phenotypes (Mills et al., 2021). In this
study, CIBERSORT combined with LM22 signature matrix were
used to quantify the infiltration levels of twenty-two immune cells
in OSCC. Subsequently, consensus clustering was performed
using the ConsensuClusterPlus R package (Yang et al., 2017).
The cumulative distribution function curve of a consensus matrix
was used to determine the optimal number of clusters. Estimation
of Stromal and Immune cells in Malignant Tumor tissues using
Expression (ESTIMATE) data were then employed to assess the
stromal score and immune score of each OSCC sample. The
Kaplan-Meier survival curve was performed for different TIME
clusters using survminer R package.

Differential Expression Analysis Based on
TIME Phenotypes
OSCC patients were stratified into three TIME clusters on the
basis of tumor immune cell infiltration. To filter the differentially
expressed genes (DEGs) among different TIME subtypes, the
genes related to TIME clusters were identified using the limma R
package (Brorson et al., 2020). The threshold values of adjusted
p-value < 0.05 and |log2 (fold change) | >1 were applied.

Dimensionality Reduction and
Measurement of TIME Score
First, consensus clustering was used to categorize the OSCC
patients into different TIME gene clusters based on the
expression of all DEGs by ConsensuClusterPlus R package.
Then, the prognostic value of ferroptosis-related genes was
computed by K-M analyses. p-value < 0.05 was deemed as
statistically significant. Next, Boruta algorithm was employed
to evaluate the dimensionality reduction of the distinct TIME
gene signatures, and principal component 1 was extracted as the
signature score via principal component analysis. Finally, a gene
expression grade index was applied to measure the TIME score of
each specimen:

TIMEscore � ∑PC1x −∑ PC1y

Acquisition of Somatic Mutation Data
The genetic alteration data of OCSC patients were derived from
the TCGA data portal (https://www.cancer.gov/tcga/) and
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FIGURE 1 | Landscape of the TIME-infiltrating cells of OSCC patients. (A) Cumulative distribution function curve of each consensus matrix from k = 2 to k = 9. (B)
Relative changes in the area under CDF curve based on different k values. (C) Consensus clustering of the 304 tissue specimens derived from TCGA and GEO datasets
for k = 3. (D) Unsupervised hierarchical clustering analysis of the TIME-infiltrating cells derived from TCGA and GEO datasets. Columns denotes tissue specimens and
rows denotes TIME-infiltrating cells. (E) Overall survival of OSCC patients in the clusters (A,B and C). Kaplan-Meier curves of OSCC patients with different TIME-
infiltrating cell populations. Log-rank test, p = 0.048. (F) Distribution of the tumor-infiltrating immune cells in the clusters (A,B and C). Statistical differences among the
three TIME clusters were assessed by Kruskal-Wallis test. * p < 0.05; ** p < 0.01; *** p < 0.001. (G) Cellular interaction of the tumor-infiltrating immune cells among the
three TIME clusters. (H) Difference in PD-1 expression among the three TIME clusters (Kruskal-Wallis test, p < 0.001). (I) Difference in CTLA-4 expression among the
three TIME clusters (Kruskal-Wallis test, p < 0.001).
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applied as the training dataset. We identified the OSCC driver
genes by maftools in R software and calculated the sum of somatic
alterations in OSCC driver genes of each sample as the TMB score
(Mayakonda et al., 2018). We also estimated the correlation
between the TIME scores and the TMB scores (Zhang L et al.,
2020). Next, the Kaplan-Meier survival curve for overall survival
(OS) was constructed based on the high and low TMB score
patterns using survminer R package. Another Kaplan-Meier
survival curve was generated among the four different groups
(high TMB score and high TIME score; high TMB score and low
TIME score; low TMB score and high TIME score; low TMB
score and low TIME score).

Estimation of the Correlation Between
Immune Cell Level and Gene Expression
TIMER is a novel algorithm used for characterizing the cell
composition of a complex tissue and to estimate the level of
tumor-infiltrating immune cells according to the corresponding
gene expression profiles (Li et al., 2020). In this study, TIMER
method was used to predict the tumor purity and immune score
of each OSCC specimen from two TIME score clusters and to
verify the correlation between the tumor-infiltrating immune cell
level and the immune checkpoint gene expression level (CTLA4,
PD-L1 and PD-1) estimated by CIBERSORT method (Wang
et al., 2020).

Gene Set Enrichment Analysis
GSEA database (http://software.broadinstitute.org/gsea/index.
jsp) was employed to assess the difference in potential
biological processes between high-risk and low-risk groups
(p < 0.05).

Statistical Analysis
All statistical tests were bilateral, and were carried out using R
version 3.6.1 and Bioconductor (https://www.bioconductor.org/).
The levels of significance (p-value) were set as <0.05, <0.01 < 0.
001 and <0.0001.

RESULTS

The Landscape of TIME-Infiltrating Cells in
OSCC
Firstly, the enrichment levels of TIME-infiltrating cells in OSCC
tumor tissues were quantify using the CIBERSORT and
ESTIMATE algorithms (Schelker et al., 2017; Yoshihara
et al., 2013). Unsupervised clustering of 304 tumor samples
from the meta-cohort (GSE41613 and tumor genome map
[TCGA]) matched with tumor immune microenvironment
(TIME) was carried out using the ConsesusClusterPlus
package in R software, and the OSCC patients were divided
into different subtypes through consensus clustering (Figures
1A–C; Supplementary File S3). (Gan et al., 2018) To compare
the immune cell compositions of the TIME, we performed a
heatmap for the three clusters (Figure 1D). Among the three
distinct subtypes of TIME cell infiltration, the TIME cluster A

exhibited a high level of M0 macrophage infiltration; the TIME
cluster B demonstrated a significant increase in the amount of
resting memory CD4+ T cells; and the TIME cluster C showed
significant increases in the infiltration levels of CD8+ T cells,
Follicular helper T cells and activated memory CD4+ T cells.
The clinical characteristics of the three TIME clusters are
presented in Table 1. Notably, OSCC patients in cluster C
had a longer survival time (Log-rank test/Log rank, p =
0.048) than those in cluster A and B (Figure 1E), suggesting
that TIME is associated with the prognosis of diffuse OSCC
patients. Subsequently, the correlation coefficient heatmap was
constructed, and the findings revealed that the infiltration of
CD8+ T cells was positively correlated with the infiltration of
CD4+ T cells (Figure 1G). Furthermore, we also analyzed the
expression levels of the crucial immune checkpoints PD-1 and
CTLA-4 in each TIME subtype (Goltz et al., 2018; Gabrych et al.,
2019). The patients in TIME cluster C had significantly higher
expression levels of CTLA-4 and PD-1 compared to cluster A
and B.

The Identified Immune Gene Subtype
To explore differentially expressed genes among distinct
immunophenotypes, limma R package was employed to
compare the differences in mRNA expression levels among
different subtypes. As a result, a total of 360 DEGs were
identified in all OSCC samples. Then, an unsupervised
clustering analysis was conducted on these 360 DEGs
(Supplementary Files S4, S5), which classified the samples
into two genome clusters, namely, gene clusters A and B
(Figures 2A–C; Supplementary File S6). The 360 gene
signatures were positively related to the gene cluster (TIME
gene signature A), and the remaining were designated as
TIME gene signature B (Supplementary File S7) (Kaymak
et al., 2021). The expression of these DEGs is visualized in a
heatmap (Figure 2D) by using the clusterProfiler R package
(Zeng et al., 2019).

To further evaluate the prognosis of OSCC patients with
different TIME gene clusters, the survival analysis in R
programming language with a threshold of log-rank<0.05. It
was observed that the patients in gene cluster B exhibited a
better prognosis, whereas those in gene cluster A had a poor
outcome (log rank test, p = 0.007; Figure 2E).

TABLE 1 | Characteristics of patients in cluster A, B, and C.

Characteristics N Cluster A Cluster B Cluster C

Total cases 304 82 131 91
Age
<60 150 45 69 36
≥60 154 37 62 54
NA 1 0 0 1

Gender
Male 210 61 88 61
Female 94 21 43 30

Stage
I/II 81 18 30 33
III/IV 223 59 93 51
NA 20 5 8 7
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FIGURE 2 | Identification of immunogenic gene subtypes. (A) Cumulative distribution function curve of each consensus matrix from k = 2 to k = 9. (B) Relative
changes in the area under CDF curve based on different k values. (C) Consensus clustering of the 304 specimens derived from TCGA and GEO datasets for k = 2. (D)
Unsupervised analysis clustering of common DEGs among three TIME clusters for classifying OSCC patients into Gene clusters (A and B). (E) Overall survival of OSCC
patients in the clusters (A and B). Log-rank test, p = 0.007. (F) Bubble plot for the functional enrichment analyses of gene cluster (A). The number of genes
annotated to a GO term is indicated by the x axis. (G)Bubble plot for the functional enrichment analyses of gene cluster (B). The number of genes annotated to a GO term
is indicated by the x axis. (H) The distribution patterns of TIME-infiltrating cells in the two gene clusters. The immune scores of the two gene clusters are also plotted. * p <
0.05; ** p < 0.01; *** p < 0.001. (I) Difference in the expression levels of PD-1 and CTLA-4 between the two TIME gene clusters.
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GO function analysis was carried out for TIME signature
genes A and B respectively (Figures 2F,G; Supplementary Files
S8, S9). Interestingly, the results showed that gene cluster B was
markedly associated with higher immune scores (Figure 2H).
The immune scores in the two TIME gene clusters were in
accordance with the distribution patterns of TIME-infiltrating
cells. The gene cluster A displayed a remarkable increase in the
filtration of M0 macrophages, resting mast cells and
neutrophils, while the gene cluster B exhibited a higher
infiltration of activated CD4+ memory T cells, CD8+ T cells
and M1 macrophages.

Additionally, the two TIME signature gene clusters
demonstrated remarkable difference in the expression levels of
PD-1 and CTLA-4 (Figure 2I). The PD-1/CTLA-4 expression
level of TIME gene cluster B was relatively high, while that of
TIME gene cluster A was slightly lower.

Construction and Analysis of the TIME
Score Groups
Principal component analysis was conducted to measure the
TIME score of each sample, that is, the sum of the TIME
score A and from TIME signature gene A and B, respectively,

in order to obtain the quantitative index of TIME landscape
(Supplementary File S10). The patients were stratified into high
and low TIME score groups according to the optimal cut-off
values obtained from survminer R package.

Figure 3A shows the distribution patterns of OSCC patients in
the two gene clusters. The prognostic implication of TIME scores
was evaluated, and the immune tolerance conditions of each
group in the TCGA cohort were assessed before analyzing the
prognostic values of TIME score in the TCGA cohort and other
independent datasets. The immune checkpoint-related gene
signatures of LAG3, HAVCR2, CD27, PDCD1LG2, PDCD1,
CD274, TIGIT, CTLA4, ICOS and IDO1 were selected (Song
et al., 2021). It was found that all these immune checkpoint-
related genes were markedly overexpressed in high TIME score
group, as revealed by the Wilcoxon test (Figure 3B). TIME score
subtype analysis in the Kaplan-Meier plotter indicated that OSCC
patients in high TIME score group exhibited markedly better
survival rate than those in low TIME score group (log rank test,
p = 0.017; Figure 3C). In addition, the results of GSEA
demonstrated that the signaling pathways of B cell receptor,
nature killer cell-mediated cytotoxicity, and toll-like receptor
were significantly enriched in high TIME score group
(Figure 3D).

FIGURE 3 | Construction and analysis of the TIME score groups. (A) Distribution patterns of OSCC patients in the two TIME gene clusters. (B) Expression levels of
the immune checkpoint-related genes (LAG3, HAVCR2, CD27, PDCD1LG2, PDCD1, CD274, TIGIT, CTLA4, ICOS and IDO1) in high and low TIME score groups. (C)
Survival rates of OSCC patients in high and low TIME score groups. Log-rank test, p = 0.017. (D) GSEA analyses of the genes in high TIME score group.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7885806

Zhao et al. Scheme for OSCC Immunotherapy

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Correlation Between TIME Scores and
Tumor Burden Mutation
TMB is an important molecular marker for assessing the
outcomes of tumor immunotherapy (Mayakonda et al., 2018).
Previous evidence shows that the level of TMB can not only
predict the efficacy of immunotherapy, but also accurately predict
the efficacy of many targeted and chemotherapeutic drugs (Zhu
et al., 2019b). Besides, TMB also has important clinical
significance. In this study, we attempted to determine the
relationship between TMB and TIME scores. First, the TMBs
of OSCC patients with high and low TIME scores were compared
(Supplementary File S11). As shown in Figure 4A, the TMB of
OSCC patients was higher in low TIME score group than in high
TIME score group (Wilcoxon test, p = 0.015). Next, we
categorized the patients into high and low TMB groups. As
shown in Figure 4B, OSCC patients in low TMB group
exhibited better survival rate than those in high TMB group
(log-rank test, p < 0.001). Based on these contradictory results, we
further explored the combined effect of TMB and TIME scores on
OSCC prognosis. Stratified survival analysis showed that TMB
scores did not affect TIME scores-based prognostic prediction.
However, a significant difference in survival rates was observed

between high and low TMB groups stratified by TIME scores
(Figure 4C).

In addition, the distribution patterns of somatic alterations in
OSCC patients were compared between high and low TIME
groups. The R package maftools was used to identify potential
driver genes in OSCC patients. The top 20 variant mutated driver
genes were selected for further analysis. The annotated mutation
files were downloaded from TCGA database and then analyzed.
As shown in Figures 4D,E and Table2, the frequencies of NSD1,
CASP8 and TP53 mutations were noticeably different between
high and low TIME score groups. These results may provide new
insights into the mechanisms of gene mutations and TIME
compositions as well as novel targets for immunotherapy.

Prognosis Analysis Between High and Low
TIME Score Groups With Specific Clinical
Characteristics
To further evaluate the prognostic implication of TIME scores on
OSCC patients, all samples were categorized into different groups
by clinical characteristics (e.g., gender, stage and age). The
survival curves of TIME scores were constructed using R

FIGURE 4 | Association between TIME scores and somatic mutations. (A) Difference in TMB scores between high and low TIME score groups. Wilcoxon test, p =
0.015. (B) Survival rates of OSCC patients in high and low TMB score groups. Log-rank test, p < 0.001. (C) Survival rates of OSCC patients stratified by TIME and TMB
scores. Log-rank test, p < 0.001. (D) Construction of the oncoPrint based on high TIME scores on the left (red). (E) Construction of the oncoPrint based on low TIME
scores on the right (blue).
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software with survival package. As shown in Figures 5A,B, TIME
scores were positively correlated with OS among patients younger
than 60. However, no marked difference was found between high
and low score groups with age over 60. The TIME scores were also
positively correlated with OS among male patients (Figures
5C,D) and stage Ⅲ/Ⅳ patients (Figures 5E,F).

DISCUSSION

Previous research has shown that immune system is involved in the
occurrence and metastasis of OSCC patients (Abbott and Ustoyev,
2019). TIME cells play a double-edged sword role, which not only
recognize tumor cells and inhibit tumor development, but also help
tumor cells achieve immune escape and promote tumor development
(Lakshmi Narendra et al., 2013; Dogan et al., 2018). As the immune
status is closely related to OSCC, the new immunotherapy of OSCC
has received widespread attention. The main purpose of tumor
immunotherapy is to activate the damaged immune system by
rescuing failed T cells and regulating immunosuppressive cells. In
2016, PD-1 targeting drugs (Pembrolizumab) and anti-PD-1
monoclonal antibody (nivolumab) were approved by the US Food
and Drug Administration (FDA) for treating recurrent or metastatic
OSCC patients (Kujan et al., 2020; Tang et al., 2020). Previous studies
have confirmed the relative safety of anti-PD-1/PD-L1 agents, but the
primary drug resistance rate to PD-1/PD-L1 is as high as 60% in
patients withmalignant tumors such as OSCC (Topalian et al., 2012).
Considering that this immunotherapy may not benefit all OSCC
patients, we quantified the TIME scores of OSCC tumor and used
this scoring system to evaluate the prognostic biomarkers of
immunotherapy response.

Specifically, the TIME scores of 257 OSCC samples were
analyzed and subsequently used to classify OSCC patients into

three different immune subtypes. In the analysis, we found that
the concentrations of CD4+T, CD8+T and helper T cells were
associated with higher TIME scores, and these patients showed a
good prognosis. Previous studies have shown that hot tumors
reflect good immunogenicity, and CD4+T and CD8+T cells
continue to infiltrate into tumor stroma, para-tumoral areas
and tumor nests (Ochoa de Olza et al., 2020). These subtypes
respond well to TIME therapy such as PD-1 in clinic (Lenouvel
et al., 2020). We also found that immune checkpoints, such as
PD-1 and CLAT4, showed high expression levels in groups with
high immune scores. According to the new classification of gene
clusters, it was observed that the gene cluster B showed relatively
high immune score, inflammatory cell density and a more
favorable activation phenotype, with the highest densities of
CD4+T cells, CD8+T cells and M1 macrophages. On the other
hand, the gene cluster A had a lower TIME score and displayed an
immune cold phenotype, and the patients exhibited a poor
prognosis (Ochoa de Olza et al., 2020). Therefore, it is
speculated that OSCC patients in TIME gene cluster B may
actually benefit from immunotherapy. Nevertheless, due to the
heterogeneity of TIME scores, tumor subtype-specific biomarkers
should be established for improving OSCC prognosis prediction.

Through GSEA pathway analysis, we found that toll-like
receptor and B cell receptor signaling pathways were
remarkably enriched in high TIME score group. Previous
research has found that the increased expression of B cell
receptor signaling pathways Fos and Jun as the direct
downstream of the activated MAPK pathway and the end point
of this pathway can produce an immune response (Zhao et al.,
2009; Das et al., 2019). The sensitivity of TLR2 could be increased
after themalignant phenotype of OSCCwas developed. Hence, this
gives us a new choice when seeking for new targets for
immunotherapy. Additionally, it can be seen from the survival
analysis of OSCC patients that TMB is not related to TIME, and
thus can be used as an independent indicator. By comparing the
difference between TIME high and low score groups, the three
genes with the highest mutation frequency were identified, which
could serve as good candidates for predicting the responses to
immunotherapy. In addition, younger OSCC patients (less than
60 years old) with high TIME scores showed better survival rates,
and OSCC stage III/IV patients also exhibited the same results.
Previous studies have shown that male patients do not appear to
benefit from immunotherapy compared with female patients (Lin
et al., 2019; Yang F et al., 2020). However, our study revealed that
male patients with high TIME scores had remarkably higher
survival rates than female patients. This may be helpful to our
search for immune targeted cancer therapy in the future.

In summary, we obtained potential “subtype biomarkers”
through the Boruta algorithm and established a TIME scoring
system to describe the TIME characteristics of OSCC patients in
a relatively comprehensive way and gain a deeper understanding of
tumor immune infiltration (Peng et al., 2021). By comparing the
TIME scores, we proved the feasibility of this scoring system for
assessing the responses of targeted immunotherapy. In the near
future, we should apply the TIME score model into clinical practice,
in order to improve the accuracy of OSCC diagnosis and provide
more high-quality programs for patients’ immunotherapy.

TABLE 2 | Association of TIME scores with somatic variants.

Gene symbol High ICI score (%) Low ICI score (%) p-value

TP53 68 (57) 94 (72) 0.0144
TTN 31 (26) 39 (30) 0.4643
FAT1 27 (23) 27 (21) 0.7374
CDKN2A 26 (22) 20 (16) 0.2059
MUC16 20 (17) 14 (11) 0.2459
CSMD3 13 (11) 14 (11) 0.9884
PIK3CA 21 (18) 15 (12) 0.1874
NOTCH1 25 (21) 17 (13) 0.1028
SYNE1 14 (12) 15 (12) 0.9649
LRP1B 13 (11) 10 (8) 0.3937
KMT2D 8 (7) 13 (10) 0.4869
PCLO 8 (7) 15 (12) 0.2067
NSD1 1 (1) 14 (11) 0.0005
DNAH5 6 (5) 11 (9) 0.1972
USH2A 10 (9) 9 (7) 0.5166
FLG 6 (5) 13 (10) 0.1369
CASP8 24 (20) 9 (7) 0.0022
RYR2 8 (7) 5 (4) 0.3182
PKHD1L1 6 (5) 9 (7) 0.5236
DMD 6 (5) 6 (5) 0.8908

TIME-tumor immune microenvironment; p value was obtained from the chi-square test
between different TIME score subtypes.
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FIGURE 5 | Prognosis analysis of high and low TIME score groups with specific clinical characteristics. (A) Survival curves for patients (age ≥60 years old) from high
and low TIME score groups. Log-rank test, p = 0.349. (B) Survival curves for patients (age <60 years old) from high and low TIME score groups. Log-rank test, p = 0.014.
(C) Survival curves for female patients from high and low TIME score groups. Log-rank test, p = 0.273. (D) Survival curves for male patients from high and low TIME score
groups. Log-rank test, p = 0.026. (E) Survival curves for stage I/II patients from high and low TIME score groups. Log-rank test, p = 0.449. (F) Survival curves for
stage III/IV patients from high and low TIME score groups. Log-rank test, p = 0.048.
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CONCLUSION

Overall, we used two algorithms to reveal the characteristics of
immune microenvironment of oral squamous cell carcinoma.
The analysis shows that the immunemicroenvironment score can
be used as an independent index of treatment and prognosis. This
study provides a new perspective for immunotherapy of oral
squamous cell carcinoma and provides a new strategy for
immunotherapy in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YZ: Drafted the manuscript, DC: Bioinformatics analysis and
data mining, JY: Statistical analysis, JX: Literature review, C-YS:
Guidance for Bioinformatics analysis and data mining, ML:

Edited the manuscript, corresponding author. All the authors
read and approved the final manuscript.

FUNDING

This work was supported by the research project of Shanghai
Municipal Committee of Science and Technology
(No.21ZR1455600).

ACKNOWLEDGMENTS

The authors would like to express their gratitude to EditSprings
(https://www.editsprings.com/) for the expert linguistic services
provided.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.788580/
full#supplementary-material

REFERENCES

Abbott, M., and Ustoyev, Y. (2019). Cancer and the Immune System: The History
and Background of Immunotherapy. Semin. Oncol. Nurs. 35 (5), 150923. doi:10.
1016/j.soncn.2019.08.002

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., et al.
(2018). Understanding the Tumor Immune Microenvironment (TIME) for
Effective Therapy. Nat. Med. 24 (5), 541–550. doi:10.1038/s41591-018-0014-x

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer
J. Clinicians 68 (6), 394–424. doi:10.3322/caac.21492

Brorson, I., Eriksson, A., Leikfoss, I., Vitelli, V., Celius, E., Lüders, T., et al. (2020).
CD8(+) T Cell Gene Expression Analysis Identifies Differentially Expressed
Genes between Multiple Sclerosis Patients and Healthy Controls. Mult. Scler.
J. Exp. Transl Clin. 6 (4), 205521732097851. doi:10.1177/2055217320978511

Chai, A. W. Y., Lim, K. P., and Cheong, S. C. (2020). Translational Genomics and
Recent Advances in Oral Squamous Cell Carcinoma. Semin. Cancer Biol. 61,
71–83. doi:10.1016/j.semcancer.2019.09.011

Chen, X., Zhang, B., Wang, T., Bonni, A., and Zhao, G. (2020). Robust Principal
Component Analysis for Accurate Outlier Sample Detection in RNA-Seq Data.
BMC Bioinformatics 21 (1), 269. doi:10.1186/s12859-020-03608-0

Chinn, S. B., and Myers, J. N. (2015). Oral Cavity Carcinoma: Current
Management, Controversies, and Future Directions. J. Clin. Oncol. 33 (29),
3269–3276. doi:10.1200/JCO.2015.61.2929

Das, D., Ghosh, S., Maitra, A., Biswas, N. K., Panda, C. K., Roy, B., et al. (2019).
Epigenomic Dysregulation-Mediated Alterations of Key Biological Pathways
and Tumor Immune Evasion Are Hallmarks of Gingivo-Buccal Oral Cancer.
Clin. Epigenet 11 (1), 178. doi:10.1186/s13148-019-0782-2

Dogan, V., Rieckmann, T., Münscher, A., and Busch, C.-J. (2018). Current Studies
of Immunotherapy in Head and Neck Cancer. Clin. Otolaryngol. 43 (1), 13–21.
doi:10.1111/coa.12895

Dourado, M. R., Guerra, E. N. S., Salo, T., Lambert, D. W., and Coletta, R. D.
(2018). Prognostic Value of the Immunohistochemical Detection of Cancer-
Associated Fibroblasts in Oral Cancer: A Systematic Review andMeta-Analysis.
J. Oral Pathol. Med. 47 (5), 443–453. doi:10.1111/jop.12623

Gabrych, A., Pęksa, R., Kunc, M., Krawczyk, M., Izycka-Swieszewska, E., Biernat,
W., et al. (2019). The PD-L1/PD-1 Axis Expression on Tumor-Infiltrating
Immune Cells and Tumor Cells in Pediatric Rhabdomyosarcoma. Pathol. - Res.
Pract. 215 (12), 152700. doi:10.1016/j.prp.2019.152700

Gan, Y., Li, N., Zou, G., Xin, Y., and Guan, J. (2018). Identification of Cancer
Subtypes from Single-Cell RNA-Seq Data Using a Consensus Clustering
Method. BMC Med. Genomics 11 (Suppl. 6), 117. doi:10.1186/s12920-018-
0433-z

Goltz, D., Gevensleben, H., Vogt, T. J., Dietrich, J., Golletz, C., Bootz, F., et al.
(2018). CTLA4Methylation Predicts Response to Anti-PD-1 and Anti-CTLA-4
Immunotherapy in Melanoma Patients. JCI Insight 3 (13), e96793. doi:10.1172/
jci.insight.96793

Hoesli, R., Birkeland, A. C., Rosko, A. J., Issa, M., Chow, K. L., Michmerhuizen,
N. L., et al. (2018). Proportion of CD4 and CD8 Tumor Infiltrating
Lymphocytes Predicts Survival in Persistent/Recurrent Laryngeal
Squamous Cell Carcinoma. Oral Oncol. 77, 83–89. doi:10.1016/j.
oraloncology.2017.12.003

Huang, S., and O Sullivan, B. (2013). Oral Cancer: Current Role of Radiotherapy
and Chemotherapy. Med. Oral 18 (2), e233–e240. doi:10.4317/medoral.18772

Kaymak, I., Williams, K. S., Cantor, J. R., and Jones, R. G. (2021).
Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell.
39 (1), 28–37. doi:10.1016/j.ccell.2020.09.004

Kujan, O., van Schaijik, B., and Farah, C. S. (2020). Immune Checkpoint Inhibitors
in Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant
Disorders: A Systematic Review. Cancers 12 (7), 1937. doi:10.3390/
cancers12071937

Lakshmi Narendra, B., Eshvendar Reddy, K., Shantikumar, S., and Ramakrishna, S.
(2013). Immune System: A Double-Edged Sword in Cancer. Inflamm. Res. 62
(9), 823–834. doi:10.1007/s00011-013-0645-9

Lenouvel, D., González-Moles, M. Á., Ruiz-Ávila, I., Gonzalez-Ruiz, L., Gonzalez-
Ruiz, I., and Ramos-García, P. (2020). Prognostic and Clinicopathological
Significance of PD-L1 Overexpression in Oral Squamous Cell Carcinoma: A
Systematic Review and Comprehensive Meta-Analysis. Oral Oncol. 106,
104722. doi:10.1016/j.oraloncology.2020.104722

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for
Analysis of Tumor-Infiltrating Immune Cells. Nucleic Acids Res. 48 (W1),
W509–W514. doi:10.1093/nar/gkaa407

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 78858010

Zhao et al. Scheme for OSCC Immunotherapy

https://www.editsprings.com/
https://www.frontiersin.org/articles/10.3389/fgene.2022.788580/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.788580/full#supplementary-material
https://doi.org/10.1016/j.soncn.2019.08.002
https://doi.org/10.1016/j.soncn.2019.08.002
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.3322/caac.21492
https://doi.org/10.1177/2055217320978511
https://doi.org/10.1016/j.semcancer.2019.09.011
https://doi.org/10.1186/s12859-020-03608-0
https://doi.org/10.1200/JCO.2015.61.2929
https://doi.org/10.1186/s13148-019-0782-2
https://doi.org/10.1111/coa.12895
https://doi.org/10.1111/jop.12623
https://doi.org/10.1016/j.prp.2019.152700
https://doi.org/10.1186/s12920-018-0433-z
https://doi.org/10.1186/s12920-018-0433-z
https://doi.org/10.1172/jci.insight.96793
https://doi.org/10.1172/jci.insight.96793
https://doi.org/10.1016/j.oraloncology.2017.12.003
https://doi.org/10.1016/j.oraloncology.2017.12.003
https://doi.org/10.4317/medoral.18772
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.3390/cancers12071937
https://doi.org/10.3390/cancers12071937
https://doi.org/10.1007/s00011-013-0645-9
https://doi.org/10.1016/j.oraloncology.2020.104722
https://doi.org/10.1093/nar/gkaa407
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lin, S.-H., Wang, H.-K., Yeh, K.-T., Tai, H.-C., Wang, H.-Y., Huang, L.-R., et al.
(2019). c-MYC Expression in T (III/IV) Stage Oral Squamous Cell Carcinoma
(OSCC) Patients. Cancer Manag. Res. 11, 5163–5169. doi:10.2147/CMAR.
S201943

Lin, B., Du, L., Li, H., Zhu, X., Cui, L., and Li, X. (2020). Tumor-Infiltrating
Lymphocytes: Warriors Fight against Tumors Powerfully. Biomed.
Pharmacother. 132, 110873. doi:10.1016/j.biopha.2020.110873

Linsen, S. S., Gellrich, N.-C., and Krüskemper, G. (2018). Age- and Localization-
Dependent Functional and Psychosocial Impairments and Health Related
Quality of Life Six Months after OSCC Therapy. Oral Oncol. 81, 61–68.
doi:10.1016/j.oraloncology.2018.04.011

Lu, Z., Liang, J., He, Q., Wan, Q., Hou, J., Lian, K., et al. (2019). The Serum
Biomarker Chemerin Promotes Tumorigenesis and Metastasis in Oral
Squamous Cell Carcinoma. Clin. Sci. (Lond) 133 (5), 681–695. doi:10.1042/
CS20181023

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer.
Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118

Mills, L. J., Spector, L. G., Largaespada, D. A., and Williams, L. A. (2021). Sex
Differences in Expression of Immune Elements Emerge in Children, Young
Adults and Mice with Osteosarcoma. Biol. Sex. Differ. 12 (1), 5. doi:10.1186/
s13293-020-00347-y

Ochoa de Olza, M., Navarro Rodrigo, B., Zimmermann, S., and Coukos, G. (2020).
Turning up the Heat on Non-Immunoreactive Tumours: Opportunities for
Clinical Development. Lancet Oncol. 21 (9), e419–e430. doi:10.1016/s1470-
2045(20)30234-5

Park, H. J., Chi, G. Y., Choi, Y. H., and Park, S. H. (2020). The Root Bark of Morus
alba L. Regulates Tumor-Associated Macrophages by Blocking Recruitment
and M2 Polarization of Macrophages. Phytotherapy Res. 34 (12), 3333–3344.
doi:10.1002/ptr.6783

Peng, Y., Liu, C., Li, M., Li, W., Zhang, M., Jiang, X., et al. (2021). Identification of a
Prognostic and Therapeutic Immune Signature Associated with Hepatocellular
Carcinoma. Cancer Cel Int 21 (1), 98. doi:10.1186/s12935-021-01792-4

Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., et al. (2017).
Estimation of Immune Cell Content in Tumour Tissue Using Single-Cell RNA-
Seq Data. Nat. Commun. 8 (1), 2032. doi:10.1038/s41467-017-02289-3

Song, D., Tian, J., Han, X., and Li, X. (2021). A Model of Seven Immune
Checkpoint-Related Genes Predicting Overall Survival for Head and Neck
Squamous Cell Carcinoma. Eur. Arch. Otorhinolaryngol. 278, 3467–3477.
doi:10.1007/s00405-020-06540-4

Sun, L., Xu, Y., Zhang, X., Gao, Y., Chen, J., Zhou, A., et al. (2020). Mesenchymal
Stem Cells Functionalized Sonodynamic Treatment for Improving Therapeutic
Efficacy and Compliance of Orthotopic Oral Cancer. Adv. Mater. 32 (48),
2005295. doi:10.1002/adma.202005295

Tanaka, M., and Siemann, D.W. (2020). Gas6/Axl Signaling Pathway in the Tumor
Immune Microenvironment. Cancers 12 (7), 1850. doi:10.3390/
cancers12071850

Tang, X., Chen, S., Sui, Q., Li, X., Liu, Z., Zhu, F., et al. (2020). Response to
Nivolumab Combining Radiotherapy and Nimotuzumab in Metastatic Oral
Squamous Cell Carcinoma Patient with strong PD-L1 Expression: a Case
Report. Ann. Transl Med. 8 (6), 402. doi:10.21037/atm.2020.02.96

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, Activity, and Immune Correlates of
Anti-PD-1 Antibody in Cancer. N. Engl. J. Med. 366 (26), 2443–2454. doi:10.
1056/NEJMoa1200690

Wang, L., Yang, Z., and Cao, Y. (2020). Regulatory T Cell and Activated Natural
Killer Cell Infiltration in Hepatocellular Carcinoma: Immune Cell Profiling
Using the CIBERSORT. Ann. Transl Med. 8 (22), 1483. doi:10.21037/atm-20-
5830

Yang, Q., Guo, B., Sun, H., Zhang, J., Liu, S., Hexige, S., et al. (2017). Identification
of the Key Genes Implicated in the Transformation of OLP to OSCC Using
RNA-Sequencing. Oncol. Rep. 37 (4), 2355–2365. doi:10.3892/or.2017.5487

Yang, W., Yang, S., Zhang, F., Cheng, F., Wang, X., and Rao, J. (2020). Influence of
the Hippo-YAP Signalling Pathway on Tumor Associated Macrophages
(TAMs) and its Implications on Cancer Immunosuppressive
Microenvironment. Ann. Transl Med. 8 (6), 399. doi:10.21037/atm.2020.02.11

Yang, F., Markovic, S. N., Molina, J. R., Halfdanarson, T. R., Pagliaro, L. C.,
Chintakuntlawar, A. V., et al. (2020). Association of Sex, Age, and Eastern
Cooperative Oncology Group Performance Status with Survival Benefit of
Cancer Immunotherapy in Randomized Clinical Trials: A Systematic Review
and Meta-Analysis. JAMA Netw. Open 3 (8), e2012534. doi:10.1001/
jamanetworkopen.2020.12534

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring Tumour Purity and Stromal and Immune
Cell Admixture from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
Microenvironment Characterization in Gastric Cancer Identifies Prognostic
and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol. Res. 7
(5), 737–750. doi:10.1158/2326-6066.CIR-18-0436

Zhang, X., Quan, F., Xu, J., Xiao, Y., Li, X., and Li, Y. (2020). Combination of
Multiple Tumor-Infiltrating Immune Cells Predicts Clinical Outcome in colon
Cancer. Clin. Immunol. 215, 108412. doi:10.1016/j.clim.2020.108412

Zhang, L., Li, B., Peng, Y., Wu, F., Li, Q., Lin, Z., et al. (2020). The Prognostic
Value of TMB and the Relationship between TMB and Immune
Infiltration in Head and Neck Squamous Cell Carcinoma: A Gene
Expression-Based Study. Oral Oncol. 110, 104943. doi:10.1016/j.
oraloncology.2020.104943

Zhao, E., Xu, J., Yin, X., Sun, Y., Shi, J., and Li, X. (2009). Detection of Deregulated
Pathways to Lymphatic Metastasis in Oral Squamous Cell Carcinoma. Pathol.
Oncol. Res. 15 (2), 217–223. doi:10.1007/s12253-008-9102-4

Zhao, M., Li, M., Chen, Z., Bian, Y., Zheng, Y., Hu, Z., et al. (2020). Identification of
Immune-Related Gene Signature Predicting Survival in the Tumor
Microenvironment of Lung Adenocarcinoma. Immunogenetics 72 (9-10),
455–465. doi:10.1007/s00251-020-01189-z

Zhu, J., Petit, P.-F., and Van den Eynde, B. J. (2019). Apoptosis of Tumor-
Infiltrating T Lymphocytes: A New Immune Checkpoint Mechanism.
Cancer Immunol. Immunother. 68 (5), 835–847. doi:10.1007/s00262-018-
2269-y

Zhu, J., Zhang, T., Li, J., Lin, J., Liang, W., Huang, W., et al. (2019). Association
between Tumor Mutation Burden (TMB) and Outcomes of Cancer Patients
Treated with PD-1/PD-L1 Inhibitions: A Meta-Analysis. Front. Pharmacol. 10,
673. doi:10.3389/fphar.2019.00673

Zollinger, A., Davison, A. C., and Goldstein, D. R. (2018). Automatic Module
Selection from Several Microarray Gene Expression Studies. Biostatistics 19 (2),
153–168. doi:10.1093/biostatistics/kxx032

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhao, Chen, Yin, Xie, Sun and Lu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 78858011

Zhao et al. Scheme for OSCC Immunotherapy

https://doi.org/10.2147/CMAR.S201943
https://doi.org/10.2147/CMAR.S201943
https://doi.org/10.1016/j.biopha.2020.110873
https://doi.org/10.1016/j.oraloncology.2018.04.011
https://doi.org/10.1042/CS20181023
https://doi.org/10.1042/CS20181023
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/s13293-020-00347-y
https://doi.org/10.1186/s13293-020-00347-y
https://doi.org/10.1016/s1470-2045(20)30234-5
https://doi.org/10.1016/s1470-2045(20)30234-5
https://doi.org/10.1002/ptr.6783
https://doi.org/10.1186/s12935-021-01792-4
https://doi.org/10.1038/s41467-017-02289-3
https://doi.org/10.1007/s00405-020-06540-4
https://doi.org/10.1002/adma.202005295
https://doi.org/10.3390/cancers12071850
https://doi.org/10.3390/cancers12071850
https://doi.org/10.21037/atm.2020.02.96
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.21037/atm-20-5830
https://doi.org/10.21037/atm-20-5830
https://doi.org/10.3892/or.2017.5487
https://doi.org/10.21037/atm.2020.02.11
https://doi.org/10.1001/jamanetworkopen.2020.12534
https://doi.org/10.1001/jamanetworkopen.2020.12534
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1016/j.clim.2020.108412
https://doi.org/10.1016/j.oraloncology.2020.104943
https://doi.org/10.1016/j.oraloncology.2020.104943
https://doi.org/10.1007/s12253-008-9102-4
https://doi.org/10.1007/s00251-020-01189-z
https://doi.org/10.1007/s00262-018-2269-y
https://doi.org/10.1007/s00262-018-2269-y
https://doi.org/10.3389/fphar.2019.00673
https://doi.org/10.1093/biostatistics/kxx032
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Comprehensive Analysis of Tumor Immune Microenvironment Characteristics for the Prognostic Prediction and Immunotherapy of  ...
	Introduction
	Materials and Methods
	OSCC Datasets
	Consensus Clustering for Tumor Immune Microenvironment Cells
	Differential Expression Analysis Based on TIME Phenotypes
	Dimensionality Reduction and Measurement of TIME Score
	Acquisition of Somatic Mutation Data
	Estimation of the Correlation Between Immune Cell Level and Gene Expression
	Gene Set Enrichment Analysis
	Statistical Analysis

	Results
	The Landscape of TIME-Infiltrating Cells in OSCC
	The Identified Immune Gene Subtype
	Construction and Analysis of the TIME Score Groups
	Correlation Between TIME Scores and Tumor Burden Mutation
	Prognosis Analysis Between High and Low TIME Score Groups With Specific Clinical Characteristics

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


