
REVIEW ARTICLE Open Access

Clinical neurophysiology of migraine with
aura
Gianluca Coppola1, Cherubino Di Lorenzo2, Vincenzo Parisi3*, Marco Lisicki4, Mariano Serrao1 and
Francesco Pierelli1,5

Abstract

Background: The purpose of this review is to provide a comprehensive overview of the findings of clinical
electrophysiology studies aimed to investigate changes in information processing of migraine with aura patients.

Main body: Abnormalities in alpha rhythm power and symmetry, the presence of slowing, and increased
information flow in a wide range of frequency bands often characterize the spontaneous EEG activity of MA. Higher
grand-average cortical response amplitudes, an increased interhemispheric response asymmetry, and lack of
amplitude habituation were less consistently demonstrated in response to any kind of sensory stimulation in MA
patients. Studies with single-pulse and repetitive transcranial magnetic stimulation (TMS) have reported abnormal
cortical responsivity manifesting as greater motor evoked potential (MEP) amplitude, lower threshold for
phosphenes production, and paradoxical effects in response to both depressing or enhancing repetitive TMS
methodologies. Studies of the trigeminal system in MA are sparse and the few available showed lack of blink reflex
habituation and abnormal findings on SFEMG reflecting subclinical, probably inherited, dysfunctions of
neuromuscular transmission. The limited studies that were able to investigate patients during the aura revealed
suppression of evoked potentials, desynchronization in extrastriate areas and in the temporal lobe, and large
variations in direct current potentials with magnetoelectroencephalography. Contrary to what has been observed in
the most common forms of migraine, patients with familial hemiplegic migraine show greater habituation in
response to visual and trigeminal stimuli, as well as a higher motor threshold and a lower MEP amplitude than
healthy subjects.

Conclusion: Since most of the electrophysiological abnormalities mentioned above were more frequently present
and had a greater amplitude in migraine with aura than in migraine without aura, neurophysiological techniques
have been shown to be of great help in the search for the pathophysiological basis of migraine aura.

Keywords: Cortical excitability, Habituation, Slow rhythms, Interhemispheric asymmetry, Neuromodulation,
Paradoxical responses

Introduction
During the last 50 years, researchers dedicated their projects
to the understanding of neurophysiological peculiarities of
the migraine brain which might predispose to the recurrence
of migraine attacks. This implies that most of the possible
electrophysiological signatures of these subtle underlying fac-
tors were detected between migraine attacks, fluctuating de-
pending on the distance from the last or the next attack.
Moreover, even though amongst the migraineurs those who

experience aura (MA) exhibit more pronounced clinical
manifestations, these patients have been less frequently stud-
ied from a neurophysiological point of view. This is, by the
way, due to its lower prevalence in comparison to the com-
monest migraine without aura (MO) and because of the
short duration of the aura phase. In fact, focal neurological
symptoms which precede or accompany the headache phase
(when presents), last no more than 60min with visual - the
most common aura symptom - followed by sensory and
aphasic auras [1, 2]. However, a significant proportion of
auras may last longer than one hour and may configure the
diagnosis of persistent aura without infarction [3].
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The electrocortical phenomenon of cortical spreading de-
pression (CSD) has been implicated in the genesis of migraine
aura: it is a wave of neuronal hyperactivity followed by a wave
of hypoactivity which often spreads postero-anteriorly and can
reach the parietal and/or temporal lobes travelling at a speed
of approx. 3mm/min [4]. After the first description of CSD in
animals by Leão [5] up-till-now only indirect evidence for
CSD in migraine patients derived from functional MRI [6–8]
and magnetoencephalographic [9, 10] studies has been gath-
ered. Although in animal models CSD is able to ignite the tri-
geminovascular system, which is the condition for a headache
to start, less is known about the possible biomarkers of CSD
during the interictal migraine that might predispose to the
aura and, perhaps, to the attack itself.
To better understand aura-related changes in sensory pro-

cessing, several independent research groups have dedicated
to the study of electrocortical signals during different phases
of the migraine cycle using different sensory stimuli, or single
or repetitive neuromodulatory techniques delivered over the
scalp. Interestingly, none of the published studies assessed
patients suffering exclusively from migraine with aura, at
least with respect to the most common episodic forms of mi-
graine. This has happened not only because patients suffer-
ing exclusively from migraine attacks preceded by aura are
difficult to find, but also because for many authors the two
conditions of MO and MA are variable clinical manifesta-
tions of substantially the same genetic disorder [11].The pur-
pose of this review is to provide a comprehensive overview
of the findings of clinical electrophysiology studies aimed to
investigate changes in sensory processing of migraine with
aura patients.

Data overview
Electroencephalography (EEG)
Several decades passed since the pioneering electroen-
cephalographic studies emphasizing abnormal electro-
cortical activities in migraine [12]. During the last 60
years of publication, the most frequently described elec-
trocortical phenomena in migraine patients were the
so-called H response to flicker stimulation – also known
as enhanced photic driving (PD) –, and the abnormal
resting-state EEG rhythmic activity.
Enhanced PD of EEG during intermittent photic stimu-

lation using fast Fourier transform analysis on steady-state
visual evoked potentials (SS-VEPs), the so-called H re-
sponse, was more prevalent in migraine patients than in
healthy controls. Researchers observed that the funda-
mental components of the EEG spectra were increased
equally in both MA and MO [13, 14], predominantly in
the temporo-parietal regions, with reduced interhemi-
spheric coherence in fronto-temporo-parietal areas [13].
The same phenomenon tends to be present also in juven-
ile MA patients [14]. H-response showed a sensitivity of
86.4% and a specificity of 97.5% in MA and MO patients,

but not in patients affected from basilar migraine [15]. De
Tommaso and coworkers [16] observed that, although in
both MO and MA groups PD was significantly enhanced
with respect to controls, those patients experiencing aura
showed more pronounced decreased phase synchronization
between beta rhythms and higher Granger causality values –
measuring the flow of connections and information across
different brain areas – during light stimulation compared to
MO patients. Response to photic stimulation was less repre-
sented in MA than in MO patients in two studies [17, 18].
During the interictal period of MA patients, quantita-

tive analysis of spontaneous electroencephalographic ac-
tivity showed alpha rhythm and peak frequency
asymmetries over the posterior regions, increased power
of alpha rhythm [19], and widespread increase in delta
[14] and theta [14, 19] total power in comparison with
healthy controls. Reduction of alpha rhythm [20] or uni-
lateral reduction of alpha and theta activity was detected
in MA patients with a pure visual aura [21], mostly
contralateral to the neurological signs [21]. MA patients
had greater alpha peak power interhemispheric asym-
metry, chiefly in the posterior regions, and unrelated to
the headache side, than MO [14, 22]. In a resting state
effective neural connectivity EEG study, MA patients
showed higher flow of information transfer in beta band
compared to MO patients and controls [23]. When
using a checkerboard pattern for visual stimulation, MA
patients showed increased transfer entropy with high
density of information flow in the frontal regions in all
the bands of rhythmic activity as compared to MO pa-
tients [23]. Using magnetoencephalography (MEG), re-
searchers found that MA patients had significantly
increased functional connectivity in the theta (4–8 Hz)
band in the occipital area as compared with patients not
experiencing aura [24]. It is interesting to note that func-
tional connectivity anomalies at the level of the frontal
and occipital networks were detected also with the
method of resting-state functional MRI [25–27].
In summary, resting electric and magnetic activity may

help to better differentiate MA from MO patients than PD.

Evoked potentials
With the help of cortical evoked potentials, higher cortical
response amplitudes, an increased interhemispheric response
asymmetry, and a deficit of response amplitude decrement
were demonstrated by using different types of sensory stim-
uli and techniques in most of the MA patients.

Grand-average EP amplitude
Because in most cases the aura is visual, most of the pub-
lished studies investigated visual evoked potentials (VEPs)
to search for cerebral signatures associated with migraine
aura. By analysing the evoked responses in a classical way
of averaging a large quantity of trials, mainly increased
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amplitudes of steady-state (SS) or transient VEPs have
been discovered in MA patients during attack-free
intervals.
In some reports the grand-average of VEP N75-P100

and/or P100-N145 amplitudes has been found greater in
MA patients than in controls [28–33] and/or in MO pa-
tients [28, 34, 35]. The amplitude of SS-VEP harmonics
was also higher in MA than in MO or controls [36]. In
other studies, on the contrary, VEP amplitudes were found
reduced in MA [37], even when compared to MO [38].
Most often, VEP amplitudes in MA were reported to be in
the normal range [39–45].
Decreased amplitude of the prerolandic component (N20)

of somatosensory evoked potentials (SSEPs) in both MO and
MA patients has been found in one study [46], but ampli-
tudes were within the normal range in others [47–49].
Most of the researchers who recorded short-latency

brainstem auditory evoked potentials (BAEP) were not
able to find any interictal abnormalities in migraine, prob-
ably because they pooled patients with different migraine
phenotypes (MO and MA or different MA subtypes) in
different proportions in a single group (see Table 5 in
[50]). Higher P300 event-related potentials (ERPs) is a
common finding in MA compared with other types of pri-
mary headaches [51, 52]. In comparison with controls,
basic P300 amplitude tended to be greater in a mixed
group of MO and MA patients. Moreover, P300 amplitude
was significantly reduced during mind wandering relative
to on-task periods in migraineurs, contrasting to what
happened in healthy controls. Authors argued that a more
consistent propensity towards engaging in response at-
tenuation during mind wandering states may provide
migraineurs with an alternative compensatory strategy for
reducing stimulus overload in cortex [53].
To sum up, using EPs and ERPs, researchers found

that the frequently reported increase in grand-average
neural response to any kind of sensory stimuli in MA
group is conceivably due to deficient short-term and
long-term adaptive processes to external stimuli.

Interhemispheric asymmetry
Asymmetric neural activities in steady-state VEP amplitude,
transient VEP P100 amplitude distribution and in N70 com-
ponents were detected by some, both related [29, 54, 55] or
not [56–58] with side of visual aura. A significant interhemi-
spheric asymmetry of the N30 component amplitude has
been observed in the MA group in comparison with control
subjects [46].
Similar to the results of VEP and SSEP studies, in one

study mean interhemispheric asymmetries of all BAEP peak
latencies (except peak IV and VI) were significantly increased
in MO and MA patients as compared to those of the control
group, despite the fact that the MA group included

hemiplegic, and brainstem migraine [59]. This datum was
not confirmed in a more recent study [60].

Response habituation
Analysing discrete blocks of small amounts of traces, au-
thors found that during repetitive and stereotyped stimu-
lus presentation, VEP amplitudes augmented progressively
instead of diminishing (i.e. they lacked habituation)
equally in MO and, sometimes even more so, in MA pa-
tients between attacks [39–42, 44, 45, 61–63]. Some stud-
ies failed to confirm deficit of amplitude habituation in
migraineurs during the interictal period [30, 43, 64, 65].
Deficient lateral inhibitory mechanisms within the visual
cortex might be one of the culprits for this abnormal in-
formation processing in migraine as clearly showed with
SS-VEPs elicited by a windmill-dartboard pattern [41]. De-
fective inhibitory mechanisms within the visual cortex in
MA, but not in MO, were further confirmed in a
paired-pulse flash-VEPs study [66].
Since in MA patients, different aura phenotypes may be

underpinned by different pathophysiological mechanisms,
we studied VEP amplitude and habituation in a subgroup of
MA with exclusively visual auras and another with visual
aura followed by somatosensory and/or dysphasic complex
neurological auras [67]. We found a significant sustained in-
crease of VEP amplitude in MA with complex aura – inter-
preted as a genuine increase in cortical excitability –, while it
was within the normal range in migraine with pure visual
aura. In both subgroups VEP habituation was equally defi-
cient as compared with healthy controls, yet in those patients
with complex aura the more pronounced the VEP habitu-
ation deficit the longer the distance from the last migraine
attack [67], as previously observed in another study from the
same research group, but in a mixed group of MO and MA
[41]. In a study where VEPs were co-recorded with MRI
spectroscopy, MA patients showed greater VEP amplitude
and lack of habituation as compared with healthy controls
[68]. More interestingly, both cortical excitability enhancing
and inhibiting transcranial direct current stimulation proce-
dures were unable to induce significant changes in VEP am-
plitudes in MA, while they significantly potentiated and
diminished N1-P1 VEP amplitude in healthy controls keep-
ing a correlation with glutamate signals [68].
In accordance with VEP studies, a significant ha-

bituation deficit has been detected interictally in MA
recording SSEPs [69] and auditory evoked potentials
(AEPs) [70]. Lack of response habituation is also re-
sponsible for the strong interictal dependence of AEPs
on stimulus intensity, that, in turn, is known to be
inversely related to cerebral serotonergic transmission
[44, 70]. There is also evidence for a loss of habitu-
ation during cognitive potentials as assessed by re-
cording P300 amplitude in MA [51, 52].
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Techniques of neuromodulation
Studies with single-pulse and repetitive transcranial magnetic
stimulation (TMS) have reported abnormal cortical respon-
sivity revealed as greater motor evoked potential (MEP)
amplitude, lower threshold for phosphenes production, and
paradoxical effects in response to both depressing or enhan-
cing repetitive TMS (rTMS) methodologies, predominantly
in migraine with aura. Magneto-phosphenes measurements
of MA patients were significantly lower - revealing higher ex-
citability levels - than healthy controls measurements in
most of [71–77], but not in all [78–82], the studies. Naeije et
al. [83] successfully used TMS in discriminating transient is-
chemic attacks of vascular origin from migraine aura without
headache. Greater motor-evoked potential amplitude in re-
sponse to increasing intensity of stimuli in MA patients
compared to controls, with its normalization after levetirace-
tam preventive treatment, was revealed in one study [84]. A
group of authors observed that inhibitory trains of rTMS de-
livered over the motor cortex of MA significantly activates
rather than inhibiting intracortical facilitatory circuits, which
might depend on glutamatergic synaptic mechanisms [85]. A
datum further confirmed delivering inhibitory rTMS over
V1 and assessing phosphene threshold which was normally
enhanced in controls, but reduced in MA [80], and raised
again after prophylactic treatment with valproate [86]. None-
theless, other studies provided evidence for the same para-
doxical effects over M1 since facilitatory rTMS recruited the
excitatory circuits in mechanisms of glutamate-dependent
short-term synaptic potentiation more easily in MA patients
than in those without and healthy controls [87, 88]. On the
other hand, excitatory 5Hz-rTMS at 130% of the resting
motor threshold over M1 determines a significant depression
in MEP size in MA rather than a clear MEP facilitation as in
healthy subjects [87].
In sum, both the paradoxical rTMS response and ha-

bituation deficit point to altered synaptic plasticity mecha-
nisms, which prevent the immediate and longer-lasting
cortical changes that reflect adaptation to repeated stimu-
lations, i.e. learning and memory. Further studies are
needed to verify whether these aberrant ways of respond-
ing of the cortex to neuromodulation are related to abnor-
mal thalamic control [89] or to a failure of the
hypothalamic functional connectivity as recently described
in a single MA patient with resting-state MRI [90].

Electromyographic techniques
Even though brainstem trigeminal nuclei are well know-
ingly deeply involved in the pathophysiology of migraine
without aura, the studies of the trigeminal system in MA
are still sparse.
Perrotta et al. [91] studied a group of MA patients be-

tween attacks by measuring the bilateral polysynaptic R2
component of the nociceptive blink reflex (nBR). They
found comparable normal baseline activation to noxious

supraorbital stimulation with delayed response lack of
habituation in both MO and MA as compared with con-
trols. However, they noted that despite the habituation
deficit was equally present in both migraine groups, that
of MA tended to be less pronounced than that observed
in MO. Moreover, in the MA group the higher the fre-
quency of the migraine attacks the more pronounced
the habituation of the nBR R2 component [91]. The
same correlation was previously observed also in a group
of MO patients [92], and might be explained by the fact
that patients with high attack frequency are more likely
to be recorded in a closer temporal relationship to an at-
tack, when nBR habituation tends to normalize [93].
With the scope to correlate interictal neurophysiological

abnormalities of migraine, especially with aura, with a spe-
cific genotype, researchers recorded single-fibre electromyog-
raphy (SFEMG) to explore neuromuscular transmission, as a
surrogate biomarker of presynaptic P/Q Ca2+ channels func-
tion, in a wide range of migraine aura subtypes. Abnormal
finding on SFEMG reflecting subclinical disfunctions of
neuromuscular transmission have been detected in patients
suffering from MA in between attacks. Patients with unilat-
eral sensorimotor symptoms and/or visual scotoma, other
aura symptoms such as sensory/motor disturbances, and/or
aphasia, and/or vertigo had noticeable abnormal SFEMG
[94, 95]. These findings were confirmed in a larger group of
MA patients where subclinical abnormalities of neuromus-
cular transmission were progressively more noticeable start-
ing from patients with mixed MO and MA to migraine with
prolonged aura, with migraine with typical aura falling in be-
tween the two [96, 97].
In one pilot study, the mild single endplate abnormal-

ities detected by SFEMG in 3 MA patients disappeared
during acetazolamide treatment in parallel with clinical
improvement [98].

Neurophysiological findings during migraine aura
So far, few studies during the transient phase of migraine
aura have been performed.
During visual aura and/or early headache phase, either mild

asymmetry of slow waves in the fronto-temporo-occipital
areas contralateral to the visual field defect disappearing dur-
ing the headache phase [99–101] or normal [100] EEG re-
cording have been reported. In some patients, identical
abnormal slow waves were present interictally [101]. In a pa-
tient who underwent spectral analysis and topographic EEG
mapping during complex aura, posterior-anterior spreading of
slow activities and depression of alpha activity contralateral to
the neurological signs were the prominent findings [21].
In a MA patient spontaneously experiencing a scintil-

lating scotoma in the right hemifield, MEG recording
showed alpha rhythm event-related desynchronization in
the contralateral extra-striate and temporal cortex for
the duration of the focal visual symptoms, and gamma
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band desynchronization peaking 10 min following the
aura [10]. In another MEG study, slow direct current po-
tential shifts - very similar to those found during CSD in
animals [102] and abnormal spread of visual-evoked ac-
tivity have been observed during the occurrence of spon-
taneous and visually induced migraine aura [9].
During the visual aura the hemisphere contralateral to

the field defect showed suppression or complete abolition
of the first three components of the flash VEPs [103] and
of the parietal component of the SSEPs [104]. The latter
component showed also delayed latency and increase cen-
tral conduction time [104]. All the abnormal neurophysio-
logical parameters gradually returned to normal during
the subsequent headache phase [103, 104].
Chen and colleagues [62] showed that a group of 6 pa-

tients affected from persistent aura (PA) without infarc-
tion tended to have an early and more intense P100 MEG
response to checkerboard pattern reversal than MO, MA,
ictal migraineurs, and chronic migraine. Moreover, com-
pared to the interictal MO and MA groups, the patients
with PA showed the more pronounced lack of P100m ha-
bituation during stimulus repetition [62].

Neurophysiological findings in other non-common auras
Electroencephalographic abnormalities during acute at-
tacks of hemiplegic migraine are often described. During
long-lasting attacks of hemiplegic migraine, unilateral or
bilateral delta EEG activity – sometimes spreading
postero-anteriorly [105] – and reduction of alpha are often
recorded [106–115], while theta abnormalities have been
described during the interictal phase [109, 116].
Adult and adolescent patients with brainstem aura (previ-

ously termed basilar type migraine) with disturbed conscious-
ness may have severe clinically relevant EEG-slowing or
generalized spike and wave complexes that may last for several
days [117–127]. Hansen and colleagues measured habituation
of VEPs, IDAP, and nBR in a group of nine genotyped familiar
hemiplegic migraine (FHM) patients (FHM-1N= 5; FHM-2
N=4) and in a group of seven healthy controls [128]. Con-
trary to the commonest forms of episodic MO and MA,
patients with FHM had significantly more pronounced ha-
bituation during VEPs and nBR recordings than controls,
with no differences during IDAP, despite a tendency for
the slope to be steeper in the patients group [128].
In one study, a group of ten patients with FHM showed

basically higher resting motor threshold, longer central con-
duction time, and lower MEP amplitude on the ictally paretic
side than on the non-affected side, while MEP amplitude
were significantly increased in a group of MA [129].

Discussion
There is no common agreement yet about what causes and
where the cascade of events that lead to the focal neuro-
logical symptoms of migraine aura starts and, in most but

not all the cases, about its link to the headache phase. How-
ever, experimental evidences point towards sequential activa-
tion of first-order or second-order trigeminovascular
nociceptors via CSD waves [130]. More likely, a cyclical re-
current malfunction of the pain modulatory structures lo-
cated at the brainstem level (raphe magnus, locus coeruleus
and other aminergic nuclei) could play a major role in deter-
mining the start of the cascade of events that leads, on the
one hand, to the beginning of CSD, on the other hand to the
onset of pain [131, 132]. Several evidences point toward an
involvement of brainstem both in MO and MA pathogen-
esis. An hyperperfusion within the brainstem during mi-
graine aura was seen in one study [133], the same area that
has already been reported to be implicated in the generation
of attacks in groups of MO [134, 135] or mixed MO and
MA [136, 137]. Moreover, with the brainstem, authors found
abnormal macrostructure and functional activation of wide-
spread subcortico/cortical areas, such as neurolimbic area
[138], periaqueductal grey matter [139], hypothalamus [90],
thalamus [140], trigemino-thalamic tract [139], visual [133,
141] and somatosensory [142] cortex. The involvement of
such a wide variety of brain structures in MA has already
been witnessed many times and long before by the neuro-
physiological studies reviewed here. The results can be sum-
marized as follows (see also Table 1):

– Quantitative EEG rather consistently reported
enhanced interictal photic driving, so called “H-
response”, as well as excess of slow and hyper
synchronized alpha rhythmic activity.

– Less consistently, EP and ERP studies showed many
cases of cortical hyper-reactivity to sensory stimuli,
including cognitive ones. When present, this height-
ened cortical response in MA was even more pro-
nounced than in MO.

– Both lack of sensory habituation, of cortical
inhibition, and paradoxical responses obtained after
non-invasive brain neuromodulation, such as in-
creased or decreased responses respectively to inhi-
biting or activating TMS, are commonly observed in
MA. Like in MO, interictal abnormal cortical infor-
mation processing in MA may depends on the time
evolved since the last attack.

– Because the aura has numerous and varied clinical
features, it may not be a single entity, but
correspond to a spectrum of clinical subtypes that
probably differ from a pathophysiological point of
view. In fact, neurophysiological patterns distinguish
between patients who experience pure visual auras
from those with prolonged, somatosensory,
dysphasic or motor, auras.

– Few researchers were able indeed to study patients
during an aura. From a functional point of view,
they detected unilateral disturbances of cortical
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electrogenesis – which might reflect an underlying
metabolic abnormality [143] –, desynchronized
visual and somatosensory potentials, signal
desynchronization in extrastriate and temporal
regions with MEG and large variations in direct
current potentials, much like those seen during CSD
in animal models.

– Few reports in FHM support the concept that
various pathophysiological aspects differ between
FHM and MO/MA, including cortical and brain
stem responsiveness.

We hypothesized that the neurophysiological pattern
which characterizes MA patients of an abnormal cortical
rhythmic activity, an increased cortical responsivity, and defi-
cient lateral inhibition may be ascribed to a “thalamo-cortical
dysrhythmia” (TCD) [40], that is a theory used to explain nu-
merous functional brain disorders [144]. The TCD theory as-
sumes that, in presence of a functional disconnection of the
thalamus from subcortical areas (as for instance the brain-
stem monoaminergic nuclei) a change of rhythmic thalamo-
cortical activity may occur favouring low frequency activity
at the cortical level. This will consequently reduce firing rates
of excitatory pyramidal cells at the beginning, and of
fast-spiking inhibitory interneurons during stimulus repeti-
tion [145]. In support of this theoretical explanation, some
authors found a tendency to a reduction [48] or a full reduc-
tion of the amplitude of the pre-synaptic burst of
high-frequency oscillatory activity embedded in the common
SSEPs reflecting thalamocortical activity [47] in MA patients

between attacks. In another study, a rise of the early
high-frequency oscillatory (HFOs) activity embedded in the
common VEPs characterized MA patients in comparison
with MO and controls. Moreover, also in line with the TCD
theory, the most cortical visual HFOs lacked habituation in
both MO and MA [40]. The anatomical correlates of such
defective thalamic control in MA are beginning to be under-
stood [139–141, 146], and may be dynamically related to the
distance from the last migraine attack [147].

Conclusions
In summary, there are few neurophysiological features pe-
culiar to the brain of patients with migraine with aura,
such as frequent detection of an increase in amplitude to
evoked potentials and peculiar abnormalities of functional
connectivity at the EEG during resting-state. However, in
most cases all the electrophysiological abnormalities –
even those in common with MO – are more pronounced
the more numerous and intense focal neurological symp-
toms characterize the aura. Intuitively we can say that
most of the neurophysiological characteristics are certainly
common to migraine patients with and without aura be-
cause most patients with migraine with aura also experi-
ence migraine attacks without aura [11]. On the other
hand, pharmacological studies have shown that some
drugs are able to stop the aura, but not the start of the mi-
graine pain, clearly suggesting that the two phenomena
are separate from the point of view of the underlying
mechanisms [148]. The information coming from genetic
studies is vaguer because at the moment no one has

Table 1 Synoptic table of neurophysiological changes comparing episodic migraine with aura (MA) between attacks, during the
aura phase, and familiar hemiplegic migraine (FHM). Arrows indicate the direction of change

Episodic migraine with aura between
attacks

Episodic migraine during the aura FHM

Technique

EEG & MEG ↑ photic driving, ↑ of slow, and hyper
synchronized alpha rhythmic activity

On EEG, mild asymmetry of slow waves
contralateral to the visual fiend defect

Unilateral or bilateral delta EEG activity –
sometimes spreading postero-anteriorly –
and ↓ of alpha

On MEG, alpha and gamma rhythm ERD
contralateral to the visual fiend defect, slow
direct current potential shifts

EP & ERP
grand-
average

↑ amplitude (more than in MO) or
normal, ↓ thalamocortical activity

↓ or abolition of cortical EPs in the hemisphere
contralateral to the field defect

EP & ERP
Habituation

↓ habituation (more than in MO) or
normal

↓ habituation during persistent aura without
infarction

Significantly more pronounced
habituation during VEPs and nBR
recordings than controls

TMS Paradoxical effects to enhancing and
reducing paradigms of stimulation

↓ MEP amplitude on the ictally paretic
side

EMG
recordings

↓ Habituation of nBR, subclinical
abnormalities of neuromuscular
transmission on SFEMG

EEG electroencephalography, EMG electromyography, EP, evoked potentials (visual, somatosensory and auditory), ERD event-related desynchronization, ERP event-
related potentials, MEG magnetoelectroencephalography, MEP motor evoked potential, MO episodic migraine without aura, nBR nociceptive blinck reflex, TMS
transcranial magnetic stimulation
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managed to demonstrate that genes certainly involved in
the pathophysiology of familial hemiplegic migraine are
also involved in the most common forms of migraine with
and without aura [149]. Nevertheless, genome-wide asso-
ciation studies (GWAS) have shown that some genetic
variants are associated with both migraine with and with-
out aura, but they do not tell us whether they are associ-
ated with aura as such or with migraine pain that is in
common [11]. Perfusion abnormalities that are likely to
accompany migraine with aura, have also been detected in
clinical cases of patients with migraine without aura, but
during the pain phase and under intense visual stimula-
tion, raising doubts about the possible auratic nature of
the phenomenon [150].
Whatever the peculiar physiological characteristics of the

migraineur with aura brain may be, taken alone it is not suf-
ficient to explain all features of the migraine attack. In many
patients some migraine-related symptoms may also be
present during the intercritical period, and premonitory
symptoms, associated with hypothalamic, brain stem and
various cortical activations revealed on H2

15O-PET scanning
[151] may occur hours before aura and/or headache onset.
Supplementary studies are needed to clarify the

exact relation between the electrocortical phenom-
ena found outside the aura phase and during the
aura itself. Studies correlating aura frequency and
duration of the disorder with thalamic/thalamocor-
tical activity in MA are necessary to test whether
an abnormal cross-talk between the cortex and the
thalamus – the latter area activated by CSD in ani-
mal models [152] –, could induce and/or worsen
the interictal cortical abnormalities in MA. A better
characterization of clinical/electrophysiological phe-
notypes of migraine with aura will allow the identi-
fication of selected migraine patients who may
carry greater load of morpho-functional abnormal-
ities, and may be hopefully the target for novel, tai-
lored, therapeutic interventions. Finally, further
studies combining functional neuroimaging and
neurophysiological methods, simultaneously or de-
ferred, in the same patient are desirable for the un-
derstanding of the exact anatomical correlates of
the abnormal cerebral information processing re-
lated to migraine aura.
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